JPH01170084A - Integrated type optical amplifier element - Google Patents

Integrated type optical amplifier element

Info

Publication number
JPH01170084A
JPH01170084A JP32881387A JP32881387A JPH01170084A JP H01170084 A JPH01170084 A JP H01170084A JP 32881387 A JP32881387 A JP 32881387A JP 32881387 A JP32881387 A JP 32881387A JP H01170084 A JPH01170084 A JP H01170084A
Authority
JP
Japan
Prior art keywords
optical
optical amplifier
grating
optical signal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32881387A
Other languages
Japanese (ja)
Inventor
Kaoru Yoshino
薫 吉野
Masahiro Ikeda
正宏 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP32881387A priority Critical patent/JPH01170084A/en
Publication of JPH01170084A publication Critical patent/JPH01170084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Abstract

PURPOSE:To reduce a return light rays reflected from an optical filter section so as to improve a S/N ratio by a method wherein a semiconductor optical waveguide type amplifier and a grating type optical filter are integrated and the grating is provided obliquely toward a direction in which an optical signal advances. CONSTITUTION:A planar optical waveguide 6 is provided in succession along a direction in which an optical signal advances from a core layer 4 of an optical amplifier 1, a grating face 5 is provided to the planar optical waveguide 6, and an optical filter section 2 is provided, where the grating face 5 is arranged so as to enable a grading angle to make an angle of one or more degrees with a direction perpendicular to a direction in which the optical signal advances. By these processes, an S/N ratio is made to decrease much in deterioration by restraining a noise component caused by a naturally released light and a gain saturation can be also restrained. And, as a device of this design can be manufactured through a monolithic processing method, a multi-stage integration is facilitated and the device can be made very small as compared with a device formed of unit components, so that the device is favorable for mounting.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光信号を増幅する光増幅器(以下光アンプと云
う)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical amplifier (hereinafter referred to as an optical amplifier) that amplifies an optical signal.

〔従来の技術〕[Conventional technology]

光信号を増幅する光アンプ機器として半導体レーザダイ
オード素子(以下レーザダイオードをLDと云う)と同
じダブルへテロ構造のp−n接合を持ち、誘導放出効果
を利用して光を増幅するLD光アンプがある。このLD
光アンプはレーザダイオードのモノリシック製造方法と
同じ処理方法で容易に製造できる。LD光アンプは非常
に小型で集積化が容易である。
As an optical amplifier device for amplifying optical signals, an LD optical amplifier has the same double heterostructure p-n junction as a semiconductor laser diode element (hereinafter referred to as LD) and uses stimulated emission effect to amplify light. There is. This LD
Optical amplifiers can be easily manufactured using the same processing methods as monolithic manufacturing methods for laser diodes. LD optical amplifiers are very small and easy to integrate.

しかし、このLD光アンプは光信号を誘導放出により増
幅すると同時に、自然放出光による雑音成分も発生し、
この雑音成分ため光信号の信号対雑音比(以下S/Nと
云う)の劣化を招くという欠点があった。第2図はLD
光アンプのスペクトル特性図で、Sは光信号成分、Nは
自然放出光、横軸λは波長、縦軸は光強度て゛ある。図
<a>に示すように光信号Sの左右に自然放出光による
小振幅の1100n以上の広い波長帯域中を持つ雑音成
分Nがある。この雑音成分Nは小振幅だが帯域が広いの
で、その積分値が効いてきて、光アンプの出力の全エネ
ルギ(以下エネルギをパワと云う)の中で無視できない
。この光信号成分Sと雑音成分Nの全パワを通常のAP
D等で受光すると、不要の雑音成分のため、APDの非
線型領域への浸入、S/N劣化が生ずる。
However, while this LD optical amplifier amplifies the optical signal through stimulated emission, it also generates noise components due to spontaneous emission.
This noise component has the disadvantage of causing deterioration in the signal-to-noise ratio (hereinafter referred to as S/N) of the optical signal. Figure 2 is LD
In the spectrum characteristic diagram of the optical amplifier, S is the optical signal component, N is the spontaneous emission light, the horizontal axis λ is the wavelength, and the vertical axis is the light intensity. As shown in Figure <a>, there is a noise component N on the left and right sides of the optical signal S, which is caused by spontaneous emission light and has a small amplitude and has a wide wavelength band of 1100 nm or more. Since this noise component N has a small amplitude but a wide band, its integral value becomes effective and cannot be ignored in the total energy (hereinafter energy is referred to as power) of the output of the optical amplifier. The total power of this optical signal component S and noise component N is
When light is received at D or the like, unnecessary noise components enter the nonlinear region of the APD and cause S/N deterioration.

また、このLD光アンプのそのままの多段従属接続は、
光信号成分Sと雑音成分Nによる雑音指数の増大と、光
アンプの過負荷の時の非線型による飽和のため利得低下
という問題が生ずる。
In addition, the multi-stage dependent connection of this LD optical amplifier as it is,
Problems arise in that the noise figure increases due to the optical signal component S and the noise component N, and the gain decreases due to saturation due to nonlinearity when the optical amplifier is overloaded.

一般に不要周波数成分の抑圧のため、増幅器の入力端ま
たは出力端または両端には濾波器(以下フィルタと云う
)を設置する。
Generally, in order to suppress unnecessary frequency components, a filter (hereinafter referred to as a filter) is installed at the input end, output end, or both ends of an amplifier.

この場合も、光アンプの後に光フィルタを設置して、光
アンプの不要雑音成分抑圧のため、S/Nの改善を行う
。第3図は光フイルタ特性図で、横軸は波長λ、縦軸は
透過率である。光フイルタ特性は光信号波長に合った半
値巾約10〜100Aの狭帯域帯域通過光フィルタであ
る。第2図(b)は光フィルタの出力端でのLD光アン
プのスペクトル特性図で、光信号成分Sに対し自然放出
光による雑音成分Nが減衰した様子を示す。
In this case as well, an optical filter is installed after the optical amplifier to improve the S/N ratio in order to suppress unnecessary noise components of the optical amplifier. FIG. 3 is an optical filter characteristic diagram, in which the horizontal axis is the wavelength λ and the vertical axis is the transmittance. The optical filter characteristics are a narrowband bandpass optical filter with a half width of about 10 to 100 A that matches the wavelength of the optical signal. FIG. 2(b) is a spectral characteristic diagram of the LD optical amplifier at the output end of the optical filter, showing how the noise component N due to spontaneous emission light is attenuated with respect to the optical signal component S.

LDとグレーティング型フィルタを従属に配置した構造
としては、従来のDBR型LDがある。
A conventional DBR type LD has a structure in which an LD and a grating type filter are arranged subordinately.

しかし従来のDBR型LDでは、グレーティングで特定
の波長のみ反射し、その反射光をLD部の光コア層に効
率良く結合するために、グレーティング角度は正確に進
行方向に対し垂直に合わせてあり、その誤差は一般に0
.1度以内に十分収まっている。
However, in conventional DBR type LDs, the grating angle is precisely aligned perpendicular to the traveling direction in order to reflect only a specific wavelength by the grating and efficiently couple the reflected light to the optical core layer of the LD section. The error is generally 0
.. It is well within 1 degree.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、このような光アンプに従属して光フィルタを接続
し、S/Nの改善を行う手法は、個別のLD光アンプモ
ジュールと光フイルタモジュールを用いて構成した。し
かし個々のモジュールは大 (きく、全体の容積が大き
くなり、多段化、大規模化が困難という問題があった。
Conventionally, such a method of connecting an optical filter subordinately to an optical amplifier to improve the S/N ratio has been configured using separate LD optical amplifier modules and optical filter modules. However, the individual modules are large and the overall volume becomes large, making it difficult to increase the number of stages and scale.

〔問題点を解決するための手段〕[Means for solving problems]

p−n接合部と、接合部に電流注入するための電極とを
備え、p−n接合部にガイド構造のコア層を形成したL
D光アンプにおいて、コア層よりの光信号の進行方向に
連続して平面導波路を設け、該平面導波路にグレーテイ
ング面を構成し、グレーディング角度を光信号の進行方
向に対し垂直から1度以上傾けて配置した光フイルタ部
を設けた。
L having a p-n junction, an electrode for injecting current into the junction, and a core layer with a guide structure formed at the p-n junction.
In the D optical amplifier, a planar waveguide is provided continuously in the direction of propagation of the optical signal from the core layer, a grating surface is formed on the planar waveguide, and the grading angle is set at 1 degree from perpendicular to the direction of propagation of the optical signal. The optical filter section is arranged at an angle as described above.

〔作 用〕[For production]

本発明は半導体導波路型光アンプとグレーティング型光
フィルタを集積し、かつグレーティングを光信号の進行
方向に対し斜めに配置して、光フイルタ部からの反射戻
り光を減らし、S/Nのよい集積型光アンプ素子を提案
した。
The present invention integrates a semiconductor waveguide type optical amplifier and a grating type optical filter, and arranges the grating obliquely with respect to the direction of propagation of the optical signal to reduce reflected return light from the optical filter part and improve S/N. An integrated optical amplifier device was proposed.

〔実施例〕〔Example〕

l) 第1図は本発明の第1実施例の集積型光アンプ素
子のB−B’ 、A−A’断面の平面断面図ならびに側
面断面図である。図において、1は光アンプ部、2は光
フイルタ部、3は電極、4はコア層、5はグレーティン
グ、6は平面導波路、7は平面導波路型レンズ、8は光
吸収層、9は無反射コート、■は入力点、Mは中間点、
0は出力点である。光信号Sの波長を1.3μmとする
。光アンプ部lは1.3μm半導体レーザと同じ組成の
InGaAsPのダブルへテロ構造としている。光フイ
ルタ部2は1.3μm帯の吸収が起こらないようにエネ
ルギーギャップがより大きくなる組成の半導体導波路を
つくる。光アンプ部1では光を閉じ込めるため横方向に
光信号を集中するため巾の狭いガイド構造のp−n接合
のコア層4を設け、コア層4よりの光信号Sの進行方向
に隣接してコア層4に従属し、反射光を横方向に逃がす
ための横方向に閉じ込めを行っていない平面導波路6を
設ける。光アンプ部1のコア層4と同じくエネルギーギ
ャップが1.3μmになる組成の半導体を埋込みグレー
ティング5で反射されて来た光を平面導波路6の側壁に
設けられた光吸収層8は誘導吸収効果で吸収する構成と
している。中間点Mに近い平面導波路型レンズ6は信号
光が光フイルタ部2で広がって散乱してしまうのを防ぐ
ため導波路上にルネブルック型のレンズを形無線の円で
平面導波路型レンズ7を示す。
l) FIG. 1 is a plan sectional view and a side sectional view of the integrated optical amplifier device according to the first embodiment of the present invention, taken along the lines BB' and AA'. In the figure, 1 is an optical amplifier section, 2 is an optical filter section, 3 is an electrode, 4 is a core layer, 5 is a grating, 6 is a planar waveguide, 7 is a planar waveguide lens, 8 is a light absorption layer, and 9 is a Non-reflective coating, ■ is input point, M is intermediate point,
0 is the output point. The wavelength of the optical signal S is assumed to be 1.3 μm. The optical amplifier section l has a double heterostructure of InGaAsP having the same composition as the 1.3 μm semiconductor laser. The optical filter section 2 is made of a semiconductor waveguide having a composition with a larger energy gap so that absorption in the 1.3 μm band does not occur. In the optical amplifier section 1, a p-n junction core layer 4 with a narrow guide structure is provided in order to confine light and concentrate the optical signal in the lateral direction. A planar waveguide 6 is provided which is subordinate to the core layer 4 and is not laterally confined for allowing reflected light to escape laterally. The light absorption layer 8 provided on the side wall of the planar waveguide 6 absorbs the light reflected by the buried grating 5, which is embedded with a semiconductor having the same composition as the core layer 4 of the optical amplifier section 1 and has an energy gap of 1.3 μm. It is structured so that it can be absorbed by its effects. The planar waveguide lens 6 near the midpoint M has a Lunebrook type lens on the waveguide to prevent the signal light from spreading and scattering in the optical filter section 2. The planar waveguide lens 7 is shaped like a radio circle. shows.

これの動作を説明する。電極3に電圧をかけてコア層4
に順電流を流し、入力点!より無反射コート9を経て入
力した光信号Sは誘導放出効果により増幅され、同時に
自然放出光Nの雑音を発生し、増幅された光信号Sと自
然放出光Nを中間点Mより出力し、光信号Sと自然放出
光Nを光フイルタ部2に入力する。これら増幅された光
信号Sと自然放出光Nは平面導波路型レンズ7でコリメ
ートされグレーティング5に導入される。このグレーテ
ィングは光信号の波長を中心として巾約10〜100A
の波長を透過し、その外側の波長を反射するように設計
されており、光信号Sはそのまま出力点Oに出力される
。一方向然放出光Nは平面導波路6に接して配置された
グレーティング5がガイド構造のコア層4の中心軸の光
信号Sの進行方向に対し傾斜しているため斜め方向に反
射され、側壁の光吸収層8によって吸収される。これに
より、自然放出光Nが光アンプ部1に再結合して、LD
光アンプの増幅動作を不安定になるのを防いでいる。な
お、チップ端面で反射があると、そこで共振器を形成し
、電流を増加していくと発振してしまうため両端面には
無反射コート9を施しである。第1図の中間点Mでコア
層4の出端が斜めにしであるのは、ここでの反射を抑え
  □えるためである。
The operation of this will be explained. By applying a voltage to the electrode 3, the core layer 4
Apply forward current to the input point! The optical signal S inputted through the anti-reflection coat 9 is amplified by the stimulated emission effect, and at the same time generates noise of spontaneous emission light N, and outputs the amplified optical signal S and spontaneous emission light N from the intermediate point M. The optical signal S and spontaneous emission light N are input to the optical filter section 2. The amplified optical signal S and spontaneous emission light N are collimated by a planar waveguide lens 7 and introduced into the grating 5. This grating has a width of approximately 10 to 100A centered around the wavelength of the optical signal.
The optical signal S is designed to transmit wavelengths of 1 and reflect wavelengths outside of the wavelengths, and the optical signal S is outputted as is to the output point O. The unidirectional spontaneously emitted light N is reflected in an oblique direction because the grating 5 disposed in contact with the planar waveguide 6 is inclined with respect to the traveling direction of the optical signal S of the central axis of the core layer 4 of the guide structure. is absorbed by the light absorbing layer 8 of. As a result, the spontaneous emission light N is recombined to the optical amplifier section 1, and the LD
This prevents the amplification operation of the optical amplifier from becoming unstable. Note that if there is reflection at the end face of the chip, a resonator is formed there, and as the current increases, oscillation occurs, so both end faces are coated with a non-reflection coating 9. The reason why the protruding end of the core layer 4 is slanted at the midpoint M in FIG. 1 is to suppress reflection at this point.

(2)  第4図は本発明の第2実施例の集積型光アン
プ素子の平面断面図である。図において10は光分岐導
波路、11は前段集積型光アンプ素子、12は後段集積
型光アンプ素子である。前実施例に共通の部分は同一記
号を使用する。本構成は1個の入力、2個の出力の光パ
ワ分配器として動作する。すなわち前段集積型光アンプ
素子11の出力を光分岐導波路9で分岐して2個の後段
集積型光アンプ素子12に夫々入力した。
(2) FIG. 4 is a plan sectional view of an integrated optical amplifier element according to a second embodiment of the present invention. In the figure, 10 is an optical branching waveguide, 11 is a front-stage integrated optical amplifier element, and 12 is a rear-stage integrated optical amplifier element. The same symbols are used for parts common to the previous embodiment. This configuration operates as an optical power divider with one input and two outputs. That is, the output of the front-stage integrated optical amplifier element 11 was branched by the optical branching waveguide 9 and input to the two rear-stage integrated optical amplifier elements 12, respectively.

本例は第1実施例の半導体型光アンプ素子を縦属に2段
接続したものである。前段集積型光アンプ素子11のL
D先光7711の出力の自然放出光を光フイルタ部2の
効果により雑音成分が押さえられるので、次段集積型光
アンプ素子12に入射しても、増幅利得の飽和が起きる
のを抑えることができ、各段で十分な利得を得ることが
できる。本回路の光アンプ部1、光フイルタ部2は第1
実施例と全く同じ構造とし、光分岐導波路9は光フイル
タ部2と同じ信号光が透過する組成の半導体材料を用い
、7字形の光分岐回路をマスクパターンで形成するモノ
リシック処理方法で製造できるのである。また、さらに
多段集積化することも可能である。
In this example, the semiconductor optical amplifier elements of the first example are vertically connected in two stages. L of the front-stage integrated optical amplifier element 11
Since the noise component of the spontaneously emitted light output from the D destination light 7711 is suppressed by the effect of the optical filter section 2, saturation of the amplification gain can be suppressed even if it enters the next stage integrated optical amplifier element 12. It is possible to obtain sufficient gain at each stage. The optical amplifier section 1 and the optical filter section 2 of this circuit are the first
The structure is exactly the same as that of the embodiment, and the optical branching waveguide 9 is made of a semiconductor material having the same composition as the optical filter part 2 through which the signal light is transmitted, and can be manufactured by a monolithic processing method in which a figure 7-shaped optical branching circuit is formed using a mask pattern. It is. Moreover, it is also possible to further integrate in multiple stages.

なおLD光アンプが電極3からの電流断の時には、コア
層4に入射した光は誘導吸収効果で吸収されてしまうこ
とから、光スィッチとしても使える利点を活かし、IX
2の光スィッチとしても動作する。
Note that when the current from the electrode 3 of the LD optical amplifier is cut off, the light incident on the core layer 4 is absorbed by the induced absorption effect, so by taking advantage of the advantage that it can also be used as an optical switch,
It also works as a second optical switch.

〔発明の効果〕〔Effect of the invention〕

本集積型光アンプ素子は光アンプと光フィルタを一体構
造に集積化して構成して、自然放出光による雑音成分の
抑制によりS/N劣化を極めて少なく、かつ利得飽和も
抑えられる。またモノリシック処理方法で製造できので
、多段集積化も容易であり、かつ個別部品で構成するよ
りもはるかに小型になるので、実装上も有利である。ま
たグレーティング角度を光の進行方向に対する垂直から
の精度が大巾に緩和される。
This integrated optical amplifier element is constructed by integrating an optical amplifier and an optical filter into a single structure, and suppresses noise components due to spontaneous emission light, thereby minimizing S/N deterioration and suppressing gain saturation. Furthermore, since it can be manufactured using a monolithic processing method, it is easy to integrate it in multiple stages, and it is much smaller than a structure made of individual parts, which is advantageous in terms of packaging. Furthermore, the accuracy of the grating angle from perpendicular to the direction of light travel is greatly reduced.

本発明の集積型光アンプ素子は光アンプとして説明して
きたが、本構造の導波路型光アンプは電流を流入しない
場合、活性層に入射した光は誘導吸収により、強(減衰
されるので、電流により光を接、断する光スィッチとし
ても使用可能である。
Although the integrated optical amplifier element of the present invention has been described as an optical amplifier, when no current flows into the waveguide optical amplifier of this structure, the light incident on the active layer is strongly (attenuated) due to induced absorption. It can also be used as an optical switch that connects and disconnects light using electric current.

この場合も接待のS/N劣化と利得飽和に対して大きな
効果を示す。特に光スィッチを光交換器として用いる場
合、構成上多段に接続してマトリックス化する必要があ
るので、本発明は極めて有効である。
This case also shows a great effect on S/N deterioration and gain saturation in entertainment. In particular, when using an optical switch as an optical exchanger, the present invention is extremely effective because it is necessary to connect the optical switch in multiple stages and form a matrix.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の集積型光アンプ素子の平
面断面図ならびに側面断面図、第2図はLD光アンプの
出力光のスペクトル特性図、第3図は光フイルタ特性図
、第4図は本発明の第2実施例の集積型光アンプ素子の
平面断面図である。 1は光アンプ部、2は光フイルタ部、3は電極、4はコ
ア層、5はグレーティング、6は平面導波路、7は平面
導波路型レンズ、8は光吸収層、9は無反射コート、1
0は光分岐導波路、11は前段集積型光アンプ素子、1
2は後段集積型光アンプ素子、■は入力点、Mは中間点
、0は出力点、Sは光信号成分、Nは自然放出光、λは
波長。 本発明の動は光アンプ素子の平面断I!l1図ならびに
側面IfT面口第  1  図 本発明の他のシロ亮アング素子の平面Ur面図第  4
  図
1 is a plan sectional view and a side sectional view of an integrated optical amplifier element according to a first embodiment of the present invention, FIG. 2 is a spectral characteristic diagram of the output light of the LD optical amplifier, and FIG. 3 is an optical filter characteristic diagram. FIG. 4 is a plan cross-sectional view of an integrated optical amplifier element according to a second embodiment of the present invention. 1 is an optical amplifier part, 2 is an optical filter part, 3 is an electrode, 4 is a core layer, 5 is a grating, 6 is a planar waveguide, 7 is a planar waveguide type lens, 8 is a light absorption layer, 9 is a non-reflection coating ,1
0 is an optical branching waveguide, 11 is a pre-stage integrated optical amplifier element, 1
2 is a rear-stage integrated optical amplifier element, ■ is an input point, M is an intermediate point, 0 is an output point, S is an optical signal component, N is spontaneous emission light, and λ is a wavelength. The operation of the present invention is the planar section I of the optical amplifier element! Figure l1 and side view IfT side view No. 1 Figure 4
figure

Claims (3)

【特許請求の範囲】[Claims] (1)p−n接合部と、接合部に電流注入するための電
極とを備え、p−n接合部にガイド構造のコア層を形成
したレーザダイオード光アンプにおいて、 コア層に連接してコア層に従属してグレーテイングを構
成した平面導波路を設け、 グレーテイング角度を光信号の進行方向に対し垂直から
1度以上傾けたことを特徴とする集積型光アンプ素子。
(1) In a laser diode optical amplifier that is equipped with a p-n junction and an electrode for injecting current into the junction, and in which a core layer with a guide structure is formed at the p-n junction, the core is connected to the core layer. What is claimed is: 1. An integrated optical amplifier element, characterized in that a planar waveguide is provided in which gratings are formed in subordinate layers, and the grating angle is inclined by one degree or more from perpendicular to the direction of propagation of an optical signal.
(2)前記平面導波路の光信号の進行方向に平行な側面
に光吸収層を設けたことを特徴とする特許請求の範囲第
1項記載の集積型光アンプ素子。
(2) The integrated optical amplifier element according to claim 1, characterized in that a light absorption layer is provided on a side surface of the planar waveguide parallel to the direction of propagation of the optical signal.
(3)前記平面導波路の上部に平面導波路型レンズを設
けたことを特徴とする特許請求の範囲第2項記載の集積
型光アンプ素子。
(3) The integrated optical amplifier device according to claim 2, characterized in that a planar waveguide lens is provided above the planar waveguide.
JP32881387A 1987-12-25 1987-12-25 Integrated type optical amplifier element Pending JPH01170084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32881387A JPH01170084A (en) 1987-12-25 1987-12-25 Integrated type optical amplifier element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32881387A JPH01170084A (en) 1987-12-25 1987-12-25 Integrated type optical amplifier element

Publications (1)

Publication Number Publication Date
JPH01170084A true JPH01170084A (en) 1989-07-05

Family

ID=18214385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32881387A Pending JPH01170084A (en) 1987-12-25 1987-12-25 Integrated type optical amplifier element

Country Status (1)

Country Link
JP (1) JPH01170084A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450603A2 (en) * 1990-04-03 1991-10-09 Canon Kabushiki Kaisha Method and apparatus for light amplification exhibiting a flat gain spectrum
JP2000138362A (en) * 1998-11-04 2000-05-16 Fujitsu Ltd Semiconductor optical integrated circuit device and its manufacture
US7177337B2 (en) 2003-03-24 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical integrated circuit
JP2015524619A (en) * 2012-07-27 2015-08-24 ソルラブス、インコーポレイテッド Amplified wide-range tunable short cavity laser
JP2016152253A (en) * 2015-02-16 2016-08-22 日本電信電話株式会社 Semiconductor laser element
KR20210076112A (en) * 2018-10-31 2021-06-23 후아웨이 테크놀러지 컴퍼니 리미티드 Photodetector Chip, Optical Receiver and Transceiver Assemblies, Optical Modules and Communication Equipment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450603A2 (en) * 1990-04-03 1991-10-09 Canon Kabushiki Kaisha Method and apparatus for light amplification exhibiting a flat gain spectrum
US5239410A (en) * 1990-04-03 1993-08-24 Canon Kabushiki Kaisha Method and apparatus for light amplification exhibiting a flat gain spectrum
JP2000138362A (en) * 1998-11-04 2000-05-16 Fujitsu Ltd Semiconductor optical integrated circuit device and its manufacture
US7177337B2 (en) 2003-03-24 2007-02-13 Mitsubishi Denki Kabushiki Kaisha Semiconductor optical integrated circuit
JP2015524619A (en) * 2012-07-27 2015-08-24 ソルラブス、インコーポレイテッド Amplified wide-range tunable short cavity laser
US9843159B2 (en) 2012-07-27 2017-12-12 Thorlabs, Inc. Widely tunable short cavity laser
US11183812B2 (en) 2012-07-27 2021-11-23 Thorlabs, Inc. Widely tunable short-cavity laser
JP2016152253A (en) * 2015-02-16 2016-08-22 日本電信電話株式会社 Semiconductor laser element
KR20210076112A (en) * 2018-10-31 2021-06-23 후아웨이 테크놀러지 컴퍼니 리미티드 Photodetector Chip, Optical Receiver and Transceiver Assemblies, Optical Modules and Communication Equipment
JP2022513380A (en) * 2018-10-31 2022-02-07 華為技術有限公司 Photodetector chips, optical receiving and transmitting components, optical modules, and communication equipment

Similar Documents

Publication Publication Date Title
JP2005050898A (en) Semiconductor optical amplifier and optical module using same
US5604628A (en) Optical laser amplifier combined with a spontaneous emission filter
US5101461A (en) Optical fiber amplifier apparatus
US4952017A (en) Polarization independent semiconductor optical amplifier
CN111342342B (en) III-V/silicon-based end-face coupled external cavity laser integrated with Michelson interferometer and double-pass amplifier
JPH01170084A (en) Integrated type optical amplifier element
JPH03198032A (en) Optical amplifier/optical detector device
JPH03197931A (en) Combination of optical amplifier and opti- cal detector
JP2007158204A (en) Optical integrated device
EP0245085A1 (en) Optical amplifiers
JPH05259581A (en) Wavelength converter
US20030113063A1 (en) Method and apparatus for enhancing power saturation in semiconductor optical amplifiers
JPH01186695A (en) Semiconductor light amplifier
JPWO2006006249A1 (en) Optical signal amplifier
WO1996019023A3 (en) Semiconductor diode laser amplifier and method of manufacturing same
JPS61220493A (en) Light amplifier element
JP2684568B2 (en) Optical integrated circuit
KR102534087B1 (en) Lighte source system
KR100617686B1 (en) Gain clamped semiconductor optical amplifier
US20220385035A1 (en) Semiconductor ring laser, photonic integrated circuit and opto-electronic system comprising the same
CN113841310B (en) Optical semiconductor device
JPS63108788A (en) Optical integrated circuit
JPH071811B2 (en) Traveling wave type cascade optical amplifier
JP2641289B2 (en) Optical amplifier with built-in optical wavelength filter
KR100601136B1 (en) Semiconductor optical amplifier of fixed gain type