JPH0117005Y2 - - Google Patents

Info

Publication number
JPH0117005Y2
JPH0117005Y2 JP1984062561U JP6256184U JPH0117005Y2 JP H0117005 Y2 JPH0117005 Y2 JP H0117005Y2 JP 1984062561 U JP1984062561 U JP 1984062561U JP 6256184 U JP6256184 U JP 6256184U JP H0117005 Y2 JPH0117005 Y2 JP H0117005Y2
Authority
JP
Japan
Prior art keywords
heated
spheroidal
distribution
heating
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984062561U
Other languages
Japanese (ja)
Other versions
JPS60176061U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984062561U priority Critical patent/JPS60176061U/en
Publication of JPS60176061U publication Critical patent/JPS60176061U/en
Application granted granted Critical
Publication of JPH0117005Y2 publication Critical patent/JPH0117005Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 集光加熱装置は、回転楕円面からなる反射鏡の
焦点付近に、被加熱物を設置し、加熱急冷、結晶
成長等を行う装置である。この装置には、反射鏡
を1個の回転楕円面のみで構成される単楕円型、
反射鏡が2個の回転楕円面の組合せで構成される
双楕円型、さらに反射鏡を3個以上の回転楕円面
の組合せで構成する多楕円型がある。集光加熱装
置では、要求される被加熱物の加熱温度の分布が
様々であり、局部的な加熱はもちろん、広範囲な
均一加熱を要求されることが多々ある。本考案は
このような加熱域の異なる要求を満たすために、
被加熱物の加熱温度分布の状態を変えることので
きる多楕円型の集光加熱装置に関するものであ
る。
[Detailed description of the invention] (Industrial application field) A condensing heating device is a device in which an object to be heated is placed near the focal point of a reflecting mirror made of an ellipsoid of revolution, and performs heating, rapid cooling, crystal growth, etc. . This device uses a single ellipsoidal reflector consisting of only one spheroidal surface.
There is a bielliptic type in which the reflecting mirror is made up of a combination of two spheroidal surfaces, and a polyelliptic type in which the reflecting mirror is made up of a combination of three or more spheroidal surfaces. In a condensing heating device, the required heating temperature distribution of the heated object varies, and uniform heating over a wide range is often required as well as local heating. In order to meet these different requirements for heating ranges, this invention
This invention relates to a multi-elliptical condensing heating device that can change the state of heating temperature distribution of an object to be heated.

(従来技術とその問題点) 次に従来の集光加熱装置の欠点を図に従つて説
明する。
(Prior art and its problems) Next, the drawbacks of the conventional condensing heating device will be explained with reference to the drawings.

第1図は、反射鏡が4個の回転楕円面で構成さ
れた多楕円型の集光加熱装置の加熱炉部分の基本
構成を示す縦断面図で、第2図は、横断面図であ
る。
Fig. 1 is a vertical cross-sectional view showing the basic configuration of the heating furnace part of a multi-elliptical condensing heating device in which the reflecting mirror is composed of four spheroidal surfaces, and Fig. 2 is a cross-sectional view. .

図において、11は、回転楕円面鏡、12はハ
ロゲンランプ等の光源、13は被加熱物、14は
摺動ガイド、15はフレーム、16はロツク機構
である。光源12は回転楕円面鏡11の回転楕円
の一方の焦点F1,F2,F3,F4付近に設置され、
ここから発する光は、回転楕円面鏡で反射され
て、もう一方に焦点F′1,F′2,F′3,F′4付近に集
光される。この焦点付近に、被加熱物13を設置
することにより、被加熱物を加熱することができ
る。また、摺動ガイド14は、回転楕円面鏡11
とともに、ロツク機構16を解除することにより
フレーム15に沿つて、x軸方向に移動すること
ができ、任意の位置においてロツク機構により固
定することができる。このため4個の回転楕円面
鏡の加熱側焦点は、x軸上の異なる位置に設定で
き、この結果集光加熱エネルギーを被加熱物のx
軸方向に分散できる。
In the figure, 11 is a spheroidal mirror, 12 is a light source such as a halogen lamp, 13 is an object to be heated, 14 is a sliding guide, 15 is a frame, and 16 is a lock mechanism. The light source 12 is installed near one focus F 1 , F 2 , F 3 , F 4 of the spheroid of the spheroid mirror 11,
The light emitted from this is reflected by the spheroidal mirror and focused on the other side near the focal points F' 1 , F' 2 , F' 3 , and F' 4 . By placing the object to be heated 13 near this focal point, the object to be heated can be heated. Further, the sliding guide 14 is connected to the spheroidal mirror 11.
At the same time, by releasing the lock mechanism 16, it can be moved along the frame 15 in the x-axis direction, and it can be fixed at any position by the lock mechanism. Therefore, the heating side focal points of the four spheroidal mirrors can be set at different positions on the x-axis, and as a result, the focused heating energy can be applied to the
Can be distributed in the axial direction.

第3図a,bは、第1図における被加熱物13
に照射するエネルギー分布を示した図であり、同
図aはx軸方向分布の例、同図bはF1′点を中心
とした被加熱物の表面の円周方向分布の例を説明
する図である。第3図aの照射エネルギー強度は
円周方向の積分値を示しており、第3図bの照射
エネルギー強度は、F′1点を含むx軸に垂直な平
面と被加熱物の表面とが交わつてできる円周の近
傍の値を示している。第3図aをみると、照射エ
ネルギーがx軸上に分散しており、被加熱物は、
x軸方向の広い範囲を小さな温度変動で加熱され
ることがわかる。
Figures 3a and 3b show the heated object 13 in Figure 1.
FIG. 2 is a diagram showing the distribution of energy irradiated to the surface of the object, where a shows an example of the distribution in the x-axis direction, and b shows an example of the distribution in the circumferential direction of the surface of the heated object centered on the F 1 ' point. It is a diagram. The irradiation energy intensity in Fig. 3a shows the integral value in the circumferential direction, and the irradiation energy intensity in Fig. 3b shows that the plane perpendicular to the x-axis including point F'1 and the surface of the object to be heated are It shows the value near the circumference formed by the intersection. Looking at Figure 3a, the irradiation energy is distributed on the x-axis, and the heated object is
It can be seen that a wide range in the x-axis direction is heated with small temperature fluctuations.

しかし、第3図bをみると、照射エネルギーは
円周方向には均一に照射されておらず、被加熱物
は、円周方向で大きな温度変動を生じる。被加熱
物のx軸方向の広範囲を小さな温度変動で加熱す
る必要がある場合、一般には、円周方向も温度変
動を小さくする必要がある。従つて、従来の装置
では、x軸方向の広範囲な加熱は可能であつたが
円周方向の温度変動が大きくなる欠点を有してい
た。
However, as shown in FIG. 3b, the irradiation energy is not uniformly applied in the circumferential direction, and the object to be heated undergoes large temperature fluctuations in the circumferential direction. When it is necessary to heat a wide range of the object to be heated in the x-axis direction with small temperature fluctuations, it is generally necessary to reduce temperature fluctuations in the circumferential direction as well. Therefore, although the conventional apparatus was capable of heating over a wide range in the x-axis direction, it had the disadvantage of large temperature fluctuations in the circumferential direction.

(考案の目的) 本考案は、このような従来の欠点を除去し、試
料の軸方向の広範囲の加熱と円周方向の加熱をと
もに小さな温度変動で加熱する装置を提供するこ
とにある。
(Purpose of the Invention) The object of the present invention is to provide an apparatus that eliminates such conventional drawbacks and heats a sample over a wide range in both the axial direction and the circumferential direction with small temperature fluctuations.

(考案の構成) 本考案によれば対向する回転楕円面鏡が被加熱
物の軸方向に、同時に移動する構造とすることに
より、被加熱物の軸方向の広い範囲で温度変動が
少なくかつ、円周方向の温度変動も少ない集光加
熱装置を得ることができる。
(Structure of the invention) According to the invention, by having a structure in which the opposing spheroidal mirrors move simultaneously in the axial direction of the object to be heated, temperature fluctuations are small over a wide range in the axial direction of the object to be heated, and A condensing heating device with less temperature fluctuation in the circumferential direction can be obtained.

(本考案の概要) 本考案は、上述の構成をとることにより、互い
に対向した位置にある回転楕円面鏡の加熱側焦点
が一致した状態で、他の対向した位置にない回転
楕円面鏡の加熱側焦点と異なるx軸上の位置に設
定することにより、集光加熱エネルギーを被加熱
物の軸方向に分散させ、かつ、被加熱物の円周方
向になめらかに照射させることができる。
(Summary of the present invention) By adopting the above-described configuration, the present invention enables the heating-side focal points of the spheroidal mirrors located at mutually opposing positions to coincide, while the spheroidal mirrors located at other positions not facing each other By setting it at a position on the x-axis different from the heating side focal point, the focused heating energy can be dispersed in the axial direction of the object to be heated and can be irradiated smoothly in the circumferential direction of the object to be heated.

(実施例) 以下本考案の実施例について図面を参照して詳
細に説明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第4図は、本考案の一実施例である回転楕円面
鏡が4個の組合せで構成された集光加熱装置の加
熱炉部分の縦断面図で、第5図は、横断面図であ
る。
FIG. 4 is a longitudinal cross-sectional view of a heating furnace portion of a condensing heating device constructed by a combination of four spheroidal mirrors, which is an embodiment of the present invention, and FIG. 5 is a cross-sectional view. .

図において、21及び21′は、回転楕円面鏡、
22はハロゲンランプ等の光源、23は被加熱
物、24は摺動ガイド、25はフレーム、26は
ロツク機構である。光源22は、回転楕円面鏡2
1及び21′の回転楕円の一方の焦点F5,F6
F7,F8付近に設置されここから発する光は回転
楕円面鏡で反射されてもう一方の焦点F′5,F′6
びF′7,F′8付近に集光される。
In the figure, 21 and 21' are spheroidal mirrors,
22 is a light source such as a halogen lamp, 23 is an object to be heated, 24 is a sliding guide, 25 is a frame, and 26 is a lock mechanism. The light source 22 is a spheroidal mirror 2
One focus of the spheroid of 1 and 21' F 5 , F 6 ,
They are installed near F 7 and F 8 , and the light emitted from them is reflected by the spheroidal mirror and focused at the other focal points F' 5 , F' 6 and near F' 7 and F' 8 .

摺動ガイド24は、回転楕円面鏡21ととも
に、ロツク機構26を解除することにより、フレ
ーム25に沿つてx軸方向に移動することがで
き、任意の位置においてロツク機構により固定す
ることができる。また、回転楕円面鏡21′は、
フレーム25に固定されている。
The sliding guide 24, together with the spheroidal mirror 21, can be moved in the x-axis direction along the frame 25 by releasing the locking mechanism 26, and can be fixed at any position by the locking mechanism. Moreover, the spheroidal mirror 21' is
It is fixed to the frame 25.

(考案の効果) 第6図a,bは第4図における被加熱物23に
照射するエネルギー分布を示した図であり、同図
aはx軸方向の分布の例、同図bはF5,F6点を
中心とした被加熱物の表面の円周方向分布の例を
説明する図である。
(Effect of the invention) Figures 6a and 6b are diagrams showing the energy distribution irradiated to the heated object 23 in Figure 4. Figure 6a is an example of the distribution in the x-axis direction, and Figure 6b is an example of the distribution in the x-axis direction. , F is a diagram illustrating an example of the distribution in the circumferential direction of the surface of the heated object centered on the 6 points.

第6図aの照射エネルギー強度は、円周方向の
積分値を示しており、第6図bの照射エネルギー
強度は、F′5,F′6点を含むx1軸に垂直な平面と被
加熱物の表面とが交わつてできる円周の近傍の値
を示している。第6図aをみると、x軸上に分散
しており、被加熱物は、x軸方向の広い範囲を小
さな温度変動で加熱されることがわかる。また、
第6図bをみると、照射エネルギーは、円周方向
にも均一に照射されており被加熱物は、円周方向
でも、小さな温度変動で加熱されることがわか
る。このように、被加熱物の軸方向及び円周方向
に均一加熱ができるため、従来の方法と比較し
て、結晶欠陥を少なくできるなどの利点を有す
る。
The irradiation energy intensity in Fig. 6a shows the integral value in the circumferential direction, and the irradiation energy intensity in Fig. 6b shows the plane perpendicular to the x 1 axis including points F' 5 and F' 6 and the It shows the value near the circumference formed by the intersection with the surface of the heated object. Looking at FIG. 6a, it can be seen that the temperature is distributed on the x-axis, and the object to be heated is heated over a wide range in the x-axis direction with small temperature fluctuations. Also,
Looking at FIG. 6b, it can be seen that the irradiation energy is applied uniformly in the circumferential direction, and the object to be heated is heated with small temperature fluctuations even in the circumferential direction. In this way, since the object to be heated can be heated uniformly in the axial direction and circumferential direction, it has the advantage that crystal defects can be reduced compared to conventional methods.

以上本考案の典型的な実施例として、4個の回
転楕円面鏡を組合せた集光加熱装置について説明
してきたが、これは説明の便宜であり、本考案が
他の多楕円型の集光加熱装置にも適用できること
は明白である。
As a typical embodiment of the present invention, a condensing heating device combining four spheroidal mirrors has been described above, but this is for convenience of explanation, and the present invention is applicable to other multi-ellipsoidal condensing devices. It is clear that it can also be applied to heating devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、集光加熱装置の従来例を
示す図である。第3図a,bは、第1図の集光加
熱装置における被加熱物の表面に照射されるエネ
ルギーの分布を示す図で、第3図aが、被加熱物
の軸方向分布、第3図bが、被加熱物の円周方向
分布を示す。第4図及び第5図は、本考案の実施
例を示す図である。第6図a,bは、第4図の集
光加熱装置における被加熱物の表面に照射される
エネルギーの分布で示す図で、第6図aが被加熱
物の軸方向分布、第6図bが被加熱物の円周方向
分布を示す。 図において、11,21,21′は回転楕円面
鏡、12,22は、ハロゲンランプ等の光源、1
3,23は被加熱物、14,24は、摺動ガイ
ド、15,25はフレーム、16,26はロツク
機構である。
FIGS. 1 and 2 are diagrams showing conventional examples of condensing heating devices. Figures 3a and 3b are diagrams showing the distribution of energy irradiated onto the surface of the heated object in the condensing heating device of Figure 1. Figure 3a shows the axial distribution of the heated object; Figure b shows the circumferential distribution of the heated object. FIG. 4 and FIG. 5 are diagrams showing an embodiment of the present invention. Figures 6a and 6b are diagrams showing the distribution of energy irradiated onto the surface of the heated object in the condensing heating device of Figure 4, where Figure 6a shows the axial distribution of the heated object; b shows the circumferential distribution of the heated object. In the figure, 11, 21, 21' are spheroidal mirrors, 12, 22 are light sources such as halogen lamps, 1
3 and 23 are objects to be heated, 14 and 24 are sliding guides, 15 and 25 are frames, and 16 and 26 are lock mechanisms.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数個の回転楕円面鏡の一方の焦点に光源を設
け、他の焦点にその光を集中して被加熱物を加熱
する如き集光加熱装置において、複数個の対向し
て共通焦点を有する回転楕円面鏡が、被加熱物の
軸方向にそれぞれ独立に移動する機構を有するこ
とを特徴とする集光加熱装置。
In a condensing heating device in which a light source is provided at one focal point of a plurality of spheroidal mirrors and the light is concentrated at the other focal point to heat an object to be heated, a rotating ellipsoidal mirror having a common focal point facing each other is used. A condensing heating device characterized by having a mechanism in which ellipsoidal mirrors move independently in the axial direction of an object to be heated.
JP1984062561U 1984-04-27 1984-04-27 Concentrating heating device Granted JPS60176061U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984062561U JPS60176061U (en) 1984-04-27 1984-04-27 Concentrating heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984062561U JPS60176061U (en) 1984-04-27 1984-04-27 Concentrating heating device

Publications (2)

Publication Number Publication Date
JPS60176061U JPS60176061U (en) 1985-11-21
JPH0117005Y2 true JPH0117005Y2 (en) 1989-05-18

Family

ID=30591894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984062561U Granted JPS60176061U (en) 1984-04-27 1984-04-27 Concentrating heating device

Country Status (1)

Country Link
JP (1) JPS60176061U (en)

Also Published As

Publication number Publication date
JPS60176061U (en) 1985-11-21

Similar Documents

Publication Publication Date Title
US5719991A (en) System for compensating against wafer edge heat loss in rapid thermal processing
US3302519A (en) Optical illuminating system
US3449561A (en) Aconic collector
JPH0117005Y2 (en)
JPS6054187A (en) High collecting heater
JPS6019266U (en) Linear light source lighting device
US4181930A (en) Lamp reflector unit
JPS60167201A (en) Method of producing optical unit for lamp structure
JPS60236482A (en) Laser heater
JPS5814127A (en) Illumination device for copying machine
JPH10217515A (en) Image-recording apparatus
JPH0623917Y2 (en) Heating device
JPH0548097Y2 (en)
JPS6220133Y2 (en)
JPH0737401A (en) Luminaire
JPS6126896Y2 (en)
JPH0224092Y2 (en)
JPS5914286A (en) Light collecting heater
JPS6147063A (en) Bulb with mirror
JPH0364802A (en) Luminaire
JPS61165748A (en) Exposure illuminating device of copying machine
JPS62277532A (en) Heat ray detector
JPS623269U (en)
JP2003217795A (en) Heating device
JPS58121B2 (en) Shoumeisouchi