JPH01169305A - Pattern detecting method of microscope apparatus - Google Patents

Pattern detecting method of microscope apparatus

Info

Publication number
JPH01169305A
JPH01169305A JP32694187A JP32694187A JPH01169305A JP H01169305 A JPH01169305 A JP H01169305A JP 32694187 A JP32694187 A JP 32694187A JP 32694187 A JP32694187 A JP 32694187A JP H01169305 A JPH01169305 A JP H01169305A
Authority
JP
Japan
Prior art keywords
shutter
stage
light
dimensional image
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32694187A
Other languages
Japanese (ja)
Inventor
Hisafumi Iwata
岩田 尚史
Yukio Matsuyama
松山 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32694187A priority Critical patent/JPH01169305A/en
Publication of JPH01169305A publication Critical patent/JPH01169305A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a pattern detecting method by which a fine pattern can be detected at a high speed, by using a light source which is continuously lighting as a lighting system, inserting a shutter in a detecting optical system, and driving the shutter in synchronization with a stage and a two-dimensional image sensing element. CONSTITUTION:A lighting system has a light source 1 which is continuously lighting. A stage 6 repeats movement and stopping intermittently. A detecting optical system detects reflected light from a sample 5. A two-dimensional image sensing element 11 is provided. A shutter 10 is inserted in the middle of the detecting optical system. The shutter is driven in synchronization with the stage 6 and the two-dimensional image sensing element 11. The light is stored in the image sensing element 11 while the shutter 10 is opened. The stage 6 is moved while the shutter 10 is closed. The signal from the image sensing element 11 is read. Thus, even a fine pattern can be detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体ウェハなどのパターンを検出する顕微鏡
装置に係わり、特に微細パターンを高倍率に拡大するな
どの理由により検出光量が不足する場合に好適なパター
ン検出方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a microscope device for detecting patterns on semiconductor wafers, etc., and is particularly applicable when the amount of detected light is insufficient due to reasons such as enlarging a fine pattern to a high magnification. This invention relates to a preferred pattern detection method.

〔従来の技術〕[Conventional technology]

従来、半導体製造用のマスクやレチクル等、透明なプレ
ート上のパターンを自動外観検査する顕微鏡装置が実用
化されている。これらの装置においてパターンを検出す
る方法としては、第5図に示すよう試料15を連続送り
しながら連続点灯する光源1で透過照明を行い、対物レ
ンズ4で試料15上のパターンを拡大し1次元リニアセ
ンサ16で図中斜線で示す領域を随時検出していく方法
がある。また2次元撮像素子を用いる場合については1
例えばNTT電気通信研究所実用化報告第31巻2号(
1980年)第469頁から第489頁の辻山他による
「自動マスク欠陥検査装置」において論じられている。
BACKGROUND ART Microscope devices have been put into practical use for automatically inspecting patterns on transparent plates, such as masks and reticles for semiconductor manufacturing. As shown in Fig. 5, the method for detecting patterns in these devices is to carry out transmitted illumination with a continuously lit light source 1 while continuously feeding the sample 15, and to enlarge the pattern on the sample 15 with an objective lens 4 to obtain a one-dimensional image. There is a method in which the linear sensor 16 detects the area indicated by diagonal lines in the figure at any time. In addition, when using a two-dimensional image sensor, 1
For example, NTT Telecommunications Laboratories Practical Application Report Vol. 31 No. 2 (
Discussed in "Automated Mask Defect Inspection Apparatus" by Tsujiyama et al., pp. 469-489 (1980).

この装置は第6図に示すように、試料15を連続送りし
ながらストロボ光源17を間欠的に発光させ、対物レン
ズ4で試料15上のパターンを拡大し撮像管式TVカメ
ラ18で図中斜線で示す領域1,2.3を随時検出して
いく方法である。この装置は撮像管式TVカメラ18の
フレームブランキング機能、すなわち映像信号の読出し
を禁止し替像だけを行う機能を利用している。つまり第
7図に示すように読出しを禁止した第nフレームの期間
中にストロボ光源17を発光させ、撮像管の受光面に静
止像を替像し第n+1フレームで映像信号の読出しを行
っている。
As shown in FIG. 6, this device causes a strobe light source 17 to emit light intermittently while continuously feeding a sample 15, magnifies the pattern on the sample 15 with an objective lens 4, and uses an image pickup tube type TV camera 18 to illuminate the diagonal lines in the figure. This is a method of constantly detecting areas 1, 2, and 3 shown in . This device utilizes the frame blanking function of the image pickup tube type TV camera 18, that is, the function of prohibiting the reading of the video signal and only performing image replacement. In other words, as shown in FIG. 7, the strobe light source 17 is made to emit light during the nth frame in which readout is prohibited, a still image is replaced on the light receiving surface of the image pickup tube, and the video signal is read out in the n+1th frame. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は透明なプレート上のパターンを対象とし
たものであるが、半導体製造プロセスでは品質管理等を
目的として、シリコンウェハで上に形成したパターンの
自動外観検査が要求されている。この場合シリコンウェ
ハは不透明であるため透過式検出は行えず、落射照明を
行い試料からの反射光を検出しなければならない、落射
照明を行う場合には第8図(1)に示すように、光路中
に半透鏡3を挿入しなければならず、透過光検出の場合
に比ベセンサ13で検出する光量が減少する。半透鏡を
除く他の光学素子の反射、吸収を無視した場合、同図(
2)に示すように透過照明では光源1からの照明に使わ
れる光量を100%とすると、コンデンサレンズ14、
透明なプレート状の試料15、対物レンズ4を介しセン
サ13上で100%の光量を検出に用いることができる
Although the above-mentioned conventional technology targets patterns on transparent plates, automatic visual inspection of patterns formed on silicon wafers is required in semiconductor manufacturing processes for the purpose of quality control and the like. In this case, since the silicon wafer is opaque, transmission detection cannot be performed, and epi-illumination must be used to detect the reflected light from the sample. When epi-illumination is used, as shown in Figure 8 (1), The semi-transparent mirror 3 must be inserted into the optical path, which reduces the amount of light detected by the comparison sensor 13 in the case of transmitted light detection. If reflection and absorption of other optical elements except the semi-transparent mirror are ignored, the same figure (
As shown in 2), in transmitted illumination, if the amount of light used for illumination from the light source 1 is 100%, the condenser lens 14,
100% of the light intensity can be used for detection on the sensor 13 through the transparent plate-shaped sample 15 and the objective lens 4.

一方落射照明の場合には同図(1)に示すように、半透
鏡3が挿入されているため、センサ13では最大25%
の光量しか検出に用いることができない。その上不透明
な試料5上に低反射率の物質がある場合にはさらに検出
光量が減少することになる。
On the other hand, in the case of epi-illumination, as shown in Figure (1), a semi-transparent mirror 3 is inserted, so the sensor 13 has a maximum of 25%
can only be used for detection. Furthermore, if there is a substance with low reflectance on the opaque sample 5, the amount of detected light will further decrease.

一方LSIのパターンの微細化は急速に進み。Meanwhile, the miniaturization of LSI patterns is progressing rapidly.

線巾はサブミクロンの領域に達しつつある。このような
微細なパターンの外観を検査するには、パターンの微細
化に伴い画素サイズを小さくしなければ信頼性の高い検
査を行うことができない、この場合、検出画素サイズが
小さくなるためセンサの単位画素あたりの光量が著しる
しく減少してしまう。
Wire widths are reaching the submicron range. In order to inspect the appearance of such fine patterns, it is necessary to reduce the pixel size as the patterns become finer.In this case, the detection pixel size becomes smaller, so the sensor The amount of light per unit pixel is significantly reduced.

以上述べたとおり落射照明を行い、微細なパターンを検
出する場合には、センサの検出光量の減少が避けられず
、このためパターンの高速検出が困難になる。
As described above, when detecting a fine pattern using epi-illumination, the amount of light detected by the sensor inevitably decreases, which makes it difficult to detect the pattern at high speed.

上記従来技術を、落射照明を行い微小画素サイズでパタ
ーンを検出する場合に適用することを考えると、1次元
リニアセンサで検出する方法では、充分なレベルの映像
信号を得るには蓄積時間を長くする必要があり、高速に
パターンを検出することは困難である。
Considering that the above-mentioned conventional technology is applied to the case of detecting a pattern with a minute pixel size using epi-illumination, the detection method using a one-dimensional linear sensor requires a long integration time to obtain a video signal of a sufficient level. It is difficult to detect patterns quickly.

一方ストロボ照明を行い2次元撮像素子で検出する方法
では、ストロボの発光時間が短く替像に寄与する光量が
少ないため、高S/Nの映像信号を得られないという問
題があった。
On the other hand, in the method of performing strobe illumination and detecting with a two-dimensional image sensor, there is a problem that a high S/N video signal cannot be obtained because the strobe light emission time is short and the amount of light contributing to the replacement image is small.

本発明の目的は、従来技術の適用が困難な微細パターン
の高速検出を可能にするパターン検出方法を提供するこ
とにある。
An object of the present invention is to provide a pattern detection method that enables high-speed detection of fine patterns to which conventional techniques are difficult to apply.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、連続点灯する光源を用いた照明系と、間欠
的な移動・停止を繰返し行うステージと、検出光学系と
、2次元撮像素子からなる顕微鏡装置において、検出光
学系にシャッタを挿入し、このシャッタをステージ及び
2次元撮像素子と同期して駆動しパターンを検出するこ
とにより達成される。
The above purpose is to insert a shutter into the detection optical system in a microscope device consisting of an illumination system using a continuously lit light source, a stage that repeatedly moves and stops intermittently, a detection optical system, and a two-dimensional image sensor. This is achieved by driving this shutter in synchronization with the stage and the two-dimensional imaging device to detect the pattern.

〔作用〕[Effect]

使用する2次元撮像素子は映像信号の読出しを禁止し、
替像だけを行うフレームブランキング機能を有するもの
を用いる。シャッタは2次元撮像素子の垂直同期信号に
同期して開閉を行う。ステージが静止している間にシャ
ッタを開き、試料からの反射光を透過し、試料上のパタ
ーンの静止像を2次元撮像素子の受光面上に替像する。
The two-dimensional image sensor used prohibits the reading of video signals,
Use one that has a frame blanking function that only performs image replacement. The shutter opens and closes in synchronization with the vertical synchronization signal of the two-dimensional image sensor. While the stage is stationary, the shutter is opened, light reflected from the sample is transmitted, and a still image of the pattern on the sample is replaced on the light-receiving surface of the two-dimensional image sensor.

このときフレームブランキング機能を働かせ替像だけを
行なうようにし、次のフレームで映像信号の読出しを行
う。ここでシャッタの開く期間は調整が可能であり、こ
れを増加することにより使用する2次元撮像素子に対し
十分な検出光量を与え、高S/Nの映像信号の検出が可
能になる。また替像後の映像信号の続出中は、シャッタ
は閉じた状態にし試料からの不要な反射光を遮ぎる。な
おステージは替像後シャッタが閉じている期間中に次の
撮像位置に移動する。
At this time, the frame blanking function is activated to perform only image replacement, and the video signal is read out in the next frame. Here, the period during which the shutter is open can be adjusted, and by increasing the period, a sufficient amount of detection light is given to the two-dimensional imaging device used, and it becomes possible to detect a video signal with a high S/N ratio. In addition, while the video signal is continuously being output after the image change, the shutter is kept closed to block unnecessary reflected light from the sample. Note that the stage moves to the next imaging position while the shutter is closed after the image change.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例のパターン検出方法の構成図を
示す、この方法は落射照明光学系と間欠的に移動・停止
を繰返すステージ部と光路中にシャッタを挿入した検出
光学系及びステージ、シャッタ、撮像素子を同期して駆
動する各々の制御回路からなる。落射照明光学系は連続
点灯する光源1と照明系の光学系を構成するレンズ群2
.半透鏡3.対物レンズ4からなる。ステージ部は間欠
的に移動・停止し試料5を載置するステージ6とステー
ジ6を駆動するモータ7からなり、ステージ制御回路1
9により駆動する。検出光学系は対物レンズ4とフィー
ルドレンズ8とリレーレンズ9とシャッタ10と2次元
撮像素子11からなり、シャッタ10はシャッタ制御回
路20で、また2次元撮像素子11は2次元撮像素子制
御回路21で各々駆動する。シャッタ10は1例えばP
LZTと呼ばれる電気光学セラミックスと偏向板を組合
せた電気光学シャッタを用いる。また2次元撮像素子1
1は、フレームブランキング機能を有するものを用いる
FIG. 1 shows a block diagram of a pattern detection method according to an embodiment of the present invention. This method consists of an epi-illumination optical system, a stage part that moves and stops intermittently, a detection optical system with a shutter inserted in the optical path, and a stage. , a shutter, and an image sensor, each of which is driven in synchronization with each other. The epi-illumination optical system includes a light source 1 that lights up continuously and a lens group 2 that constitutes the optical system of the illumination system.
.. Semi-transparent mirror 3. It consists of an objective lens 4. The stage part consists of a stage 6 that moves and stops intermittently and places the sample 5 thereon, and a motor 7 that drives the stage 6.
9. The detection optical system consists of an objective lens 4, a field lens 8, a relay lens 9, a shutter 10, and a two-dimensional image sensor 11. The shutter 10 is a shutter control circuit 20, and the two-dimensional image sensor 11 is a two-dimensional image sensor control circuit 21. Each is driven by The shutter 10 is 1, for example P
An electro-optic shutter that combines an electro-optic ceramic called LZT and a deflection plate is used. In addition, the two-dimensional image sensor 1
1 uses a frame blanking function.

光11は試料5を落射照明する。そしてステージ6が静
止している間には、シャッタ10は試料5からの反射光
を透過し、試料5上のパターンの静止像を2次元撮像素
子11の受光面に替像する。
The light 11 epi-illuminates the sample 5. While the stage 6 is stationary, the shutter 10 transmits the reflected light from the sample 5 and converts a static image of the pattern on the sample 5 onto the light receiving surface of the two-dimensional image sensor 11.

このとき2次元撮像素子11はフレームブランキング機
能を働かせ、映像信号の読出しは行わす替像だけを行う
、シャッタ10が開いている時間はシャッタ制御回路2
0で調整し、2次元撮像素子11に対し十分な検出光量
を与えるように設定する。シャッタ10を閉じ替像を終
了した後映像信号を読出す、この映像信号の読出し中に
はシャッタ10は閉じた状態にし、試料5からの不要な
反射光を遮ぎる。ステージ6は替像する時以外のシャッ
タが閉じている期間に次の撮像位置に移動する。
At this time, the two-dimensional image sensor 11 activates the frame blanking function, reads out the video signal, and only performs image replacement.
It is adjusted to 0 and set so as to give a sufficient amount of detection light to the two-dimensional image sensor 11. The shutter 10 is closed and the video signal is read out after the image is finished. During the readout of the video signal, the shutter 10 is kept closed to block unnecessary reflected light from the sample 5. The stage 6 moves to the next imaging position during the period when the shutter is closed except when changing images.

第2図に2次元撮像素子11に固体TVカメラを用いた
場合のタイミングと映像信号を示す、2次元撮像素子1
1の垂直同期信号を基準にシャツタ開閉信号、フレーム
ブランキング信号、ステージ制御信号のタイミングをと
る。まずシャッタ10がT1時間開かれ、このときフレ
ームブランキング信号を読み出し禁止の状態にし、T1
時間蓄偉才る。このときステージ6は静止しており。
FIG. 2 shows the timing and video signals when a solid-state TV camera is used as the two-dimensional image sensor 11.
The timing of the shutter opening/closing signal, frame blanking signal, and stage control signal is determined based on the vertical synchronization signal No. 1. First, the shutter 10 is opened for a time T1, and at this time, the frame blanking signal is set to a read-inhibited state, and
I'm great at saving time. At this time, stage 6 is stationary.

試料5上のパターンの静止像が得られる。替像時間T□
はシャッタ制御回路20で任意に変更でき、2次元撮像
素子11が高S/Nの映像信号を得られるように調整す
る。シャッタ10を閉じるとステージ6は移動を開始し
次の撮像位置に移動する。
A still image of the pattern on sample 5 is obtained. Replacement image time T□
can be arbitrarily changed by the shutter control circuit 20 and adjusted so that the two-dimensional image sensor 11 can obtain a high S/N video signal. When the shutter 10 is closed, the stage 6 starts moving and moves to the next imaging position.

ステージ6の移動中はシャッタ10が閉じているため、
2次元撮像素子11は試料5からの不要な反射光を替像
することはない。替像後火のフレームではフレームブラ
ンキング信号を読出し可能の状態にし、替像した映像信
号を読出す。また第3図には2次元撮像素子11に撮像
管式TVカメラを用いた場合を示す。撮像管式TVカメ
ラには残像があり、これを除去するため映像信号読出し
後の次のフレームで残像の空読みをすることで、同様に
パターンを検出できる。上述のように、シャッタ10の
開閉時間を任意に変更できる構成にすることにより、試
料5から反射してくる光量に応じて2次元撮像素子11
の替像時間を調整でき。
Since the shutter 10 is closed while the stage 6 is moving,
The two-dimensional image sensor 11 does not change the image of unnecessary reflected light from the sample 5. In the next frame after image replacement, the frame blanking signal is made readable, and the image signal that has been replaced is read out. Further, FIG. 3 shows a case where an image pickup tube type TV camera is used as the two-dimensional image pickup device 11. An image pickup tube type TV camera has an afterimage, and in order to remove this, a pattern can be detected in the same way by blankly reading the afterimage in the next frame after reading out the video signal. As described above, by configuring the opening/closing time of the shutter 10 to be arbitrarily changed, the two-dimensional imaging device 11 can be adjusted according to the amount of light reflected from the sample 5.
You can adjust the image change time.

常に高S/Nな映像信号を得ることができる。A video signal with a high S/N ratio can always be obtained.

また他の実施例として第4図は本発明のパターン検出方
法の検出時間の短縮方法を第3図の実施例に適用した場
合のタイミングチャートと映像信号を示す。第3図の方
法ではシャッタ10が閉じた後、次のフレームで画像を
読み出すまでにT2の待ち時間が存在する。これをなく
すため第3図中に示すシャッタ10が閉じた後の垂直同
期信号12を、第4図中の垂直同期信号12′のように
シャッタ1oを閉じる信号で強制的に同期をかける。こ
れによりパターン検出時間が短縮され、より高速なパタ
ーン検出が可能になる。これは第2図の実施例に適用可
能なことはいうまでもない。
As another embodiment, FIG. 4 shows a timing chart and a video signal when the method for shortening the detection time of the pattern detection method of the present invention is applied to the embodiment of FIG. In the method shown in FIG. 3, there is a waiting time of T2 after the shutter 10 is closed until the image is read out in the next frame. In order to eliminate this, the vertical synchronizing signal 12 after the shutter 10 shown in FIG. 3 is closed is forcibly synchronized with a signal that closes the shutter 1o, like the vertical synchronizing signal 12' in FIG. 4. This reduces pattern detection time and enables faster pattern detection. It goes without saying that this is applicable to the embodiment shown in FIG.

本実施例では落射照明検出方法の場合について述べたが
、透過光検出や蛍光検出等地の検出方法についても適用
可能なことはいうまでもない、またシャッタ10にはP
LZTシャッタを用いたが、液晶等地の電気光学シャッ
タや機械式シャッタ等用いることも可能である。
Although the epi-illumination detection method has been described in this embodiment, it goes without saying that it is also applicable to ground detection methods such as transmitted light detection and fluorescence detection.
Although an LZT shutter is used, it is also possible to use an electro-optical shutter based on liquid crystal, a mechanical shutter, or the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、微細パターンの
高速検出が可能になるので、微細パターンの光学的な拡
大像を利用する検査装置の検査時間を大幅に短縮できる
As described above, according to the present invention, a fine pattern can be detected at high speed, so that the inspection time of an inspection apparatus that uses an optically enlarged image of a fine pattern can be significantly shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は第1@中
の2次元撮像素子として固体式TV左カメラ用いた場合
のタイミングチャート、第3図は第1図中の2次元撮像
素子として撮像管式TVカメラを用いた場合のタイミン
グチャート、第4図は第3図に示す実施例の高速化手法
を説明するタイミングチャート。第5図は1次元リニア
センサを用いた従来例の説明図、第6図は撮像管式TV
カメラを用いた従来例の説明図、第7図は第6図に示す
従来例のタイミングチャート、第8図は照明方式による
検出光量の違いを示す説明図である。 1・・・連続点灯する光源、17・・・ストロボ光源。 4・・・対物レンズ、5・・・試料、10・・・シャッ
タ、11第 1 図 第2図 ステ−11修ptg号  ′ 島t     4多t〃
    ゛第3 圓 ステージ′#1′麿嘆ぢ 獅よ”   杉■紡  °゛
′第 5 図 /乙 第6 灰 第7 図
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 is a timing chart when a solid-state TV left camera is used as the two-dimensional image sensor in Fig. A timing chart when an image pickup tube type TV camera is used as a dimensional image sensor, and FIG. 4 is a timing chart illustrating a method for increasing the speed of the embodiment shown in FIG. 3. Figure 5 is an explanatory diagram of a conventional example using a one-dimensional linear sensor, and Figure 6 is an image pickup tube type TV.
FIG. 7 is an explanatory diagram of a conventional example using a camera, FIG. 7 is a timing chart of the conventional example shown in FIG. 6, and FIG. 8 is an explanatory diagram showing the difference in detected light amount depending on the illumination method. 1... Light source that lights up continuously, 17... Strobe light source. 4...Objective lens, 5...Sample, 10...Shutter, 11 1st Figure 2 Sta-11 Modification No. 4'
゛3rd round stage'#1'Malou laments the lion'' Sugi ■Spinning °゛'Figure 5 / Otsu 6 Ash 7

Claims (1)

【特許請求の範囲】[Claims] 1、連続点灯する光源を用いた照明系と、間欠的な移動
・停止を繰返し行うステージと、検出光学系と、2次元
撮像素子からなる顕微鏡装置において、検出光学系にシ
ャッタを挿入し、このシャッタをステージ及び2次元撮
像素子と同期して駆動するようにしたことを特徴とする
顕微鏡装置のパターン検出方法。
1. In a microscope device consisting of an illumination system using a light source that lights up continuously, a stage that repeatedly moves and stops intermittently, a detection optical system, and a two-dimensional image sensor, a shutter is inserted into the detection optical system, and the shutter is inserted into the detection optical system. A pattern detection method for a microscope apparatus, characterized in that a shutter is driven in synchronization with a stage and a two-dimensional imaging device.
JP32694187A 1987-12-25 1987-12-25 Pattern detecting method of microscope apparatus Pending JPH01169305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32694187A JPH01169305A (en) 1987-12-25 1987-12-25 Pattern detecting method of microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32694187A JPH01169305A (en) 1987-12-25 1987-12-25 Pattern detecting method of microscope apparatus

Publications (1)

Publication Number Publication Date
JPH01169305A true JPH01169305A (en) 1989-07-04

Family

ID=18193485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32694187A Pending JPH01169305A (en) 1987-12-25 1987-12-25 Pattern detecting method of microscope apparatus

Country Status (1)

Country Link
JP (1) JPH01169305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002354A1 (en) * 2012-06-27 2014-01-03 ソニー株式会社 Microscope and shutter mechanism
WO2014078735A1 (en) * 2012-11-16 2014-05-22 Molecular Devices, Llc System and method of acquiring images with a rolling shutter camera while asynchronously sequencing microscope devices
WO2016187549A1 (en) * 2015-05-21 2016-11-24 Invicro Llc Multi-spectral three dimensional imaging system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002354A1 (en) * 2012-06-27 2014-01-03 ソニー株式会社 Microscope and shutter mechanism
CN104380170A (en) * 2012-06-27 2015-02-25 索尼公司 Microscope and shutter mechanism
JPWO2014002354A1 (en) * 2012-06-27 2016-05-30 ソニー株式会社 Microscope and shutter mechanism
US9442281B2 (en) 2012-06-27 2016-09-13 Sony Corporation Microscope and shutter mechanism
CN104380170B (en) * 2012-06-27 2019-07-26 索尼公司 Microscope and tripper
WO2014078735A1 (en) * 2012-11-16 2014-05-22 Molecular Devices, Llc System and method of acquiring images with a rolling shutter camera while asynchronously sequencing microscope devices
CN104781717A (en) * 2012-11-16 2015-07-15 分子装置有限公司 System and method of acquiring images with a rolling shutter camera while asynchronously sequencing microscope devices
WO2016187549A1 (en) * 2015-05-21 2016-11-24 Invicro Llc Multi-spectral three dimensional imaging system and method
US9799113B2 (en) 2015-05-21 2017-10-24 Invicro Llc Multi-spectral three dimensional imaging system and method

Similar Documents

Publication Publication Date Title
US6693664B2 (en) Method and system for fast on-line electro-optical detection of wafer defects
US8285032B2 (en) Inspection system and inspection method
TWI586959B (en) Automatic appearance inspection device
US6583928B2 (en) Microscope
CN101889197A (en) Inspecting apparatus and inspecting method
JPS63243907A (en) Automatic focus detector for microscope
JPH01169305A (en) Pattern detecting method of microscope apparatus
JP4348455B2 (en) Imaging device
JP2000066107A (en) Microscope
JP2006112913A (en) Defect inspection device
EP1439385B1 (en) Method and system for fast on-line electro-optical detection of wafer defects
JP3314253B2 (en) Inspection device for color filters for viewfinder
JPH07128032A (en) Method and apparatus for inspecting surface waviness of plate-shaped material
JP2000162134A (en) Surface inspecting device
JP6906823B1 (en) Mask inspection method and mask inspection equipment
US5331368A (en) Photomicrographic apparatus
KR100971173B1 (en) Method and system for fast on-line electro-optical detection of wafer defects
JP2008292221A (en) Defect inspection method and defect inspection device
WO2006019446A2 (en) Double inspection of reticle or wafer
JPH09311108A (en) Defect inspecting device and defect inspecting method
JPH0979991A (en) Pattern inspection device, defect inspection device, and pattern inspection method
JPH0682381A (en) Foreign matter inspection device
JPS59232306A (en) Focus detector for microscope
JPH09250912A (en) Pattern measurement device
JP2001208694A (en) Sample processing device and method and method of manufacturing for photomask