JPH0116869B2 - - Google Patents

Info

Publication number
JPH0116869B2
JPH0116869B2 JP17257680A JP17257680A JPH0116869B2 JP H0116869 B2 JPH0116869 B2 JP H0116869B2 JP 17257680 A JP17257680 A JP 17257680A JP 17257680 A JP17257680 A JP 17257680A JP H0116869 B2 JPH0116869 B2 JP H0116869B2
Authority
JP
Japan
Prior art keywords
reaction
alumina hydrate
phosphorous acid
rust
pho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17257680A
Other languages
Japanese (ja)
Other versions
JPS5795814A (en
Inventor
Yotaro Ise
Masashi Nogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP17257680A priority Critical patent/JPS5795814A/en
Publication of JPS5795814A publication Critical patent/JPS5795814A/en
Publication of JPH0116869B2 publication Critical patent/JPH0116869B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は亜りん酸アルミニウム含有組成物から
なる防錆顔料にも関する。 現在代表的に使用されている鉛系、クロメート
系の防錆顔料は鉛または6価クロムを含み、食品
関係機器、食品工場などでは有毒のため使用上問
題がある。従つてこれらの鉛系またはクロメート
系顔料は極めて優れた防錆力を示すが、その有害
性のためにこれに代る低毒性・無毒性の防錆顔料
の出現が望まれている。従つてこれまでに無公害
防錆顔料として(a)金属縮合りん酸塩系例えば縮合
りん酸アルミニウム、(b)金属りん酸塩系例えばり
ん酸ケイ素、りん酸チタニウム、(c)金属亜りん酸
塩系例えば亜りん酸亜鉛、バリウム塩、マグネシ
ウム塩、マンガン塩、(d)金属次亜りん酸塩系例え
ば次亜りん酸カルシウムまたは次亜りん酸鉄、お
よび(e)金属モリブデン酸塩例えば亜鉛塩、カルシ
ウム塩など数多くの提案がなされたが、これらの
無公害防錆顔料は、防錆力が鉛系、クロメート系
に及ばず防錆顔料として決定的なものでない。従
つて、これらの提案された顔料は必要な防錆性を
得るために2〜3種組合わせて使用さえされてい
るのが現状である。 本発明者らは上述の従来既知の防錆顔料の欠点
を解決すべく種々研究の結果、亜りん酸とアルミ
ナ水和物との反応生成物である新規な構造を有す
る亜りん酸アルミニウムを含有する組成物が鉛系
またはクロメート系に優るとも劣らない防錆力を
有することを見出し、本発明を完成した。すなわ
ち、本発明は一般式Al2(PHO33・x〔Al2O3
yH2O〕(式中、x=0.02〜1、y=1〜3を示
す)で表わされる亜リン酸アルミニウム含有組成
物よりなる防錆顔料である。本発明の亜りん酸ア
ルミニウム含有組成物は無公害であり、従つて食
品関係の防錆用にも使用できる。 従来亜りん酸アルミニウムの製法としては (a) ミヨウバン水溶液に亜りん酸アンモニウムを
加える方法、 (b) Al(OH)3をH3PO3に溶解して得られる亜り
ん酸アルミニウム水溶液を煮沸して結晶を析出
させる方法、 が公知である(無機化学全書、アルミニウム)。
(a)の方法は硫酸カリウム、硫酸アンモニウムなど
の塩類が副生し、これらを除去するため、水洗す
る必要がありまた原料的にみても工業的でない。
一方、(b)の方法は過剰の亜りん酸を必要(当量で
は溶解しない)とし、また製品を得るために亜り
ん酸を水洗により除去しなければならない。しか
もAl(OH)3はよく洗浄しかつ生成直後の活性な
ものでなければならない。また、経時変化した一
般のアルミナ水和物は亜りん酸に溶解しない。 亜りん酸に比較的良く溶解するものは出来たて
の水酸化アルミニウムであるなどの制約があつ
た。 しかるに本発明者らはアルミナ水和物と亜りん
酸とを加熱下で反応させることにより亜りん酸ア
ルミニウムが得られ、しかも得られた亜りん酸ア
ルミニウムを有効成分とする組成物は従来の鉛
系、クロメート系に劣らぬすぐれた防錆力を有す
ることを見出した。 アルミナ水和物と亜りん酸との反応は一般に下
記により進行する: Al2O3・nH2O+3H2PHO3→Al2(PHO33+(n
+3)H2O 上記一般式による反応は亜りん酸水溶液にアル
ミナ水和物を分散させ、(加圧)加熱撹拌するこ
とによつて行われる。反応条件はアルミナ水和物
の種類、粒子の粒度、亜りん酸とアルミナ水和物
とのモル比などに依存する。 原料として使用するアルミナ水和物は、例えば
アルミナゲル〔2Al(OH)3〕、ギブサイト、バイ
ヤライト(Al2O3・3H2O)、ベーマイト
(Al2O3・H2O)、その他のアルミナ水和物を使用
できる。これらは下記に従い反応する: 2Al(OH)3+3H2PHO3→Al2(PHO33+6H2O
…(1) Al2O3・3H2O+3H2PHO3→Al2(PHO33
6H2O …(2) Al2O3・H2O+3H2PHO3→Al2(PHO33
4H2O …(3) 反応性は条件にもよるが一般に(1),(2),(3)の順
に低下する傾向にある。 3H2PHO3/Al2O3のモル比が1に近いほど、
またAl2O3粒子の芯まで反応させるためには時間
は長くなるが、防錆作用は粒子表面に生成した亜
りん酸アルミニウムにより行われるから、Al2O3
粒子の芯まで反応させる必要はなく、
3H2PHO3/Al2O3モル比が0.5以上ならば充分防
錆力を発揮する。上記モル比が0.5未満では防錆
力が劣るものとなる。また上記モル比が1を越え
る時は酸性溶液中での反応となるため反応速度は
速くなるが、反応終了後過剰の亜りん酸を除去す
るため水洗が必要となる。 従つて本発明においては多くの場合量論量より
低い値をとるが、多くても20〜30%過剰まで位で
抑えるのが好ましい。 特に防錆顔料として製造する場合には量論量を
越える必要はない。従つて、本発明による製品は
Al2(PHO33・x〔Al2O3・yH2O〕の形で表わさ
れる。ここにxは1以下、実用上は0.02〜1で、
x=0とすることも可能であるが、期待するほど
防錆力は向上しない。また、yは一般に変化要因
が多いが、1〜3が好ましい。本発明による製品
はアルミナ水和物の表面を反応させて亜りん酸ア
ルミニウムでつつんだ粒子と云うことができる。 アルミナ水和物と亜りん酸との反応は常温では
進行しない。反応性のよいアルミナゲル、アルミ
ナ水和物は60℃〜70℃で反応が開始される。しか
し比較的低反応性のアルミナ水和物を使用した時
には加圧下、例えば4〜5Kg/cm2の圧力下に例え
ば200℃までの温度に加熱して始めて反応が進行
するものもある。従つて反応温度としては使用す
るアルミナ水和物の種類に応じて70℃〜200℃、
好ましくは80℃〜150℃(約5Kg/cm2)が一般的
である。しかし200℃以上で反応することを排除
するものではない。反応系の沸点以上の温度では
加圧下で行われることはもちろんである。 反応が進行するに従つて遊離亜りん酸が減少す
るのでPHの測定により反応の終点を知ることがで
きる。 アルミナ水和物の粒子の寸法は一般に微細なほ
ど反応性は良好である。しかしアルミナ水和物を
製造(バイヤー法)する場合、粒子が細かいと水
洗が困難となり、反対に粒子が大きいときは水洗
が容易になるが、そのままでは顔料として適さな
いことが多いなどの問題があり、また市販のアル
ミナ水和物は粒子が大きいものが多く、このもの
をミクロンメートルのオーダーまで細く粉砕する
のには大きなエネルギーが必要である。ところが
アルミナ水和物に亜りん酸をある程度反応させる
と粉砕が容易になる事実を発見した。これは、ア
ルミナ水和物のクラツクなどに亜りん酸が作用し
て、粒子が脆くなるためと考えられる。 また粉砕されたアルミナ水和物の粒子はメカノ
ケミカル的作用を受けて活性化されるためその後
亜りん酸との反応が容易となる。従つて、工程
は、一次反応→粉砕→二次反応とした方が効率的
であることが多い。このように原料アルミナ水和
物の粒度に応じて下記の反応手順をとることがで
きる。
The present invention also relates to anticorrosion pigments comprising compositions containing aluminum phosphite. The lead-based and chromate-based antirust pigments that are currently typically used contain lead or hexavalent chromium, and are toxic and problematic for use in food-related equipment, food factories, and the like. Therefore, these lead-based or chromate-based pigments exhibit extremely excellent rust-preventing properties, but due to their toxicity, it has been desired to develop alternative rust-preventing pigments that are less toxic and non-toxic. Therefore, as non-polluting rust preventive pigments, (a) metal condensed phosphates such as condensed aluminum phosphate, (b) metal phosphates such as silicon phosphate, titanium phosphate, and (c) metal phosphites have been used. salt systems such as zinc phosphites, barium salts, magnesium salts, manganese salts, (d) metal hypophosphites such as calcium hypophosphite or iron hypophosphite, and (e) metal molybdates such as zinc. Many proposals have been made, such as salts and calcium salts, but these non-polluting rust-preventing pigments are not definitive as rust-preventing pigments because their rust-preventing properties are not as good as those of lead-based and chromate-based pigments. Therefore, at present, these proposed pigments are even used in combinations of two or three in order to obtain the necessary rust prevention properties. The present inventors have conducted various studies in order to solve the drawbacks of the conventionally known anti-rust pigments mentioned above, and found that they contain aluminum phosphite, which has a novel structure and is a reaction product of phosphorous acid and alumina hydrate. The present invention has been completed based on the discovery that the composition has anti-rust properties that are as good as, if not superior to, lead-based or chromate-based compositions. That is, the present invention is based on the general formula Al 2 (PHO 3 ) 3.x [Al 2 O 3
yH 2 O] (in the formula, x = 0.02 to 1, y = 1 to 3). The aluminum phosphite-containing composition of the present invention is non-polluting and therefore can also be used for food-related rust prevention. Conventional methods for producing aluminum phosphite include (a) adding ammonium phosphite to an alum aqueous solution, and (b) boiling an aluminum phosphite aqueous solution obtained by dissolving Al(OH) 3 in H 3 PO 3 . A method of precipitating crystals using a method is known (Inorganic Chemistry Complete Book, Aluminum).
In method (a), salts such as potassium sulfate and ammonium sulfate are produced as by-products, and washing with water is necessary to remove them, and it is not industrially practical from a raw material standpoint.
On the other hand, method (b) requires an excess of phosphorous acid (it does not dissolve in an equivalent amount), and the phosphorous acid must be removed by washing with water to obtain the product. Moreover, Al(OH) 3 must be well washed and activated immediately after its formation. In addition, general alumina hydrate that has changed over time does not dissolve in phosphorous acid. There were restrictions such as the fact that freshly made aluminum hydroxide had to be relatively well soluble in phosphorous acid. However, the present inventors found that aluminum phosphite was obtained by reacting alumina hydrate and phosphorous acid under heating, and that the composition containing the obtained aluminum phosphite as an active ingredient was not as effective as conventional lead. It has been found that the anti-rust properties are as good as those of the chromate-based chromate-based chromate-based anti-corrosion products. The reaction between alumina hydrate and phosphorous acid generally proceeds as follows: Al 2 O 3 .nH 2 O + 3H 2 PHO 3 →Al 2 (PHO 3 ) 3 + (n
+3) H 2 O The reaction according to the above general formula is carried out by dispersing alumina hydrate in an aqueous phosphorous acid solution and heating and stirring (under pressure). The reaction conditions depend on the type of alumina hydrate, particle size, molar ratio of phosphorous acid and alumina hydrate, etc. Alumina hydrates used as raw materials include, for example, alumina gel [2Al(OH) 3 ], gibbsite, bayerite (Al 2 O 3・3H 2 O), boehmite (Al 2 O 3・H 2 O), and other materials. Alumina hydrate can be used. These react as follows: 2Al(OH) 3 +3H 2 PHO 3 →Al 2 (PHO 3 ) 3 +6H 2 O
…(1) Al 2 O 3・3H 2 O+3H 2 PHO 3 →Al 2 (PHO 3 ) 3
6H 2 O …(2) Al 2 O 3・H 2 O+3H 2 PHO 3 →Al 2 (PHO 3 ) 3
4H 2 O...(3) Reactivity generally tends to decrease in the order of (1), (2), and (3), although it depends on the conditions. The closer the molar ratio of 3H 2 PHO 3 /Al 2 O 3 is to 1, the more
Also, although it takes a long time to react to the core of the Al 2 O 3 particles, the rust prevention effect is achieved by the aluminum phosphite generated on the particle surface, so the Al 2 O 3
There is no need to react to the core of the particles,
If the 3H 2 PHO 3 /Al 2 O 3 molar ratio is 0.5 or more, sufficient anti-corrosion ability will be exhibited. If the molar ratio is less than 0.5, the antirust ability will be poor. Further, when the above molar ratio exceeds 1, the reaction takes place in an acidic solution, so the reaction rate becomes faster, but washing with water is required to remove excess phosphorous acid after the reaction is completed. Therefore, in the present invention, the amount is often lower than the stoichiometric amount, but it is preferable to limit the amount to an excess of 20 to 30% at most. There is no need to exceed the stoichiometric amount, especially when producing it as a rust-preventing pigment. Therefore, the product according to the invention
It is expressed in the form Al 2 (PHO 3 ) 3 ·x [Al 2 O 3 ·yH 2 O]. Here x is less than 1, practically 0.02 to 1,
Although it is possible to set x to 0, the antirust ability will not improve as much as expected. Moreover, y generally has many changing factors, but 1 to 3 is preferable. The product according to the invention can be described as a particle of alumina hydrate whose surface is reacted and surrounded by aluminum phosphite. The reaction between alumina hydrate and phosphorous acid does not proceed at room temperature. Alumina gel and alumina hydrate, which have good reactivity, start reacting at 60°C to 70°C. However, when a relatively low-reactivity alumina hydrate is used, the reaction may proceed only after heating to a temperature of, for example, 200° C. under pressure, for example, 4 to 5 kg/cm 2 . Therefore, the reaction temperature ranges from 70℃ to 200℃ depending on the type of alumina hydrate used.
Preferably, the temperature is generally 80°C to 150°C (approximately 5 kg/cm 2 ). However, this does not exclude a reaction at 200°C or higher. It goes without saying that the reaction is carried out under pressure at temperatures above the boiling point of the reaction system. As the reaction progresses, free phosphorous acid decreases, so the end point of the reaction can be determined by measuring the pH. Generally, the finer the size of the alumina hydrate particles, the better the reactivity. However, when producing alumina hydrate (Bayer method), there are problems such as fine particles make it difficult to wash with water, while large particles are easier to wash with water, but are often unsuitable as pigments as they are. In addition, many commercially available alumina hydrates have large particles, and a large amount of energy is required to grind them into fine particles on the order of micrometers. However, we discovered that pulverization becomes easier when alumina hydrate is reacted with phosphorous acid to some extent. This is thought to be because phosphorous acid acts on the cracks of alumina hydrate, making the particles brittle. Further, since the crushed alumina hydrate particles are activated by mechanochemical action, the subsequent reaction with phosphorous acid becomes easy. Therefore, it is often more efficient to carry out the process as follows: primary reaction -> pulverization -> secondary reaction. In this way, the following reaction procedure can be taken depending on the particle size of the raw material alumina hydrate.

【表】 反応−粉砕−反応−
濾過−乾燥−粉砕−製品
/ /
亜りん酸
[Table] Reaction-Crushing-Reaction-
Filtration - Drying - Grinding - Product
/ /
phosphorous acid

Claims (1)

【特許請求の範囲】 1 一般式 Al2(PHO33・x〔Al2O3・yH2O〕 (式中、x=0.02〜1、y=1〜3を示す)で
表わされる亜リン酸アルミニウム含有組成物を有
効成分とする防錆顔料。
[ Claims ] 1 . _ A rust-preventing pigment containing an aluminum phosphate-containing composition as an active ingredient.
JP17257680A 1980-12-09 1980-12-09 Composition containing aluminum phosphite, its manufacture, and rust preventive pigment Granted JPS5795814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17257680A JPS5795814A (en) 1980-12-09 1980-12-09 Composition containing aluminum phosphite, its manufacture, and rust preventive pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17257680A JPS5795814A (en) 1980-12-09 1980-12-09 Composition containing aluminum phosphite, its manufacture, and rust preventive pigment

Publications (2)

Publication Number Publication Date
JPS5795814A JPS5795814A (en) 1982-06-14
JPH0116869B2 true JPH0116869B2 (en) 1989-03-28

Family

ID=15944389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17257680A Granted JPS5795814A (en) 1980-12-09 1980-12-09 Composition containing aluminum phosphite, its manufacture, and rust preventive pigment

Country Status (1)

Country Link
JP (1) JPS5795814A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011120192A1 (en) * 2011-12-05 2013-06-06 Clariant International Ltd. Aluminum hydrogen phosphites, a process for their preparation and their use
CN103101893B (en) * 2013-02-01 2015-03-04 河北联合大学 Preparation method of highly dispersed aluminum orthophosphite crystals
CN107082409B (en) * 2017-04-28 2018-09-18 南开大学 A kind of micropore aluminium phosphite [Al2(HPO3)3(H2O)3]·H2The preparation method of O

Also Published As

Publication number Publication date
JPS5795814A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
JP4057647B2 (en) Method for producing hydrotalcite and its metal oxide
US4392979A (en) Magnesium aluminate anion exchangers
JPS5910929B2 (en) Manufacturing method of phosphorus-containing anticorrosion pigment
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
US4472370A (en) Processes for the production of slaked lime and magnesium hydroxide
JPH0615679B2 (en) Anticorrosion paint composition
US4069299A (en) Hydroxy-aluminum chloride and sulfate polymer production
JPH0116869B2 (en)
JP4636587B2 (en) Nitrite ion type hydrotalcite powder, production method thereof, rust preventive composition and rust preventive coating composition
US4392961A (en) Magnesium aluminate anion exchangers
JP2003113482A (en) Rust preventive pigment composition for water paint
JP3261538B2 (en) Zinc phosphate double salt rust preventive pigment, method for producing the same, and rust preventive paint containing the same
US3925428A (en) Hydroxy-aluminum nitrate polymer production
JP3871403B2 (en) Antirust pigment composition and antirust paint containing the same
JP4210943B2 (en) Water-based anti-corrosion paint
JP2976232B2 (en) Plate-like calcium phosphite crystals and anticorrosive paint containing them
JP3503750B2 (en) Method for producing iron dihydrogen tripolyphosphate or dihydrate thereof
JP3131492B2 (en) Method for producing white rust preventive pigment composition
JP3416170B2 (en) White rust preventive pigment and method for producing the same
JPS6224021B2 (en)
JP3432297B2 (en) White rust preventive pigment and method for producing the same
JPH1192692A (en) Rust-preventive coating composition
JP3871404B2 (en) Antirust pigment composition and antirust paint containing the same
JP3226064B2 (en) Rust prevention pigment
JP3218400B2 (en) Rust prevention pigment