JPH01168652A - Method for purifying aqueous solution of complexing agent - Google Patents

Method for purifying aqueous solution of complexing agent

Info

Publication number
JPH01168652A
JPH01168652A JP32527287A JP32527287A JPH01168652A JP H01168652 A JPH01168652 A JP H01168652A JP 32527287 A JP32527287 A JP 32527287A JP 32527287 A JP32527287 A JP 32527287A JP H01168652 A JPH01168652 A JP H01168652A
Authority
JP
Japan
Prior art keywords
complexing agent
aqueous solution
impurities
forming agent
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32527287A
Other languages
Japanese (ja)
Other versions
JP2661648B2 (en
Inventor
Nobuo Eto
衛藤 伸生
Tsugio Murakami
次雄 村上
Yutaka Takada
豊 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62325272A priority Critical patent/JP2661648B2/en
Publication of JPH01168652A publication Critical patent/JPH01168652A/en
Application granted granted Critical
Publication of JP2661648B2 publication Critical patent/JP2661648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To readily, economically and efficiently obtain the title aqueous solution useful for waste liquor treatment containing metals, etc., by feeding an aqueous solution containing a complexing agent of amino-polyacetic acids and impurities to a column filled with a strong acid cation exchanger under specific conditions, adsorbing the complexing agent thereon, etc. CONSTITUTION:An aqueous solution containing a complexing agent of amino- polyacetic acids (e.g., N-hydroxyethylenediaminetriacetic acid hereinafter abbreviated to HEDTA) and impurities [yttrium (Y) ion as a cationic impurity and chloride ion as an anionic impurity] is fed to a column filled with a strong acidic cation exchanger until the concentration of the complexing agent in the resultant effluent attains 5-80% based on that of the feed solution and the adsorbed complexing agent is then desorbed to carry out purification.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は、不純物を含むアミノポリ酢醸類錯形成剤(以
後、単に「錯形成剤」という)水溶液の精製方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Applications] The present invention relates to a method for purifying an aqueous solution of an aminopolyacetate complex-forming agent (hereinafter simply referred to as "complex-forming agent") containing impurities.

錯形成剤は、金属を含む廃液の処理工程、イオン交換法
による金属イオンの分離精製等に幅広く使用されている
。しかしながら、#!j形成剤は、−般に高価であり、
工業的規模で使用する場合、回収・再使用が不可欠とな
る。
Complex-forming agents are widely used in processes for treating waste liquids containing metals, separation and purification of metal ions using ion exchange methods, and the like. however,#! J-forming agents are generally expensive;
When used on an industrial scale, recovery and reuse are essential.

特に、陽イオン交換体と錯形成剤水溶液を用いて行なう
希土類元素の分m精製においては、回収・再使用される
錯形成剤水溶液の純度が、−分離されて得られる各希土
類元素の純度に大きく彰響する。従って、錯形成剤水溶
液の精製が重要となる。
In particular, in the fractional purification of rare earth elements using a cation exchanger and an aqueous solution of a complexing agent, the purity of the aqueous solution of the complexing agent recovered and reused differs from the purity of each rare earth element obtained by separation. It resonates loudly. Therefore, purification of the complexing agent aqueous solution is important.

〔従来の技術及び発明が解決しようとする問題点〕従来
、錯形成剤水溶液の精製には、晶出精製が主に用いられ
な。即ち、重金属イオンと錯体を形成している錯形成剤
水溶液にアルカリを添加し、重金属イオンを水酸化物と
して沈殿・分離する。
[Prior art and problems to be solved by the invention] Conventionally, crystallization purification has not been mainly used to purify an aqueous solution of a complexing agent. That is, an alkali is added to an aqueous solution of a complex forming agent forming a complex with heavy metal ions, and the heavy metal ions are precipitated and separated as hydroxides.

次いで、酸の添加及び/又は冷却をして錯形成剤の沈殿
を生成させ、濾過、水洗し、精製・回収する。しかしな
がら、該方法では、錯形成剤のPH1温度による溶解度
の僅かな差を利用し、晶出・精製回収するため、#!I
形成剤の回収率が低い。また、−殻内に、錯形成剤は希
薄な溶液として使用され、このような溶液を処理する際
には、錯形成剤水溶液を濃縮した後、処理しなければな
らない。このなめ、工業的規模で行なうには効率が悪く
、経済的にも技術的にも不利となる。
Next, acid is added and/or cooled to generate a complex-forming agent precipitate, which is then filtered, washed with water, and purified and recovered. However, in this method, the slight difference in solubility depending on the PH1 temperature of the complex forming agent is used for crystallization, purification and recovery, so #! I
Recovery rate of forming agent is low. Also, within the shell, the complexing agent is used as a dilute solution, and when processing such a solution, the aqueous complexing agent solution must be concentrated before processing. Because of this, it is inefficient to carry out on an industrial scale, and is economically and technically disadvantageous.

又、錯形成剤水溶液の精製に陰イオン交換樹脂を用い、
錯形成剤を吸着させて精製する方法がある。該方法では
、錯形成剤を吸着でき、又陽イオン不純物を除去するこ
とができる。しかしながら、C1−1NOs−1F−1
804”−1SiQ1”−等の陰イオン不純物は錯形成
剤とともに吸着され除去することができない。更には、
陰イオン交換樹脂は耐熱温度が低く、膨潤、収縮が大き
い為、化学的、物理的安定性が劣りその使用は辞しい。
In addition, an anion exchange resin is used to purify the complexing agent aqueous solution,
There is a method of purification by adsorbing a complex forming agent. In this method, complexing agents can be adsorbed and cationic impurities can be removed. However, C1-1NOs-1F-1
Anionic impurities such as 804''-1SiQ1''- are adsorbed together with the complexing agent and cannot be removed. Furthermore,
Anion exchange resins have low heat resistance and large swelling and contraction, so their chemical and physical stability is poor and their use is discouraged.

本発明は、従来技術のもつ前記問題点を解決すべくなさ
れたものであって、不純物を含む錯形成剤水溶液から錯
形成剤を簡便に、経済的かつ効率的に精製・回収する方
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and provides a method for simply, economically and efficiently purifying and recovering a complex-forming agent from an aqueous solution of a complex-forming agent containing impurities. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、不純物を含む錯形成剤水溶液より錯形成
剤を、より簡便に、経済的かつ効率的に精製・回収する
方法を見出すため、鋭意検討した。
The present inventors have conducted extensive studies in order to find a method for purifying and recovering a complexing agent more simply, economically, and efficiently from an aqueous complexing agent solution containing impurities.

その結果、不純物を含′b錯形成剤水溶液を限定された
陽イオン交換体に供給接触させると、錯形成剤が陽イオ
ン交換体に吸着されること、また、陰イオン不純物、非
イオン性不純物はイオン交換体に吸着されず、除去でき
ること、又、陽イオン不純物、とくに多価陽イオン不純
物は吸着されるか、錯形成剤との吸着力に差があること
、史には。
As a result, when an aqueous solution of a complex-forming agent containing impurities is supplied and brought into contact with a limited cation exchanger, the complex-forming agent is adsorbed by the cation exchanger, and anionic impurities and nonionic impurities are Historically, cationic impurities, especially polyvalent cationic impurities, are not adsorbed by ion exchangers and can be removed, and cationic impurities, especially polyvalent cationic impurities, are adsorbed or have a difference in adsorption power with the complex forming agent.

吸着された錯形成剤は濃縮された錯形成剤水溶液として
回収することもできることを見出し、遂に本発明を完成
するに至ったのである。
They discovered that the adsorbed complex-forming agent can also be recovered as a concentrated aqueous solution of the complex-forming agent, and finally completed the present invention.

即ち、本発明は不純物を含むアミノポリ酢酸類錯形成剤
水溶液を、強酸性陽イオン交換体を充てんしたカラムに
、流出する液の錯形成剤濃度が供給液のそれの5〜80
%になるまで供給し、ついで吸着された錯形成剤を脱着
させることを特徴とする錯形成剤水溶液の精製方法であ
る。
That is, in the present invention, an aqueous solution of an aminopolyacetic acid complex-forming agent containing impurities is passed through a column filled with a strongly acidic cation exchanger such that the concentration of the complex-forming agent in the solution flowing out is 5 to 80% that of the feed solution.
%, and then the adsorbed complex forming agent is desorbed.

本発明における原理を、錯形成剤としてN−ヒドロキシ
エチルエチレンジアミン三&1(HBDTA)、1mイ
オン不純物としてイツトリウム(Y)、イオン、陰イオ
ン不純物として塩素イオンを含んだ錯形成剤水溶液を、
プロトン型強酸性陽イオン交換体を充填したカラムに通
液した場合を例にして、説明する。
The principle of the present invention is that a complex forming agent aqueous solution containing N-hydroxyethylethylenediamine 3 & 1 (HBDTA) as a complex forming agent, yttrium (Y) as a 1m ion impurity, and chloride ions as an ion and anion impurity,
An example will be explained in which a liquid is passed through a column packed with a proton-type strongly acidic cation exchanger.

即ち、Yイオンと塩素イオンを含んだHF1DTA水溶
液をプロトン型強酸性陽イオン交換体を充填したカラム
に通液すると塩素イオンはイオン交換体に吸着されずに
そのままカラム外へ流出し、一方、HEDTAとYイオ
ンは、イオン交換体に吸着される。通液を更に続けると
、次にHEDTAが破過し、HEDTAの濃縮された流
出液が得られ、次にYイオンが破過する、という実に興
味深い事実を見い出した。更には、流出液のREDTA
濃度が供給液の)(EDTA6度の5〜80%になるま
での濃度の初期流出液をパージして、吸着されたHED
TAを脱着させて回収することにより精製されたHED
TA水溶液を得ることができたのである。
That is, when an HF1DTA aqueous solution containing Y ions and chloride ions is passed through a column packed with a proton-type strongly acidic cation exchanger, the chloride ions flow out of the column without being adsorbed by the ion exchanger, while HEDTA and Y ions are adsorbed on the ion exchanger. A very interesting fact was discovered that when the liquid flow was continued further, HEDTA broke through, a concentrated effluent of HEDTA was obtained, and then Y ions broke through. Furthermore, the REDTA of the effluent
Purge the initial effluent until the concentration is 5-80% of the feed solution (EDTA 6°C) to remove the adsorbed HED.
HED purified by desorbing and recovering TA
It was possible to obtain a TA aqueous solution.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明に用いられる錯形成剤は、エチレンジアミン四酢
酸(EDTA )、N−ヒドロキシエチルエチレンジア
ミン三酢酸(HEDTA)、1,2−ジアミノシクロヘ
キサン−N、N、N’、N′−四酢酸(DCTA )、
ジエチレントリアミン−N、N、N’、NIP、Nl/
−五酢酸(DTPA)、エチレングリコール−ビス(2
−アミノエチル)エーテル−N%N%N′、N′−四酢
酔(DB)、ビス(2−アミノエチル)エーテル−N、
 N、 N’、N′−四酢酸(ME)、ニトリロ三酢酸
(NTA )、イミノニ酢酸(IMPA)等のポリアミ
ノ酢酸類である。錯形成剤の濃度は特に制限はないが、
通常0.001〜0.2m01/lである。
The complexing agents used in the present invention include ethylenediaminetetraacetic acid (EDTA), N-hydroxyethylethylenediaminetriacetic acid (HEDTA), and 1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (DCTA). ,
Diethylenetriamine-N, N, N', NIP, Nl/
-pentaacetic acid (DTPA), ethylene glycol-bis(2
-aminoethyl)ether-N%N%N', N'-tetraacetic acid (DB), bis(2-aminoethyl)ether-N,
These are polyaminoacetic acids such as N, N', N'-tetraacetic acid (ME), nitrilotriacetic acid (NTA), and iminoniacetic acid (IMPA). There are no particular restrictions on the concentration of the complexing agent, but
It is usually 0.001 to 0.2 m01/l.

不純物とけ、錯形成剤以外の溶解性不純物であり、陰イ
オン不純物、陽イオン不純物、非イオン性不純物に分け
られる。陰イオン不純物とけ、0l−1N03−1F二
5O42−1Si03’−等であり、陽イオン不純物と
け、−価イオン、多価イオンがあるか、本発明では特に
多価イオンを対象とする。
Impurities are soluble impurities other than dissolving and complexing agents, and are divided into anionic impurities, cationic impurities, and nonionic impurities. Anionic impurities such as 0l-1N03-1F25O42-1Si03'-, etc., and cationic impurities such as -valent ions and multivalent ions, and the present invention particularly targets multivalent ions.

具体例としては、Ca 2 +、Mg”、Cu2+、z
n2+、A 13 +、希土類元累イオン、等を挙げる
ことができる。非イオン性不純物としては、アルコール
類、ケトン類、各種炭水化物等がある。
Specific examples include Ca 2 +, Mg”, Cu 2+, z
Examples include n2+, A13+, rare earth element ions, and the like. Examples of nonionic impurities include alcohols, ketones, and various carbohydrates.

これら、不純物濃度は特に限定しない。These impurity concentrations are not particularly limited.

また、用いるイオン交換体は、強酷性陽イオン交換体で
あり、スルホン酸基を有するものである。
The ion exchanger used is a harsh cation exchanger and has a sulfonic acid group.

その形態及び母体については、何ら制限は無い。There are no restrictions on its form or parent body.

具体的には、アンバーライトIR−120B、アンバー
ライトIR−252、アンノく−ライトCG−120(
以上、オルガノ■製)、ダイヤイオン5KIB、ダイヤ
イオンRMK−808、ダイヤイオンPK216 (以
上、三菱化成工業(t@製)、ダウエックス50W1ダ
ウエツクス88(以上、ダウケミカル社製)、東しく性
製イオン交換繊維等が挙げられる。しかしながら交換基
が弱酸基からなる弱酸性イオン交換体の場合、錯形成剤
の吸着量が小さすぎるので、本発明に適しない。
Specifically, Amberlight IR-120B, Amberlight IR-252, Annoku-Light CG-120 (
The above are manufactured by Organo■), Diaion 5KIB, Diaion RMK-808, Diaion PK216 (the above are manufactured by Mitsubishi Chemical Industries (t@)), DOWEX 50W1 DOWEX 88 (all manufactured by Dow Chemical Company), Toshikuseki Examples include ion exchange fibers, etc. However, in the case of a weakly acidic ion exchanger in which the exchange group is a weak acid group, the adsorption amount of the complex forming agent is too small, and therefore it is not suitable for the present invention.

又、スルホン酸基と弱酸基であるカルボン酸基、フェノ
ール基、りん酸基等との混合型でも良い。
Further, a mixed type of a sulfonic acid group and a weak acid group such as a carboxylic acid group, a phenol group, or a phosphoric acid group may be used.

具体的には、特開昭53−4787号公報、特開昭58
−45541号公報に示された、スルホン酸基とカルボ
ン酸基の混合型であるイオン交換繊維が挙げられる。混
合型では、弱酸基に対するスルホン酸基の交換容量の比
率ll11.0以上が好ましく、錯形成剤の吸着量を大
きくできる。
Specifically, JP-A-53-4787, JP-A-58
Examples include ion exchange fibers that are a mixture of sulfonic acid groups and carboxylic acid groups and are disclosed in Japanese Patent Publication No. -45541. In the mixed type, the ratio of exchange capacity of sulfonic acid groups to weak acid groups is preferably 11.0 or more, and the adsorption amount of the complex forming agent can be increased.

交換基が弱酸基から成る弱酸性陽イオン交換体は錯形成
剤の吸着力が小さすぎて、本発明の目的を達成すること
ができない。
A weakly acidic cation exchanger in which the exchange group is a weak acid group has too little ability to adsorb a complexing agent and cannot achieve the object of the present invention.

交換基の対イオンは、プロトン(H+)であることが好
ましい。対イオンが■“型であるとき、強酸性陽イオン
交換体への錯形成剤の吸着量が増す。
The counter ion of the exchange group is preferably a proton (H+). When the counterion is of the type ■, the amount of adsorption of the complex forming agent on the strongly acidic cation exchanger increases.

全対イオンに対するH+の比(gイオン)は、30%以
上が好ましく、50%以上が更に好ましい。
The ratio of H+ to all counterions (g ions) is preferably 30% or more, more preferably 50% or more.

他の対イオンはナトリウムイオン(Na”)カリウムイ
オン(K”)、アンモニウムイオン(NH:)、等の一
価の陽イオンが好ましい。
Other counter ions are preferably monovalent cations such as sodium ion (Na"), potassium ion (K"), ammonium ion (NH:), and the like.

不純物を含む錯形成剤水溶液のpHは、5以下が好まし
く、特に0〜4が好ましい。pHが低すぎると酸の使用
量が増すだけでなく、錯形成剤がイオン交換体上で析出
することがある。pHが高すぎると錯形成剤の吸着量か
低下する。又、陽イオン不純物として重金属イオンか含
まれている場合は、該重金属の水酸化物が生成し、操作
が雛しくなる。
The pH of the aqueous complex forming agent solution containing impurities is preferably 5 or less, particularly preferably 0 to 4. If the pH is too low, not only will the amount of acid used increase, but the complexing agent may precipitate on the ion exchanger. If the pH is too high, the amount of adsorption of the complex forming agent decreases. Furthermore, if heavy metal ions are included as cationic impurities, hydroxides of the heavy metals will be produced, making operation difficult.

不純物を含む錯形成剤水溶液と強酸性陽イオン交換体と
の接触温度は錯形成剤の濃度以上の溶解度を示す温度で
あれば問題ないが、錯形成剤の吸着量を高める意味から
低い程良い。好ましい温度は30〜100℃、特に好ま
しくけ、40〜80℃である。高すぎると錯形成剤の吸
着量が低下し、熱エネルギーを多く必要とする。又、低
すぎると冷却エネルギーを多く必要とし、場合によ7て
は錯形成剤が析出することがある。
There is no problem with the contact temperature between the aqueous solution of the complexing agent containing impurities and the strongly acidic cation exchanger as long as the solubility is higher than the concentration of the complexing agent, but in order to increase the adsorption amount of the complexing agent, the lower the better. . The preferred temperature is 30-100°C, particularly preferably 40-80°C. If the temperature is too high, the adsorption amount of the complex forming agent decreases and a large amount of thermal energy is required. On the other hand, if the temperature is too low, a large amount of cooling energy is required, and in some cases, the complex forming agent may precipitate.

不純物を含む錯形成剤水溶液を強酸性陽イオン交換体と
接触させると、錯形成剤が吸着される。
When an aqueous solution of a complexing agent containing impurities is brought into contact with a strongly acidic cation exchanger, the complexing agent is adsorbed.

一方、陰イオン及び非イオン性不純物のほとんどは吸着
されずに水溶液に残存する。陽イオン不純物は、その種
類、pH,温度等によって異るが、多価陽イオン不純物
は吸着され易く、−価陽イオン不純物は吸着され難い。
On the other hand, most of the anions and nonionic impurities remain in the aqueous solution without being adsorbed. Cation impurities vary depending on their type, pH, temperature, etc., but polyvalent cation impurities are easily adsorbed, and -valent cation impurities are difficult to adsorb.

従って、流出液をパージすることによって錯形成剤と多
価陽イオン不純物以外の不純物、とくに1イオン不純物
および非イオン性不純物を分離できる。不純物を4¥t
!錯形成剤の供給を更に続けていくと、錯形成剤の吸着
は飽和に達して、一部水溶液中に流出してくる。
Therefore, by purging the effluent, impurities other than the complexing agent and polycationic impurities, particularly monoionic impurities and nonionic impurities, can be separated. 4 yen tons of impurities
! As the supply of the complex forming agent continues, the adsorption of the complex forming agent reaches saturation and some of the complex forming agent flows out into the aqueous solution.

流出液中の錯形成剤濃度が、供給液の錯形成剤濃度の5
〜80%になった時点で供給を終え、それまで流出した
液をパージする。このことにより、不純物のほとんどを
錯形成剤と分離除去できる。
The complexing agent concentration in the effluent is 5% of the complexing agent concentration in the feed solution.
When the amount reaches ~80%, the supply is finished and the liquid that has flowed out up to that point is purged. This allows most of the impurities to be separated and removed from the complex forming agent.

流出液の錯形成剤濃度が供給液の濃度の5%よりも低い
時点で接触を終えると、なおりラムの錯形成剤吸着能力
を残したまま止めたこととなり、1サイクルあたり、か
つカラム容量あたりの処理能力を低下させることとなる
。いっぽう、80%よりも高い時点で供給を終えると錯
形成剤の吸着量は大きくできるが、処理液としてパージ
される錯形成剤が多量となり、収率を下げることとなる
If the contact is terminated when the concentration of the complexing agent in the effluent is lower than 5% of the concentration of the feed solution, the contact is stopped with the complexing agent adsorption capacity of the naori ram remaining, and the capacity of the complexing agent is reduced per cycle and column capacity. This will reduce the processing capacity of each unit. On the other hand, if the supply is finished at a point higher than 80%, the adsorption amount of the complex-forming agent can be increased, but a large amount of the complex-forming agent will be purged as a processing liquid, which will lower the yield.

より好ましい範囲は10〜50%である。A more preferable range is 10 to 50%.

錯形成剤の吸着後、脱着する。その時の温度は30〜1
20℃が好ましく、特に50〜95℃が好ましい。さら
に、吸着における処理温度より10℃以上高い温度とす
るのがよい。温度が低すぎると錯形成剤の脱着に長時間
要し、必要とする水量が多くなる。又、その結果脱着・
回収した錯形成剤の濃度が低くなる。湿度が高すぎると
熱エネルギーを多く必要とし、又強酸性陽イオン交換体
の劣化が激しくなる。
After adsorption of the complexing agent, it is desorbed. The temperature at that time was 30-1
20°C is preferred, particularly 50-95°C. Furthermore, the temperature is preferably 10° C. or more higher than the treatment temperature for adsorption. If the temperature is too low, it will take a long time to desorb the complexing agent, and the amount of water required will increase. Also, as a result, attachment and detachment
The concentration of the recovered complexing agent becomes lower. If the humidity is too high, a large amount of thermal energy is required, and the strongly acidic cation exchanger deteriorates rapidly.

錯形成剤を脱着するのに使用する液は、カラムから重金
属か分離析出しない範囲で、アンモニア等のアルカリを
加えてpHを高くするのがよい。
The pH of the liquid used to desorb the complexing agent is preferably increased by adding an alkali such as ammonia to the extent that heavy metals are not separated and precipitated from the column.

上記範囲では、pHが高いほど錯形成剤が脱着しやすく
、かつ多価陽イオン不純物は脱着しにくいからである。
This is because within the above range, the higher the pH, the easier the complex forming agent is to be desorbed, and the more difficult it is for polyvalent cation impurities to be desorbed.

このpHは、以下に説明するように脱着用の液の種類に
よって異なる。イオン交換樹脂による作用の受けかをが
それぞれ異なり、カラム中におけるpHの低下の程度か
異なることによると認められる。
This pH varies depending on the type of liquid for desorption, as explained below. It is recognized that this is due to the fact that the effect of the ion exchange resin is different, and the degree of pH reduction in the column is different.

とくに純度のよい錯形成剤水溶液をうるには、脱着用液
として水を使用すればよい。純水でもよいが、アンモニ
ア等のアルカリを少量加えて、錯形成剤の脱着、すなわ
ち濃縮を容易にすることもできる。このようにして、p
Hを8程度にしても、カラム中ではpHけ5以下になる
のか重金属の析出はおこらない。使用水量が多いと、錯
形成剤の脱着率は向上するが、回収・椿・すされる錯形
成剤濃度は低くなる。又、使用水量が少いと回収・精鳴
される錯形成剤濃度は高くできるが、脱着率は低下する
。使用する水の噴け、先に吸着の際に供給した不純物を
含む原料液中の錯形成剤濃度に係わりなく、回収される
液の錯形成剤濃度が0.01〜o、 s mol / 
tとなる量とするのが好ましい。すなわち、原料液中の
錯形成剤濃度が低い場合、大幅に濃縮された精製液とし
て回収される。脱着の初期に流出する液には、吸着工程
終了時のカラム内の液中に残存していた不純物が共存し
ているので、分取して上記原料液に混ぜて再処理すれば
よい。
In order to obtain a complexing agent aqueous solution with particularly high purity, water may be used as the desorption liquid. Although pure water may be used, a small amount of alkali such as ammonia may be added to facilitate desorption, ie, concentration, of the complex forming agent. In this way, p
Even if H is set to about 8, heavy metals do not precipitate in the column because the pH is below 5. When the amount of water used is large, the desorption rate of the complexing agent increases, but the concentration of the complexing agent recovered, drained, and rinsed becomes low. Furthermore, if the amount of water used is small, the concentration of the complexing agent recovered and purified can be increased, but the desorption rate will be reduced. Regardless of the water spray used and the concentration of the complexing agent in the impurity-containing raw material liquid previously supplied during adsorption, the concentration of the complexing agent in the recovered liquid is 0.01 to 0, s mol/
It is preferable to set the amount to t. That is, when the concentration of the complexing agent in the raw material liquid is low, it is recovered as a highly concentrated purified liquid. Since the liquid flowing out at the beginning of desorption contains impurities that remained in the liquid in the column at the end of the adsorption step, it may be fractionated and mixed with the raw material liquid for reprocessing.

取得される錯形成剤水溶液に少量の不純物の混入が許さ
れる場合は、不純物を含む原料液自体を脱着用の液とし
て使用することかできる。この液をそのまま使用しても
よいが、アンモニア等のアルカリによりてpHを吸着時
よりも1以上高めると濃縮が容易になる。この液の供給
を続けると、流出液中の錯形成剤濃度は上昇する。供給
液のpHまたは処理温度が吸着工程におけるよりも高い
場合は、流出液は供給液よりもm形成剤濃度か高くなり
、その濃度は極大値を経過して減少に転じ、ついには供
給液と同じ濃度となる。原料液よりも濃度の高い錯形成
剤水溶液の取得を目的とする場合は、このような条件を
とればよい。濃縮倍率を1.2倍以上、場合によっては
2倍以上にもできる。
If a small amount of impurity is allowed to be mixed into the complexing agent aqueous solution obtained, the impurity-containing raw material liquid itself can be used as the desorption liquid. Although this liquid may be used as it is, concentration becomes easier if the pH is increased by 1 or more compared to that during adsorption using an alkali such as ammonia. If this liquid is continued to be supplied, the complexing agent concentration in the effluent increases. If the pH of the feed solution or the process temperature is higher than in the adsorption step, the effluent will have a higher concentration of m-former than the feed solution, the concentration will pass through a maximum value and begin to decrease until it reaches the same level as the feed solution. The concentration will be the same. Such conditions may be used when the purpose is to obtain an aqueous complex-forming agent solution having a higher concentration than that of the raw material solution. The concentration ratio can be increased to 1.2 times or more, and in some cases to 2 times or more.

多価陽イオンの除去のみを目的とする場合は、ざらに脱
着用の液を多く流すこともでき、また該液のpHおよび
処理温度を@着工程における供給液と同じであってもよ
く、多価陽イオンが破過する時点まで流し続ければよい
If the purpose is only to remove polyvalent cations, a large amount of the desorption liquid can be flowed through the process, and the pH and treatment temperature of the liquid can be the same as the supply liquid in the deposition process. It is sufficient to continue flowing until the point at which polyvalent cations break through.

カラムに吸着されたまま残っている多価陽イオンは、吸
着工程における錯形成剤の吸着を妨げるので、上記脱着
処理後、塩酸、硝酸、硫酸等によって多価陽イオンを脱
着させて除去する。この処理によって強酸性陽イオン交
換体の対イオンけH+となるので、カラムをそのまま上
記吸着処理に使用することができる。
Since the polyvalent cations remaining adsorbed on the column interfere with the adsorption of the complex forming agent in the adsorption step, after the above desorption treatment, the polyvalent cations are removed by desorption using hydrochloric acid, nitric acid, sulfuric acid, or the like. This treatment turns the counterion of the strongly acidic cation exchanger into H+, so the column can be used as is for the above adsorption treatment.

〔発明の効果] 次に本発明の効果を列記する。〔Effect of the invention] Next, the effects of the present invention will be listed.

■ 本発明により、不、加物を含む錯形成剤水溶液を簡
単な操作、及びフンバクトな装置で精製できる。
(2) According to the present invention, an aqueous complex-forming agent solution containing additives can be purified with simple operations and simple equipment.

■ 不純物を含む錯形成剤水溶液を精製と同時に濃縮で
きる。
■ A complex forming agent aqueous solution containing impurities can be purified and concentrated at the same time.

■ 高価な錯形成剤の損失がほとんどなく、rn製でき
る。
■ RN can be produced with almost no loss of expensive complexing agents.

■ 従来、溶解度が大きく、且つpH,温度に対する溶
解度の差が小さく、その精製が極めて困難であったHE
DTA、DTPAの精製が容易に実施できる。
■ Conventionally, HE has a high solubility and a small difference in solubility depending on pH and temperature, making it extremely difficult to purify.
Purification of DTA and DTPA can be easily carried out.

■ 強酸性陽イオン交換体に吸着した錯形成剤の脱着は
各種あり、目的に合った方法が適用できる。
■ There are various methods for desorption of complex-forming agents adsorbed on strongly acidic cation exchangers, and the method suitable for the purpose can be applied.

■ 不純物としての多価陽イオンを錯形成剤と分別回収
することができる。
■ Polyvalent cations as impurities can be separated and recovered from the complex forming agent.

以上の様に、本発明は技術的・経済的に極めて効率の良
い方法である。
As described above, the present invention is a technically and economically extremely efficient method.

〔実施例〕〔Example〕

以下、実施例により、本発明を更に詳細に説明するが、
本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

実施例1 強酸性陽イオン交換樹脂(アンバーライ)IR−120
B)300m7をジャケット付ガラスカラムに充填し、
3規定塩酸2.000 #Itを通液することにより、
強酸性陽イオン交換樹脂の対イオンを■“とじ、純水で
洗浄した。次に、ジャケット温度を60℃に保ち、HB
DTA : 0. [118mol/l、al−: a
、 1eq/l、イツトリウム(Y)=95119/l
、pH2,817)HED’l’A水溶液ヲsV (空
塔速度)ニアHr−’で前記カラムに通液した。初期流
出液に通液を更に続けると、HEDTAが破過し、通液
6.91の時点で流出液のHEDTA濃度がα002m
ol / tになり、通液を止めた(Yは破過していな
い)。それまでの流出液は全てパージした。
Example 1 Strongly acidic cation exchange resin (Amberly) IR-120
B) Pack 300 m7 into a jacketed glass column,
By passing 3N hydrochloric acid 2.000 #It,
The counter ion of the strongly acidic cation exchange resin was removed and washed with pure water.Next, the jacket temperature was maintained at 60°C, and the HB
DTA: 0. [118 mol/l, al-: a
, 1eq/l, yttrium (Y)=95119/l
, pH 2, 817) The HED'l'A aqueous solution was passed through the column at a superficial velocity of about Hr-'. When the initial effluent is further passed through, HEDTA breaks through and the HEDTA concentration in the effluent reaches α002 m at the time of 6.91 inflow.
ol/t, and the flow of fluid was stopped (Y had not broken through). All previous effluent was purged.

次に、純水4.4tをSVニアHr’、80℃で通液洗
浄し、初期流出液200dけCjl−を含んでい念ので
別に保存し、その後の流出液4.2tを採取した。膣液
は、HEDTA : 0.027mol /l、C1:
0.005eq/を以下、Y : 0.01 累ti/
 を以下であり、精製されたH E D T A水溶液
を得た。
Next, 4.4 t of pure water was passed through the SV near Hr' for cleaning at 80° C., the initial effluent was stored separately to avoid containing 200 d of Cjl-, and 4.2 t of the subsequent effluent was collected. Vaginal fluid contained HEDTA: 0.027 mol/l, C1:
Below 0.005eq/, Y: 0.01 cumulative ti/
was as follows, and a purified HEDTA aqueous solution was obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)不純物を含むアミノポリ酢酸類錯形成剤水溶液を
、強酸性陽イオン交換体を充てんしたカラムに、流出す
る液の錯形成剤濃度が供給液のそれの5〜80%になる
まで供給し、ついで吸着された錯形成剤を脱着させるこ
とを特徴とする錯形成剤水溶液の精製方法。
(1) Supply an aqueous solution of an aminopolyacetic acid complex-forming agent containing impurities to a column packed with a strongly acidic cation exchanger until the concentration of the complex-forming agent in the flowing liquid becomes 5 to 80% of that in the feed liquid. , and then desorbing the adsorbed complex forming agent.
JP62325272A 1987-12-24 1987-12-24 Purification method of complex forming agent aqueous solution Expired - Lifetime JP2661648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325272A JP2661648B2 (en) 1987-12-24 1987-12-24 Purification method of complex forming agent aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325272A JP2661648B2 (en) 1987-12-24 1987-12-24 Purification method of complex forming agent aqueous solution

Publications (2)

Publication Number Publication Date
JPH01168652A true JPH01168652A (en) 1989-07-04
JP2661648B2 JP2661648B2 (en) 1997-10-08

Family

ID=18174958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325272A Expired - Lifetime JP2661648B2 (en) 1987-12-24 1987-12-24 Purification method of complex forming agent aqueous solution

Country Status (1)

Country Link
JP (1) JP2661648B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835151A (en) * 1981-08-27 1983-03-01 Asahi Chem Ind Co Ltd Recovery of aminopolycarboxylic acid solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835151A (en) * 1981-08-27 1983-03-01 Asahi Chem Ind Co Ltd Recovery of aminopolycarboxylic acid solution

Also Published As

Publication number Publication date
JP2661648B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5055286A (en) Process for preparing high purity hydrogen peroxide
WO2023226619A1 (en) Purification method for electronic-grade citric acid
US4044106A (en) Reclamation of phosphate from bright dip drag-out
JPS63239128A (en) Production of uranium oxide
JPS588501A (en) Removal of product from gas treated liquid
CN112142068A (en) Method for producing high-purity ammonium chloride from industrial-grade ammonium chloride
JPH01168652A (en) Method for purifying aqueous solution of complexing agent
JP2007022956A (en) Method for producing high purity aminomethylene phosphonic acid
CN113860336B (en) Preparation method of electronic grade potassium hydroxide
JPH09124545A (en) Method for recovering catalyst in manufacturing of adipic acid
JP4297783B2 (en) Improved process for producing high concentration hydroxylamine
CN111422905A (en) Preparation method of zirconium sulfate
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
JPH01126221A (en) Method for recovering precipitate of rare earth element
CA1090984A (en) Reclamation of phosphate from bright dip drag-out
JPH0725543B2 (en) Rare earth element separation method
WO1993005820A1 (en) Purification of crude ioversol using continuous deionization
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
JPH01126222A (en) Separation of rare earth element and purifying method therefor
JP3852981B2 (en) Method for purifying hydrogen peroxide water
JP4742763B2 (en) Method for producing aminomethylene phosphonic acid
JPH01102033A (en) Removal of organic acid
JPS6374914A (en) Removal of iron ion
JPS63307121A (en) Production of high-purity molybdenum oxide
JPH01111827A (en) Treatment of aqueous solution consisting of rare earth element and complex forming agent