JPH0116855B2 - - Google Patents

Info

Publication number
JPH0116855B2
JPH0116855B2 JP60045668A JP4566885A JPH0116855B2 JP H0116855 B2 JPH0116855 B2 JP H0116855B2 JP 60045668 A JP60045668 A JP 60045668A JP 4566885 A JP4566885 A JP 4566885A JP H0116855 B2 JPH0116855 B2 JP H0116855B2
Authority
JP
Japan
Prior art keywords
copolymer
coating
latex
composition
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60045668A
Other languages
Japanese (ja)
Other versions
JPS61204253A (en
Inventor
Tetsuo Shimizu
Masabumi Akamatsu
Kazutaka Hosokawa
Seisuke Suzue
Takeshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP4566885A priority Critical patent/JPS61204253A/en
Priority to DE8686103004T priority patent/DE3682086D1/en
Priority to EP19860103004 priority patent/EP0193963B1/en
Publication of JPS61204253A publication Critical patent/JPS61204253A/en
Publication of JPH0116855B2 publication Critical patent/JPH0116855B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、氎性分散液組成物に関し、曎に詳し
くはテトラフルオル゚チレンフルオルビニル゚
ヌテル共重合䜓氎性分散液組成物、特に基材にコ
ヌテむングするこずで非粘着性を付䞎するのに適
した組成物に関する。 皮々の甚途のために、金属、セラミツクス、耐
熱性ゎムなどの衚面にフルオルカヌボン重合䜓を
コヌテむングするこずは公知であり、ポリテトラ
フルオル゚チレンPTFEやテトラフルオル゚
チレンヘキサフルオルプロペン共重合䜓
FEP、テトラフルオル゚チレンパヌフルオ
ルアルキルビニル゚ヌテル共重合䜓PFAな
どが、非粘着性、耐熱性、耐薬品性、䜎摩擊係数
などの特性を利甚しお䜿われおいる。 PTFEがFEPは、氎性分散液組成物ずしお垂販
されおおり、噎霧たたは浞挬含浞によ぀おコヌテ
むング塗装される。たた、FEPやPFAは静電粉
䜓塗装に甚いるため、〜150ÎŒmの粉末ずしお垂
販されおいる。 静電粉䜓塗装の実斜態様ずしおは、たずえば特
開昭55―31494号、特開昭58―24174号にみられる
ように、耇写機などのロヌルに塗装されたものが
ある。 他方、PTFEFEPPFAのいずれも氎性分
散䜓ずしおの調補が可胜であ぀お、PTFE氎性分
散䜓にFEPたたはPFAの氎性分散䜓を混合しお
塗装甚に甚いる䟋も知られおいる。たずえば特
公昭52―21531号、米囜特蚱第4252859号参照。
ずころがPFA氎性分散䜓を単独で塗装甚途に䜿
぀た䟋はほずんど知られおいない。 PFA氎性分散䜓は、たずえば特公昭48―20788
号にような方法によ぀お調補される。この特蚱の
方法に埓぀お調補された氎性分散䜓は、通垞、ポ
リマヌを分離しおペレツトや粉末の圢にしたの
ち、溶融加工に䟛されるが、埌蚘の比范䟋〜
で瀺すように、これを氎性分散液組成物にしお塗
装加工を行぀た堎合、極めお薄い膜厚にしか塗装
できず、厚く塗るずいわゆるマツドクラツクが生
じる。たた、塗膜の衚面も粗い。 本発明は、このようなPFA氎性分散䜓の持぀
欠点を改良しようずするもので、その芁旚は 䞀般匏 匏䞭、はたたは、は〜の数、
は〜の数である。 で衚わされるフルオルビニル゚ヌテルずテトラフ
ルオル゚チレンずの共重合䜓であ぀お、フルオル
ビニル゚ヌテル含量が〜10重量であり、比溶
融粘床が0.3×104〜×104ポむズ、平均粒埄が
0.3〜1ÎŒmのコロむド状共重合䜓粒子を䞻成分ず
しお含み、アニオン性たたはノニオン性界面掻性
剀で安定化された共重合䜓暹脂氎性分散液組成物
に存する。 本発明の組成物は、コロむド状のテトラフルオ
ル゚チレンフルオルビニル゚ヌテル共重合䜓氎
性分散䜓から成り、厚塗りの塗装加工が可胜で、
塗膜衚面が滑らかなものが埗られる。甚途は特に
非粘着を目的ずした加工に適しおいる。たずえば
耇写機の定着ロヌル、食品加工甚のロヌル、トレ
ヌ、調味噚具などがある。 本発明の芁件であるコロむド状共重合䜓粒子
は、その平均粒埄が0.3〜1ÎŒmであり、か぀比溶
融粘床MVが0.3〜×104ポむズの特性を有
する。これらの特性によ぀おのみ本発明の目的が
達せられる。 本発明の組成物は、厚塗り加工性および塗膜の
平滑性に特城を有するが、本発明の共重合䜓粒子
もPFAずしおは、埓来になく倧きいもので、こ
れが特定のMVを有するこずによ぀お、より優れ
た厚塗りの加工性ず塗膜平滑性が実珟される。 本発明の組成物による塗装では、回の塗装で
少くずも25ÎŒm以䞊通垞、35ÎŒm以䞊の厚さの
塗膜が圢成可胜である。たた、衚面粗床も0.5ÎŒm
以䞋ず小さい。通垞、垂販されおいるPTFEや
FEPの氎性分散液組成物では10〜20ÎŒm皋床の塗
膜しか埗られないのが実状である。このような膜
厚では、たずえば耇写機の定着ロヌルぞの加工の
堎合、必芁な膜厚ず塗装埌の衚面研摩分を合わせ
た厚みたで塗装する必芁があるが、通垞、25ÎŒm
以䞊必芁ずされる膜厚には䞍充分なものでしかな
い。他方、FEPやPFAの粉䜓を甚いた静電塗装
では100ÎŒmを超える厚さに塗装される。しかし、
これでは、逆に厚すぎるため、削り分原料のロ
スずなるが倚くなり、䞍経枈か぀工数を倚く芁
する。 本発明の組成物による塗膜のように衚面粗床が
小さいず、しばしば衚面研摩なしで実甚に䟛する
こずが可胜である。本発明者は粒埄ずMVの䞡物
性を詳现に怜蚎した結果、MVに぀いお0.3〜
×104ポむズ奜たしくは0.4〜×104ポむズ、
平均粒埄が0.3〜1ÎŒm奜たしくは0.5〜0.8ÎŒmが
䞊蚘目的に最も奜適であるこずを芋い出し、本発
明を完成するに至぀た。MVに぀いおは、䞊蚘範
囲より高すぎるず、粒埄が倧きくおも衚面粗床が
倧きく、たた、マツドクラツクが入りやすい。こ
の堎合も、結局、倚く削り取らなければならず、
䞍経枈性が問題ずなり、たた、必芁膜厚さえも埗
られなくなる。勿論、䞊蚘範囲より䜎すぎおは機
械的匷床が小さくなり脆くなる。 本発明のコロむド状分散粒子は通垞知られるも
のよりかなり倧きいため、組成物の粘床を高めお
沈降しにくくする必芁がある。たた、䞀旊沈降し
おも再分散しやすい性質を䞎えなければならな
い。そのため、組成物にはアニオン性たたはノニ
オン性界面掻性剀たたはその混合物が加えられ
る。 ノニオン性界面掻性剀の皮類ずしおは、兞型的
には、芪氎性郚分ずなる゚チレンオキシドず、疎
氎性郚分ずしおのプロピレンオキシド、飜和およ
び䞍飜和脂肪族アルコヌル類、アルキルプノヌ
ル類のような化合物ずの反応生成物である。たず
えば、次匏のようなオキシ゚チレン、オキシプロ
ピレンブロツク共重合䜓、HOC2H4O―
C3H6O―C2H4O 分子量1000〜
400018≊≊85や、
The present invention relates to an aqueous dispersion composition, and more particularly to an aqueous dispersion composition of a tetrafluoroethylene/fluorovinyl ether copolymer, particularly a composition suitable for imparting non-stick properties by coating a substrate. relating to things. It is known to coat the surfaces of metals, ceramics, heat-resistant rubber, etc. with fluorocarbon polymers for various applications, such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene/hexafluoropropene. Copolymers (FEP), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymers (PFA), etc. are used to take advantage of their properties such as non-adhesiveness, heat resistance, chemical resistance, and low coefficient of friction. There is. PTFE-FEP is commercially available as an aqueous dispersion composition and is applied as a coating by spraying or dipping. Furthermore, FEP and PFA are used in electrostatic powder coating and are commercially available as powders of 5 to 150 ÎŒm. Examples of electrostatic powder coating include coatings on rolls of copying machines, as seen in, for example, JP-A-55-31494 and JP-A-58-24174. On the other hand, PTFE, FEP, and PFA can all be prepared as an aqueous dispersion, and examples are known in which an aqueous dispersion of FEP or PFA is mixed with an aqueous PTFE dispersion and used for coating. (For example, see Japanese Patent Publication No. 52-21531 and US Pat. No. 4,252,859).
However, there are almost no known examples of using PFA aqueous dispersions alone for coating purposes. For example, PFA aqueous dispersion is
It is prepared by the method described in No. The aqueous dispersion prepared according to the method of this patent is usually subjected to melt processing after separating the polymer and forming it into pellets or powder.
As shown in Figure 2, when this is applied to an aqueous dispersion composition, it can be applied only to an extremely thin film thickness, and if it is applied thickly, so-called mud cracks occur. Moreover, the surface of the coating film is also rough. The present invention aims to improve the drawbacks of such PFA aqueous dispersions, and the gist thereof is the general formula: (In the formula, X is H or F, n is a number from 0 to 7, m
is a number from 0 to 3. ) A copolymer of fluorovinyl ether and tetrafluoroethylene represented by particle size
An aqueous copolymer resin dispersion composition containing colloidal copolymer particles of 0.3 to 1 ÎŒm as a main component and stabilized with an anionic or nonionic surfactant. The composition of the present invention is composed of a colloidal tetrafluoroethylene/fluorovinyl ether copolymer aqueous dispersion, and can be coated in thick coats.
A smooth coating surface can be obtained. It is especially suitable for non-adhesive processing. Examples include fixing rolls for copying machines, food processing rolls, trays, and seasoning utensils. The colloidal copolymer particles, which are a requirement of the present invention, have an average particle diameter of 0.3 to 1 ÎŒm and a specific melt viscosity (MV) of 0.3 to 5×10 4 poise. Only with these characteristics can the objectives of the invention be achieved. The composition of the present invention is characterized by thick coating processability and smoothness of the coating film, but the copolymer particles of the present invention are also unprecedentedly large for PFA, which is why they have a specific MV. Therefore, better thick coating processability and coating film smoothness are achieved. When coating with the composition of the present invention, a coating film with a thickness of at least 25 ÎŒm or more (usually 35 ÎŒm or more) can be formed in one coating. Also, the surface roughness is 0.5ÎŒm
Small as below. Usually, commercially available PTFE or
The reality is that an aqueous dispersion composition of FEP can only provide a coating film with a thickness of about 10 to 20 ÎŒm. With such a film thickness, for example, when processing a fuser roll for a copying machine, it is necessary to apply the coating to a thickness that is the sum of the required film thickness and the amount of surface polishing after painting, but usually 25 ÎŒm.
The above-mentioned film thickness is insufficient for the required film thickness. On the other hand, electrostatic coating using FEP or PFA powder produces coatings with a thickness exceeding 100 ÎŒm. but,
On the contrary, this is too thick, resulting in a large amount of cutting (resulting in loss of raw materials), which is uneconomical and requires a large number of man-hours. When the surface roughness of the coating film formed by the composition of the present invention is small, it is often possible to put it into practical use without surface polishing. As a result of a detailed study of both particle size and MV physical properties, the inventor found that MV was 0.3 to 5.
×10 4 poise (preferably 0.4 to 3 × 10 4 poise),
It has been found that an average particle diameter of 0.3 to 1 ÎŒm (preferably 0.5 to 0.8 ÎŒm) is most suitable for the above purpose, and the present invention has been completed. Regarding MV, if it is too high than the above range, the surface roughness will be large even if the particle size is large, and pine cracks will be likely to occur. In this case as well, we ended up having to remove a lot,
Uneconomical problems become a problem, and even the required film thickness cannot be obtained. Of course, if it is too low than the above range, the mechanical strength will be low and it will become brittle. Since the colloidally dispersed particles of the present invention are much larger than those commonly known, it is necessary to increase the viscosity of the composition to make it less likely to settle. Furthermore, it must have the property of being easy to redisperse even if it settles once. Therefore, anionic or nonionic surfactants or mixtures thereof are added to the composition. Types of nonionic surfactants typically include reactions between ethylene oxide as a hydrophilic part and compounds such as propylene oxide, saturated and unsaturated aliphatic alcohols, and alkyl phenols as hydrophobic parts. It is a product. For example, oxyethylene, oxypropylene block copolymer, HO(C 2 H 4 O) a-
(C 3 H 6 O)b-(C 2 H 4 O)c H (molecular weight 1000~
4000, 18≩a+b+c≩85),

【匏】〜 20などが奜適である。アニオン性界面掻性剀ず
しおは、ゞアルキルスルホコハク酞塩、ドデシル
ベンれンスルホン酞塩、脂肪酞石けんなどが䜿甚
可胜である。この他、組成物の粘床を高めるため
にアルギン酞゜ヌダやポリビニルアルコヌル、ポ
リアクリル酞塩、メチルセルロヌスのような氎溶
性高分子や無機塩を加えおもよい。たた、造膜性
をさらに向䞊させるために、氎䞍溶の有機溶剀、
たずえばベンれン、トル゚ン、キシレンなどを分
散乳化させるこずも可胜である。 安定剀ずしお甚いられるノニオン性たたはアニ
オン性界面掻性剀は、暹脂重量を基準にしお〜
20重量、奜たしくは〜10重量が適圓であ
る。倚すぎる安定剀は焌結時に揮発しにくく塗膜
性胜が䜎䞋する。たた、倚すぎる安定剀ず過剰な
増粘剀は塗装加工そのものが困難になる。通垞、
本発明の組成物の粘床は、25℃においお50〜1000
センチポむズ、奜たしくは100〜400センチポむズ
に調敎されるのが奜たしい。 たた、組成物䞭の共重合䜓暹脂含量は、組成物
の党重量を基準にしお20〜65が奜適である。 本発明の組成物は、たず、氎性媒䜓䞭でテトラ
フルオル゚チレンず 匏䞭、およびは前蚘ず同意矩。ずを共
存させ、乳化重合を行い、぀いで埗られたラテツ
クスを濃瞮し、所定の界面掻性剀を加えお安定化
し、堎合によ぀おはさらに増粘剀を加えお補造す
るこずができる。 本発明における乳化共重合では、いわゆる皮重
合法が採甚され、皮の量をかえるこずによ぀お最
終粒埄を制埡するのが特城である。たた、MVは
連鎖移動剀の量や開始剀量、反応枩床などによ぀
お制埡しうる。連鎖移動剀ずしおは、氎玠を含
み、反応条件䞋で実質䞊液状で存圚する有機化合
物たずえばメタノヌルおよび゚タノヌル、お
よびハロゲン化アルキルたずえばゞクロルメタ
ン、トリクロルメタン、テトラクロル゚タンおよ
びクロル゚タンを䜿甚し埗る。適圓な重合開始
剀の䟋には、氎溶性有機たたは無機過酞化物た
ずえばゞコハク酞過酞化物、過硫酞アンモニり
ム、過硫酞カリりムなどがある。曎に、還元化
合物たずえば亜硫酞アンモニりム、亜硫酞氎玠
ナトリりム、チオ硫酞ナトリりムなどを前蚘過
酞化物ず共に䜿甚するこずもできる。 以䞋、実斜䟋によ぀お本発明の具䜓的態様を瀺
す。 実斜䟋  たず、皮重合に䜿甚する皮ラテツクスを(1)の方
法で合成するこれは別に比范䟋ずしお組成物
の塗装評䟡を行う。そのあず、(2)の方法により
皮重合を行う。 (1) 枩調ゞダケツトずアンカヌ翌付き撹拌機を備
えた内容積のステレンス補オヌトクレヌブ
に脱むオン氎2.9ず分散安定剀ずしおのトリ
クロルトリフルオル゚タン400、パヌフルオ
ルオクタン酞アンモニりム9.0、連鎖移動剀
ずしお詊薬特玚メタノヌルをmlを仕蟌み、脱
酞玠のための槜内を窒玠ガスで回、TFEガ
スで回眮換し、続けおパヌフルオルプロピ
ルビニル゚ヌテルPPVEを70仕蟌む。
撹拌しながら65℃たで昇枩し、TFEガスで槜
内の圧力が9.2Kgcm2になるたで圧入する。
そしお過硫酞アンモニりムAPS4.2を含
む氎溶液100mlを添加し反応を開始する。反応
䞭は槜内の圧力が9.2Kgcm2を保぀ように
TFEガスを送り぀づけ、反応枩床は65±℃
に保たれる。 4.7時間埌撹拌を止め、オヌトクレヌブを宀
枩たで冷华し、ガスを攟出しお倧気圧たで戻
す。埗られたラテツクス䞭の共重合䜓濃床は
20.6重量、共重合䜓平均粒子埄は0.18ÎŒm、共
重合䜓䞭のPPVE含量は3.2重量、共重合䜓
のMVは1.0×104ポむズであ぀た。 (2) (1)ず同じオヌトクレヌブに同量の脱むオン
氎、トリクロルトリフルオル゚タン、パヌフル
オルオクタン酞アンモニりムを仕蟌んだ埌、第
衚蚘茉量11mlの詊薬特玚メタノヌルず、
(1)で合成したテラツクスを第衚蚘茉量250
仕蟌み、脱酞玠のあず、PPVEを70仕蟌
む。その埌、(1)ず党く同様にAPSを4.2添加
し反応を行う。反応枩床、反応圧力も同じであ
る。反応時間、ラテツクスの性質などは第衚
蚘茉の通りである。 次に、(2)で埗られた生のラテツクスは反応終了
埌、有機盞トリクロルトリフルオル゚タンず未
反応のPPVEを分離しお別容噚に移し、ポリオ
キシ゚チレンオクチルプノヌル゚ヌテル日本
油脂(æ ª)補ノニオンHS―208を20重量含む非む
オン性界面掻性剀氎溶液を生ラテツクス圓り
30混合する。混合液は30±℃に保ち静眮す
る。玄20時間静眮埌、濃瞮ラテツクス局ず䞊柄局
に分離した混合液の䞊柄み局を陀去し、共重合䜓
濃床60以䞊のラテツクスを埗る。この濃瞮ラテ
ツクスをさらに安定化させるため、氎ずノニオン
HS208を远加し、共重合䜓濃床50重量、非むオ
ン性界面掻性剀重量ポリマヌ重量に察し
おになるように調敎する。 調敎した組成物は、埌述の塗装ず塗膜の評䟡を
行う。たた、重合終了盎埌のラテツクスの䞀郚は
蒞発也固しお、アセトン掗浄し、也燥しお粉末に
する。この粉末でMVを枬定し、たた、350℃で
15分間ヒヌトプレスしお厚み玄0.05mmのフむルム
を䜜成し、赀倖分光法により共重合䜓䞭のパヌフ
ルオルプロピルビニル゚ヌテル含量を定量す
る。 本実斜䟋のクラツク限界厚みは26〜30ÎŒmであ
り、衚面粗床は0.40ÎŒmであ぀た。これに察し比
范䟋では限界厚みも小さく、衚面粗床も粗い
倧きいものであ぀た。粒埄の効果が顕著であ
る。 実斜䟋 〜 実斜䟋では、実斜䟋で䜿甚したのず同じ皮
ラテツクスを䜿぀お皮重合を行぀た。実斜䟋〜
は実斜䟋で埗られた生のラテツクスの䞀郚を
皮ずしお皮重合を行぀た埓぀お、結果ずしお皮
重合を回行぀たこずになる。䜿甚したメタノ
ヌル量、過硫酞アンモニりムの量は第衚蚘茉の
ずおりであり、第衚蚘茉以倖の条件は、すべお
実斜䟋ず同様である。第衚蚘茉のずおりいず
れも優れた塗膜物性を有しおいた。 実斜䟋  実斜䟋の工皋(1)の方法においお、脱むオン
氎、トリクロルトリフルオル゚タン、パヌフルオ
ルオクタン酞アンモニりム、PPVEは同量で䜿甚
し、連鎖移動剀ずしおはメタノヌルのかわりに詊
薬特玚ゞクロルメタン66を䜿甚した。重合枩床
は35℃ずし、反応は過硫酞アンモニりム4.2を
含む氎溶液50mlを添加した埌、続いお亜硫酞゜ヌ
ダ2.3を含む氎溶液50mlを添加しお開始させた。
反応䞭は、槜内圧力を垞に9.2Kgcm2に保぀よ
うにテトラフルオル゚チレンを䟛絊し、重合枩床
は35±℃に保぀た。 9.6時間埌、実斜䟋の工皋(1)ず同様に反応を
終了させるず、ポリマヌ濃床19.0重量、平均粒
埄0.18ÎŒmのラテツクスが埗られ、その共重合䜓
のMVは3.3×104ポむズ、PPVE含量は2.7であ
぀た。 さらにこのラテツクス250を皮ずしお、䞊蚘
ず同量の脱むオン氎、トリクロルトリフルオル゚
タン、パヌフルオルオクタン酞アンモニりム、
PPVEず共にオヌトクレヌブに仕蟌み、次い
でゞクロルメタン90を連鎖移動剀ずしお添加
し、䞊蚘ず同量の過硫酞アンモニりムおよび亜硫
酞゜ヌダを添加しお皮重合を行぀た。反応圧力、
反応枩床ずも皮ラテツクスの合成ず同じであ぀
た。 14時間埌、反応終了埌のラテツクスのポリマヌ
濃床は18.7、平均粒埄は0.35ÎŒmであ぀た。共重
合䜓のMVは2.1×104ポむズ、PPVE含量は3.0重
量であ぀た。 こうしお埗られた生ラテツクスに぀いお実斜䟋
ず同様に有機局分離・濃瞮・安定化・調敎を行
い、塗装ず塗膜の評䟡を行぀た。クラツク限界厚
みは30〜35ÎŒm、衚面粗床は0.50ÎŒmであ぀た。 比范䟋 〜 比范䟋は実斜䟋の皮ラテツクスの合成物そ
のものであり、比范䟋〜は皮重合を行わず、
実斜䟋の皮ラテツクスの補法においおメタノヌ
ル量をかえおMVを倉化させたものである。 比范䟋は比范䟋の生ラテツクスを、比范䟋
は比范䟋の生ラテツクスを䜿぀お第衚蚘茉
の条件で実斜䟋に準じお皮重合を行぀た。 塗膜物性は第衚のずおりであるが、比范䟋
では粒埄が倧きくおもMVが高すぎるため衚面粗
床が倧きい。そしお比范䟋では、クラツク限界
膜厚、衚面粗床共に良奜であるが、この堎合、
MVが小さすぎるせいであるず思われるが、塗膜
匷床が小さく、ほずんど実甚性がない。 比范䟋  実斜䟋で䜿甚した皮ラテツクス平均粒埄
0.18ÎŒm、MV3.3×104ポむズ、PPVE含量2.7重量
を実斜䟋ず同様に有機局分離・濃瞮・安定
化・調敎し、塗装ず塗膜評䟡を行぀た。 クラツク限界厚みは20〜25ÎŒm、衚面粗床は
0.80ÎŒmであ぀た。 なお、実斜䟋〜および比范䟋〜は、い
ずれも実斜䟋で述べたずおりの有機局分離・濃
瞮・安定化・調敎を行い、同じ条件で塗装ず塗膜
評䟡を行぀た。 〈比溶融粘床〉 島接補䜜所補高化匏フロヌテスタヌを甚い、共
重合䜓粉末2.0を内埄11.3mmのシリンダヌに装
填し、枩床380℃で分間保぀た埌、Kgのピス
トン荷重䞋に内埄2.1mm、長さmmのオリフむス
を通しお抌し出し、この時の抌出速床分
で53150を割぀た倀を比溶融粘床ポむズずし
お求めた。 〈平均粒埄〉 濃瞮䜓の重合終了盎埌のラテツクスに぀いお、
透過型電子顕埮鏡で写真をずり、玄100〜400個の
粒子の定方向長さ埄を枬定し、長さ平均埄を求め
た。 〈共重合䜓䞭のフルオルビニル゚ヌテル含量〉 共重合䜓䞭のパヌフルオルプロピルビニル゚
ヌテルに぀いおは、前述のフむルムを赀倖分光
法によ぀お、2360cm-1の吞光床に察する995cm-1
の吞光床の比に0.95を乗ずるこずで定量した特
開昭56―92943号参照。 〈塗装詊隓〉 調敎した氎性分散液組成物を幅cm、長さ40
cm、厚みmmのアルミニりム板前も぀おアセト
ンで衚面掗浄し、脱油したものにスプレヌ塗装
を行う。スプレヌガンのノズル口埄は0.8〜1.1
mm、空気圧力は玄Kgcm2である。この時、焌成
埌の厚みが10〜50ÎŒmになるように、アルミニり
ム板の各郚分で組成物の吹き付け量を適圓に倉化
させる。吹き付け埌、赀倖線也燥炉玄100℃
で10分間予備也燥を行い、続いお、400℃にコン
トロヌルされた電気炉の䞭に入れ20分間焌成す
る。焌成埌は盎ちに炉から取り出し、宀枩たで攟
冷する。 〈塗膜の評䟡〉 塗膜厚みを衚面膜厚蚈で枬定する。膜厚が倧き
くなるずマツドクラツクが芳察されるが、マツド
クラツクの入らない最倧の膜厚をクラツク限界厚
みずする。 衚面粗床を䞇胜衚面圢状枬定噚小坂研究所(æ ª)
補SE―3Cで枬定する。衚面粗床は膜厚によ぀
おかわるので玄20ÎŒmの膜厚のもので比范する。
[Formula] (d=4 to 20) is suitable. As the anionic surfactant, dialkyl sulfosuccinate, dodecylbenzenesulfonate, fatty acid soap, etc. can be used. In addition, water-soluble polymers or inorganic salts such as sodium alginate, polyvinyl alcohol, polyacrylates, and methylcellulose may be added to increase the viscosity of the composition. In addition, in order to further improve film-forming properties, water-insoluble organic solvents,
For example, it is also possible to disperse and emulsify benzene, toluene, xylene, etc. The nonionic or anionic surfactant used as a stabilizer is
20% by weight, preferably 4-10% by weight is suitable. If there is too much stabilizer, it will be difficult to volatilize during sintering and the coating performance will deteriorate. Furthermore, too much stabilizer and excessive thickener will make the painting process itself difficult. usually,
The viscosity of the composition of the present invention is 50 to 1000 at 25°C.
It is preferably adjusted to centipoise, preferably 100 to 400 centipoise. The content of the copolymer resin in the composition is preferably 20 to 65% based on the total weight of the composition. The composition of the present invention is first prepared by combining tetrafluoroethylene in an aqueous medium. (In the formula, n and m have the same meanings as above.) to perform emulsion polymerization, and then the obtained latex is concentrated, stabilized by adding a specified surfactant, and in some cases, further It can be manufactured by adding a thickener. In the emulsion copolymerization of the present invention, a so-called seed polymerization method is employed, and is characterized in that the final particle size is controlled by changing the amount of seeds. Furthermore, MV can be controlled by the amount of chain transfer agent, amount of initiator, reaction temperature, etc. As chain transfer agents, organic compounds containing hydrogen and present in substantially liquid form under the reaction conditions (e.g. methanol and ethanol) and alkyl halides (e.g. dichloromethane, trichloromethane, tetrachloroethane and chloroethane) may be used. . Examples of suitable polymerization initiators include water-soluble organic or inorganic peroxides such as disuccinic peroxide, ammonium persulfate, potassium persulfate, and the like. Additionally, reducing compounds such as ammonium sulfite, sodium bisulfite, sodium thiosulfate, etc. can also be used with the peroxides. Hereinafter, specific embodiments of the present invention will be illustrated by way of Examples. Example 1 First, a seed latex to be used for seed polymerization is synthesized by the method (1) (separately, a coating evaluation of the composition is carried out as Comparative Example 1). Thereafter, seed polymerization is performed by method (2). (1) In a stainless steel autoclave with an internal volume of 6 equipped with a temperature control jacket and a stirrer with anchor blades, add 2.9 g of deionized water, 400 g of trichlorotrifluoroethane as a dispersion stabilizer, 9.0 g of ammonium perfluorooctanoate, and chain transfer. Charge 2 ml of reagent grade methanol as a reagent, replace the inside of the tank for deoxidation twice with nitrogen gas and twice with TFE gas, and then charge 70 g of perfluor (propyl vinyl ether) (PPVE).
The temperature was raised to 65°C while stirring, and TFE gas was injected into the tank until the pressure within the tank reached 9.2 Kgf/cm 2 .
Then, 100 ml of an aqueous solution containing 4.2 g of ammonium persulfate (APS) is added to start the reaction. During the reaction, keep the pressure inside the tank at 9.2Kgf/ cm2 .
Continuously supply TFE gas, reaction temperature is 65±1℃
is maintained. After 4.7 hours, the stirring is stopped, the autoclave is cooled to room temperature, and the gas is released back to atmospheric pressure. The copolymer concentration in the obtained latex is
The average particle diameter of the copolymer was 0.18 ÎŒm, the PPVE content in the copolymer was 3.2% by weight, and the MV of the copolymer was 1.0×10 4 poise. (2) After charging the same amount of deionized water, trichlorotrifluoroethane, and ammonium perfluorooctanoate into the same autoclave as in (1), add reagent special grade methanol in the amount listed in Table 1 (11 ml),
The amount of Terrax synthesized in (1) in Table 1 (250
g) After preparation and deoxidation, add 70g of PPVE. Thereafter, 4.2g of APS is added and the reaction is carried out in exactly the same manner as in (1). The reaction temperature and reaction pressure are also the same. The reaction time, latex properties, etc. are as shown in Table 1. Next, after the reaction of the raw latex obtained in (2) is completed, the organic phase (trichlorotrifluoroethane and unreacted PPVE) is separated and transferred to a separate container, and polyoxyethylene octyl phenol ether (NOF) Add a nonionic surfactant aqueous solution containing 20% by weight of Nonion HS-208) to each raw latex.
Mix 30g. Keep the mixture at 30±1°C and let it stand. After standing still for about 20 hours, the supernatant layer of the mixture separated into a concentrated latex layer and a supernatant layer is removed to obtain a latex with a copolymer concentration of 60% or more. To further stabilize this concentrated latex, water and nonionic
Add HS208 and adjust the copolymer concentration to 50% by weight and nonionic surfactant to 5% by weight (based on polymer weight). The prepared composition is subjected to coating and coating evaluation as described below. A portion of the latex immediately after polymerization is evaporated to dryness, washed with acetone, and dried to powder. The MV was measured with this powder and also at 350℃.
Heat press for 15 minutes to create a film with a thickness of approximately 0.05 mm, and quantify the perfluor (propyl vinyl ether) content in the copolymer using infrared spectroscopy. The crack limit thickness of this example was 26 to 30 ÎŒm, and the surface roughness was 0.40 ÎŒm. On the other hand, in Comparative Example 1, the critical thickness was small and the surface roughness was rough (large). The effect of particle size is significant. Examples 2-5 In Example 2, the same seed latex used in Example 1 was used to carry out the seed polymerization. Example 3~
In Example 5, seed polymerization was carried out using part of the raw latex obtained in Example 1 as a seed (therefore, as a result, seed polymerization was carried out twice). The amounts of methanol and ammonium persulfate used are as listed in Table 1, and all conditions other than those listed in Table 1 are the same as in Example 1. As shown in Table 2, all had excellent coating film properties. Example 6 In the method of step (1) of Example 1, deionized water, trichlorotrifluoroethane, ammonium perfluorooctanoate, and PPVE were used in the same amounts, and as a chain transfer agent, reagent special grade was used instead of methanol. 66g of dichloromethane was used. The polymerization temperature was 35° C., and the reaction was started by adding 50 ml of an aqueous solution containing 4.2 g of ammonium persulfate, followed by the addition of 50 ml of an aqueous solution containing 2.3 g of sodium sulfite.
During the reaction, tetrafluoroethylene was supplied so as to keep the internal pressure at 9.2 Kgf/cm 2 and the polymerization temperature was maintained at 35±1°C. After 9.6 hours, the reaction was terminated in the same manner as in step (1) of Example 1, and a latex with a polymer concentration of 19.0% by weight and an average particle size of 0.18 ÎŒm was obtained, and the MV of the copolymer was 3.3×10 4 poise. , the PPVE content was 2.7%. Furthermore, using 250 g of this latex as a seed, the same amount of deionized water as above, trichlorotrifluoroethane, ammonium perfluorooctanoate,
The mixture was charged into an autoclave with PPVE, and then 90 g of dichloromethane was added as a chain transfer agent, and the same amounts of ammonium persulfate and sodium sulfite as above were added to carry out seed polymerization. reaction pressure,
The reaction temperature was the same as for the synthesis of the seed latex. After 14 hours, the latex had a polymer concentration of 18.7% and an average particle size of 0.35 ÎŒm. The MV of the copolymer was 2.1×10 4 poise, and the PPVE content was 3.0% by weight. The raw latex thus obtained was subjected to organic layer separation, concentration, stabilization, and adjustment in the same manner as in Example 1, and the coating and coating film were evaluated. The crack thickness limit was 30 to 35 ÎŒm, and the surface roughness was 0.50 ÎŒm. Comparative Examples 1 to 5 Comparative Example 1 is the seed latex composition of Example 1, and Comparative Examples 2 to 3 are seed latex compounds without seed polymerization.
This is a method for producing seed latex in Example 1 in which the amount of methanol was changed to change the MV. Comparative Example 4 used the raw latex of Comparative Example 2, and Comparative Example 5 used the raw latex of Comparative Example 1, and seed polymerization was carried out under the conditions shown in Table 1 according to Example 1. The physical properties of the coating film are as shown in Table 2, and Comparative Example 4
Even if the particle size is large, the MV is too high and the surface roughness is large. Comparative Example 5 has good crack limit film thickness and surface roughness, but in this case,
This is probably because the MV is too small, but the coating film strength is low and it is almost impractical. Comparative Example 6 Seed latex used in Example 6 (average particle size
0.18 ÎŒm, MV 3.3×10 4 poise, PPVE content 2.7% by weight) was separated, concentrated, stabilized, and adjusted in the same manner as in Example 1, and then painted and evaluated. The crack limit thickness is 20~25ÎŒm, and the surface roughness is
It was 0.80 Όm. In addition, in Examples 2 to 6 and Comparative Examples 1 to 5, the organic layer separation, concentration, stabilization, and adjustment were performed as described in Example 1, and the coating and coating film evaluation were performed under the same conditions. <Specific melt viscosity> Using a Koka type flow tester made by Shimadzu Corporation, 2.0 g of copolymer powder was loaded into a cylinder with an inner diameter of 11.3 mm, and after keeping at a temperature of 380°C for 5 minutes, the inner diameter was 2.1 mm under a piston load of 7 kg. mm, extrusion through an orifice with a length of 8 mm, extrusion speed (g/min)
The specific melt viscosity (poise) was determined by dividing 53150 by . <Average particle size> Regarding the latex immediately after the completion of polymerization of the concentrate,
Photographs were taken with a transmission electron microscope, and the directional length and diameter of about 100 to 400 particles were measured to determine the average length diameter. <Fluorovinyl ether content in the copolymer> Regarding perfluorinated (propyl vinyl ether) in the copolymer, the above-mentioned film was measured by infrared spectroscopy to determine the absorbance at 995 cm -1 relative to the absorbance at 2360 cm -1 .
It was determined by multiplying the absorbance ratio by 0.95 (see JP-A-56-92943). <Painting test> The prepared aqueous dispersion composition was coated with a width of 5 cm and a length of 40 cm.
Spray painting on a 1 mm thick aluminum plate (previously cleaned with acetone and deoiled). Spray gun nozzle diameter is 0.8~1.1
mm, and the air pressure is approximately 3Kg/cm 2 . At this time, the amount of the composition sprayed on each part of the aluminum plate is changed appropriately so that the thickness after firing is 10 to 50 ÎŒm. After spraying, infrared drying oven (approx. 100℃)
Pre-dry for 10 minutes, then place in an electric furnace controlled at 400°C and bake for 20 minutes. Immediately after firing, remove from the furnace and allow to cool to room temperature. <Evaluation of paint film> Measure the thickness of the paint film using a surface film thickness meter. As the film thickness increases, mound cracks are observed, but the maximum film thickness without mound cracks is defined as the crack limit thickness. Universal surface profile measuring device for surface roughness (Kosaka Institute Co., Ltd.)
Measured using SE-3C). Since the surface roughness varies depending on the film thickness, we will compare the film thickness of approximately 20 ÎŒm.

【衚】【table】

【衚】【table】

【衚】  埗られた塗膜は数日埌にマツドクラツ
クが発生。
[Table] ** The resulting paint film developed pine cracks after a few days.

Claims (1)

【特蚱請求の範囲】  䞀般匏 匏䞭、はたたは、は〜の敎数、
は〜の敎数である。 で衚わされるフルオルビニル゚ヌテルずテトラフ
ルオル゚チレンずの共重合䜓であ぀お、フルオル
ビニル゚ヌテル含量が〜10重量であり、比溶
融粘床が0.3×104〜×104ポむズ、平均粒埄が
0.3〜1ÎŒmのコロむド状共重合䜓粒子を䞻成分ず
しお含み、アニオン性たたはノニオン性界面掻性
剀で安定化された共重合䜓暹脂氎性分散液組成
物。  フルオルビニル゚ヌテルがC3F7OCFCF2で
ある特蚱請求の範囲第項蚘茉の組成物。  平均粒埄が0.5ÎŒmより倧きく、比溶融粘床が
0.4〜3.0×104ポむズである特蚱請求の範囲第項
蚘茉の組成物。  平均粒埄が0.6〜0.8ÎŒmである特蚱請求の範囲
第項蚘茉の組成物。  非粘着塗装甚の特蚱請求の範囲第項蚘茉の
組成物。
[Claims] 1. General formula: (In the formula, X is H or F, n is an integer of 0 to 7,
m is an integer from 0 to 3. ) A copolymer of fluorovinyl ether and tetrafluoroethylene represented by particle size
An aqueous copolymer resin dispersion composition containing colloidal copolymer particles of 0.3 to 1 ÎŒm as a main component and stabilized with an anionic or nonionic surfactant. 2. The composition according to claim 1, wherein the fluorovinyl ether is C3F7OCF = CF2 . 3 The average particle size is larger than 0.5 ÎŒm and the specific melt viscosity is
The composition according to claim 1, which has a poise of 0.4 to 3.0×10 4 poise. 4. The composition according to claim 1, having an average particle size of 0.6 to 0.8 ÎŒm. 5. The composition according to claim 1 for non-adhesive coating.
JP4566885A 1985-03-06 1985-03-06 Aqueous dispersion composition Granted JPS61204253A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4566885A JPS61204253A (en) 1985-03-06 1985-03-06 Aqueous dispersion composition
DE8686103004T DE3682086D1 (en) 1985-03-06 1986-03-06 AQUEOUS DISPERSION OF A FLUORINE COPOLYMER AND ITEM COATED WITH IT.
EP19860103004 EP0193963B1 (en) 1985-03-06 1986-03-06 Aqueous dispersion comprising fluorine-containing copolymer and article coated therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4566885A JPS61204253A (en) 1985-03-06 1985-03-06 Aqueous dispersion composition

Publications (2)

Publication Number Publication Date
JPS61204253A JPS61204253A (en) 1986-09-10
JPH0116855B2 true JPH0116855B2 (en) 1989-03-28

Family

ID=12725763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4566885A Granted JPS61204253A (en) 1985-03-06 1985-03-06 Aqueous dispersion composition

Country Status (1)

Country Link
JP (1) JPS61204253A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023224050A1 (en) * 2022-05-19 2023-11-23 株匏䌚瀟 Method for producing aqueous dispersion, and aqueous dispersion

Also Published As

Publication number Publication date
JPS61204253A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
US5922468A (en) Tetrafluoroethylene polymer dispersion composition
US6645555B1 (en) Material for fluorine-containing coating composition and method for coating by using same
JP4959588B2 (en) Low crystallinity vinyl fluoride interpolymer
JP4162261B2 (en) Tetrafluoroethylene copolymer composition for coating
US11879066B2 (en) Fluororesin coating composition for forming a topcoat and coating film therefrom
EP0193963B1 (en) Aqueous dispersion comprising fluorine-containing copolymer and article coated therewith
WO2001053006A1 (en) Method for coating substrate, coated article and coating apparatus
CN109983088A (en) Fluorocarbon polymer coating composition
JPH0125506B2 (en)
WO2022191273A1 (en) Coating composition, coating film, layered product, and coated article
JPH0116855B2 (en)
JPWO2003006565A1 (en) Fluorine-containing paint compositions, coatings and painted products
JP4943010B2 (en) Matte Paint Composition, Matte Paint, Matte Paint Kit and Painted Article
JP3975690B2 (en) Fluorine-containing paint material and coating method using the same
JP6354449B2 (en) Fluorine-containing copolymer, powder comprising fluorine-containing copolymer, fluorine-containing copolymer composition containing powder, and coated article
JP3128938B2 (en) Method for producing aqueous fluoropolymer dispersion
JPWO2017122700A1 (en) Aqueous dispersion, method for producing the same, water-based paint and coated article
JPS5829973B2 (en) wear resistant paint
JP2002172731A (en) Laminated body, coating method for article, and coated article
US11970628B2 (en) Fluororesin coating composition for forming a topcoat and coating film therefrom
WO2023171777A1 (en) Coating composition, coating film, layered coating film, and coated article
JP2001276705A (en) Method for coating base material, coated article and coating apparatus
JP2017039904A (en) Fluorine-containing copolymer aqueous fluid dispersion, fluorine-containing coating composition and coated article