JPH01167501A - Boiler device - Google Patents

Boiler device

Info

Publication number
JPH01167501A
JPH01167501A JP32497587A JP32497587A JPH01167501A JP H01167501 A JPH01167501 A JP H01167501A JP 32497587 A JP32497587 A JP 32497587A JP 32497587 A JP32497587 A JP 32497587A JP H01167501 A JPH01167501 A JP H01167501A
Authority
JP
Japan
Prior art keywords
water separator
gas
fluid
steam
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32497587A
Other languages
Japanese (ja)
Other versions
JP2610915B2 (en
Inventor
Kazuto Sakai
和人 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP32497587A priority Critical patent/JP2610915B2/en
Publication of JPH01167501A publication Critical patent/JPH01167501A/en
Application granted granted Critical
Publication of JP2610915B2 publication Critical patent/JP2610915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/02Steam boilers of forced-flow type of forced-circulation type
    • F22B29/023Steam boilers of forced-flow type of forced-circulation type without drums, i.e. without hot water storage in the boiler

Abstract

PURPOSE:To restrict a variation of a fluid enthalpy at an inlet of a gas-water separator by a method wherein a stopper valve is arranged in a main pipe passage over an over-heating thermal conducting part, and communication pipes communicating with the main pipe passage and the gas-water separator through a stopper valve at an outlet/inlet port are arranged at an upstream side and a downstream side of the stopper valve. CONSTITUTION:In case that there are a large amount of thermal absorption in an evaporating part (mainly, a furnace water pipe) during a circulating operation, a main pipe passage 20 and a gas-water separator 4 are connected by a first inlet communicating pipe 10 and a first outlet communicating pipe 11 arranged at an inlet port of a primary over-heater 5 (an over-heating thermal conducting part). In case that the amount of absorption of heat at the evaporating part is reduced due to a changing-over to a different type of fuel or an adhesion of ashes to a furnace thermal conducting surface and an enthalpy of fluid at an inlet port of the gas-water separator 4 is decreased, second inlet communicating pipe 14 and second outlet communicating pipe 15 arranged at an outlet port of the primary over- heater 5 are used and the gas-water separator 4 and the main pipe passage 20 are connected, and then the fluid is circulated from the main pipe passage 20 to the gas-water separator 4. In this case, the over-heater 5 may function as an evaporation heat conducting part, the amount of thermal absorption at the reduced evaporation part is accommodated and no reduction in the enthalpy of fluid at the inlet port of the gas-water separator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ装置に係り、特に気水分離器入口流体の
エンタルピを調整するのに好適なボイラ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boiler device, and particularly to a boiler device suitable for adjusting the enthalpy of fluid at the inlet of a steam-water separator.

〔従来の技術〕[Conventional technology]

中間負荷運用を行うボイラは、最低運用負荷を低く設計
する必要があるが、一般にボイラでは負荷が低くなるに
つれて管内流量が低下し、最も厳しい熱負荷にさらされ
る火炉木管では、管の冷却効果が不十分となって管壁温
度が上昇しゃすくなる。そこで高負荷では貫流運転を行
うが、ある−定の負荷(最低貫流負荷)以下では火炉木
管を流れる流量を一定(最低限の流量)に保持する循環
運転を行う、これを第3図を用いて説明する。
Boilers that operate at intermediate loads must be designed with a low minimum operating load, but in general, as the load decreases in boilers, the flow rate in the tubes decreases, and in the case of wood tubes in furnaces, which are exposed to the severest heat load, the cooling effect of the tubes decreases. This is insufficient and the temperature of the tube wall tends to rise. Therefore, at high loads, once-through operation is performed, but below a certain load (minimum once-through load), circulation operation is performed in which the flow rate flowing through the furnace wood is kept constant (minimum flow rate). I will explain.

循環運転時ボイラ給水は火炉木管2等の蒸発伝熱部で加
熱された後、気水分離器4にて蒸気と水に分離されて蒸
気は過熱器5〜7へ送られ、水は循環ポンプ9により節
炭器1の入口へ戻されて。
During circulation operation, the boiler feed water is heated in the evaporative heat transfer section such as the wood pipes 2 in the furnace, and then separated into steam and water in the steam separator 4. The steam is sent to the superheaters 5 to 7, and the water is sent to the circulation pump. 9 and returned to the entrance of the economizer 1.

火炉水管2に流れる流量を最低限の流量に保持するよう
運転される。
It is operated to maintain the flow rate flowing into the furnace water pipe 2 at the minimum flow rate.

この循環運転8貫流運転の切替え運転を円滑に行うため
には第2図に示すように最低貫流負荷において気水分離
器入口流体が飽和蒸気となるように伝熱面を配置してお
く必要がある。
In order to smoothly perform this switching operation between circulation operation 8 and once-through operation, it is necessary to arrange the heat transfer surface so that the fluid at the inlet of the steam-water separator becomes saturated steam at the lowest once-through load, as shown in Figure 2. be.

ところでボイラの伝熱面はこの気水分離器により蒸発部
と過熱部の2つに分けられるが、使用する燃料によって
両者の熱吸収割合が大きく変化する。例えばガスの場合
には過熱部の熱吸収量が多いが、油の場合には逆に蒸発
部の熱吸収量が多くなる。また1石炭の場合には火炉伝
熱面への灰の付着度合あるいは石炭銘柄毎の燃焼性の相
違によって過熱部、蒸発部の熱吸収割合は大きく変動す
る。
By the way, the heat transfer surface of the boiler is divided into two parts, an evaporation part and a superheating part, by this steam-water separator, and the heat absorption ratio of the two parts varies greatly depending on the fuel used. For example, in the case of gas, the amount of heat absorbed by the superheating section is large, but in the case of oil, the amount of heat absorbed by the evaporation section is conversely large. In addition, in the case of one coal, the heat absorption rate in the superheating section and the evaporation section varies greatly depending on the degree of adhesion of ash to the heat transfer surface of the furnace or the difference in combustibility between brands of coal.

このため第3図に示したような従来の流体経路構成にお
いては、上述したごとく異なる燃料を使用した場合、石
炭焚時で伝熱面の汚れ状態が変化した場合あるいは異な
る石炭銘柄を使用することにより燃焼性が変化した場合
に、気水分離器4の入口流体エンタルピが大幅に変動す
るため、循環運転と貫流運転との切替えが困難であると
いう問題があった。
Therefore, in the conventional fluid path configuration shown in Fig. 3, if different fuels are used as described above, if the contamination state of the heat transfer surface changes during coal burning, or if a different brand of coal is used. When the combustibility changes, the enthalpy of the inlet fluid of the steam/water separator 4 changes significantly, making it difficult to switch between circulation operation and once-through operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は気水分離器入口流体のエンタルピ変動に
対する配慮が不充分であったため、以下に述べる問題が
あった。
The above-mentioned conventional technology did not give sufficient consideration to the enthalpy fluctuation of the fluid at the inlet of the steam-water separator, and therefore had the following problems.

貫流運転時に、蒸発部での熱吸収量が多く、気水分離器
入口流体が過熱蒸気になるときは、気水分離器で水を分
離することができないので、貫流運転から循環運転に移
行できない、逆に蒸発部の熱吸収量が少なく、気水分離
器入口流体が湿り度の高い気水混合物の場合には1貫流
運転から循環運転へ8の移行はできるものの、移行時循
環ポンプを起動すると、気水分離器において水分が分離
され気水分離器出口流体が飽和蒸気になるため、過熱器
で加えられる熱が水分の蒸発に消費されずにそのまま蒸
気温度の上昇に使われ、ボイラ出口の蒸気温度が急上昇
するという問題があった。
During once-through operation, if the evaporator absorbs a large amount of heat and the fluid at the inlet of the steam-water separator becomes superheated steam, the water cannot be separated in the steam-water separator, making it impossible to shift from once-through operation to circulation operation. On the other hand, if the amount of heat absorbed by the evaporator is small and the fluid at the inlet of the steam-water separator is a steam-water mixture with high humidity, it is possible to transition from 1 once-through operation to circulation operation in step 8, but the circulation pump must not be started during the transition. Then, the water is separated in the steam separator and the fluid at the steam water separator outlet becomes saturated steam, so the heat added in the superheater is not consumed for evaporation of water, but is directly used to increase the steam temperature, and the fluid at the boiler outlet There was a problem that the steam temperature rose rapidly.

このため、蒸発部と過熱部での熱吸収比率が大きく異な
る複数の種類の燃料を使用する場合には、プラントの運
用性が制約されていた。
For this reason, the operability of the plant has been restricted when using multiple types of fuels with significantly different heat absorption ratios in the evaporation section and the superheating section.

本発明の課題は、蒸発部と過熱部の熱吸収比率が変動し
ても、気水分離器入口流体エンタルピの変動を抑制する
にある。
An object of the present invention is to suppress fluctuations in fluid enthalpy at the inlet of a steam/water separator even if the heat absorption ratio between the evaporating section and the superheating section varies.

〔問題点を解決するケめの手段〕[Measures to solve problems]

上記課題は、複数の過熱伝熱部を直列に接続する主管路
に過熱伝熱部を隔てて止め弁を設け、前記主管路と気水
分離器とを出入口止め弁を介して連通ずる連絡管を前記
止め弁それぞれの上流側と下流側に設けたボイラ装置に
より達成される。
The above problem is solved by providing a stop valve across the superheating heat transfer section in a main pipe connecting a plurality of superheating heat transfer parts in series, and connecting a connecting pipe that communicates the main pipe with the steam/water separator via an inlet/outlet stop valve. This is achieved by a boiler device provided upstream and downstream of each of the stop valves.

〔作用〕[Effect]

気水分離器と主管路の連絡管が、主管路の過熱伝熱部を
隔てた複数個所に設けられた止弁の上、下流側に設けら
れたので、複数の連絡管の中から1ffiの連絡管を選
択することにより気水分離器の上流側と下流側になる伝
熱面の比率が変更され、蒸発伝熱部と過熱伝熱部の熱吸
収率の変動による気水分離器入口流体のエンタルピ変動
が抑制される。
The connecting pipe between the steam separator and the main pipeline was installed downstream of the stop valves installed at multiple locations across the overheating heat transfer section of the main pipeline, so that 1ffi of the multiple connecting pipes By selecting the connecting pipe, the ratio of the heat transfer surfaces on the upstream and downstream sides of the steam separator is changed, and the heat absorption rate of the evaporation heat transfer section and superheating heat transfer section changes due to the change in the inlet fluid of the steam water separator. enthalpy fluctuations are suppressed.

〔実施例] 第1図に本発明の実施例であるボイラの流体経路を示す
0本実施例においては、流体経路上具なるふたつの場所
に、気水分離器と主管路とを連通する連絡管が設けられ
ている。
[Example] Figure 1 shows the fluid path of a boiler that is an example of the present invention. In this example, there are connections connecting the steam separator and the main pipe in two places, which are the fluid path upper fittings. A tube is provided.

節炭器1と、火炉水管2と、蒸発器3と、1次過熱器5
と、2次過熱器6と、3次過熱器7とはこの順序で主管
路20で接続されている。2次過熱器6と3次過熱器7
の間には過熱低減器8が設けられ、この過熱低減器8に
は節炭器1の入口において主管路20から分岐したスプ
レ水管21が接続されている。また、蒸発器3と1次過
熱器5の間、1次過熱器5と2次過熱器60間には、止
め弁18及び19が設けられ、止め弁18の上流側及び
下流側には、第1人口止め弁12及び第1出口止め弁1
3を介して主管路20と気水分離器4を連通する第1人
口連絡管10及び第1出口連絡管11が、止め弁19の
上流側及び下流側には、それぞれ第2人口止め弁16及
び第2出口止め弁17を介して主管路20と気水分離器
4を連通する第2人口連絡管14及び第2出口連絡管1
5が設けられている。気水分離器4と主管路20を結ぶ
循環路22には循環ポンプ9が設けられている。
Energy saver 1, furnace water pipe 2, evaporator 3, and primary superheater 5
, the secondary superheater 6, and the tertiary superheater 7 are connected in this order through a main pipe 20. Secondary superheater 6 and tertiary superheater 7
A desuperheater 8 is provided between the two, and a spray water pipe 21 branched from the main pipe 20 at the entrance of the economizer 1 is connected to the desuperheater 8. Further, stop valves 18 and 19 are provided between the evaporator 3 and the primary superheater 5 and between the primary superheater 5 and the secondary superheater 60, and on the upstream and downstream sides of the stop valve 18, First population stop valve 12 and first outlet stop valve 1
The first artificial communication pipe 10 and the first outlet communication pipe 11 that communicate the main pipe line 20 and the steam/water separator 4 via the second artificial stop valve 16 are provided on the upstream and downstream sides of the stop valve 19, respectively. and a second artificial communication pipe 14 and a second outlet communication pipe 1 that communicate the main pipe line 20 and the steam water separator 4 via the second outlet stop valve 17.
5 is provided. A circulation pump 9 is provided in a circulation path 22 that connects the steam separator 4 and the main pipe 20.

貫流運転時においては、給水は節炭器1、火炉水管2及
び蒸発器3にて加熱された後、止め弁18.19を通り
1次過熱器5,2次過熱器6.3次過熱器7にて過熱さ
れ、図示されていないタービンへ送られる。2次過熱器
6と3次過熱器7の間に設置された過熱低減器8は節炭
器1人口より取出した給水を適宜スプレ水として投入す
ることによりボイラ出口蒸気温度の変動を抑え規定温度
でタービンへ供給する機能を有する。
During once-through operation, the feed water is heated in the energy saver 1, the furnace water pipe 2, and the evaporator 3, and then passes through the stop valve 18, 19, and is transferred to the primary superheater 5, secondary superheater 6, and tertiary superheater. It is superheated at 7 and sent to a turbine (not shown). The desuperheater 8 installed between the secondary superheater 6 and the tertiary superheater 7 suppresses fluctuations in the steam temperature at the boiler outlet by appropriately injecting the feed water extracted from the energy saver 1 as spray water to maintain the specified temperature. It has the function of supplying water to the turbine.

循環運転時には止め弁18、又は止め弁19を全閉し、
入口連絡管10、又は14にて気水分離器4へ流体を送
り蒸気と水を分離させる1分離された蒸気は出口連絡管
11、又は15にて過熱器へ送られる。一方分離された
水は循環ポンプ9にて昇圧された後、節炭器1人口へ戻
され、火炉木管への給水流量を最低限の流量に保つ機能
を有する。
During circulation operation, the stop valve 18 or 19 is fully closed,
Fluid is sent to the steam-water separator 4 through the inlet connecting pipe 10 or 14 to separate steam and water.The separated steam is sent to the superheater through the outlet connecting pipe 11 or 15. On the other hand, the separated water is pressurized by the circulation pump 9 and then returned to the economizer 1, which has the function of keeping the flow rate of water supplied to the wood pipes of the furnace at the minimum flow rate.

なお、1次過熱器5人口にて気水分離器4人口流体を取
出す場合には止め弁18、第2人口止め弁16、第2出
口止め弁17を全開として流体経路を構成する。逆に1
次過熱器5出口にて流体を取出す場合には止め弁19、
第1人口止め弁12、第1出口止め弁13を全閉とし流
体経路を構成させる。
In addition, when extracting artificial fluid from the steam/water separator 4 at the primary superheater 5, the fluid path is configured by fully opening the stop valve 18, the second exit stop valve 16, and the second outlet stop valve 17. On the contrary, 1
When taking out the fluid at the outlet of the next superheater 5, a stop valve 19;
The first stop valve 12 and the first outlet stop valve 13 are fully closed to form a fluid path.

循環運転時、蒸発部(主として火炉水管)の熱吸収量が
多い場合には1次過熱器5人口側に設けられた第1人口
、第1出口連絡管にて主管路20と気水分離器とを結ぶ
、この場合1次過熱器は本来の機能通り過熱伝熱部とし
て機能する。異種燃料への切替え、あるいは火炉伝熱面
゛への灰の付着等により蒸発部の熱吸収量が減少し、気
水分離器入口流体のエンタルピが低下した場合には1次
過熱器5の出口側に設置された第2人ロ出ロ連絡管14
.15を使用して気水分離器と主管路20を結んで主管
路から気水分離器へ流体を循環させる。
During circulation operation, if the amount of heat absorbed by the evaporator section (mainly the furnace water pipe) is large, the main pipe 20 and the steam-water separator are connected to the main pipe 20 and the first outlet connecting pipe provided on the primary superheater 5 side. In this case, the primary superheater functions as a superheating heat transfer section as per its original function. If the amount of heat absorption in the evaporator section decreases due to switching to a different type of fuel or adhesion of ash to the heat transfer surface of the furnace, and the enthalpy of the fluid at the inlet of the steam-water separator decreases, the outlet of the primary superheater 5 2nd person outlet connecting pipe 14 installed on the side
.. 15 is used to connect the steam separator and the main line 20 to circulate fluid from the main line to the steam separator.

この場合、1次過熱器5は蒸発伝熱部として機能するこ
とになるため、減少した蒸発部の熱吸収量が補われ、気
水分離器入口流体エンタルピの低下が防止される。
In this case, since the primary superheater 5 functions as an evaporative heat transfer section, the decreased heat absorption amount of the evaporator section is compensated for, and a decrease in the fluid enthalpy at the inlet of the steam/water separator is prevented.

すなわち本実施例の場合、−次過熱器に本来の過熱伝熱
部、あるいは蒸発伝熱部の2つの機能を持たせ、ボイラ
蒸発部(主として火炉水管)の熱吸収量の増減に応じて
任意に切替え可能とすることにより、気水分離器入口流
体エンタルピの変動を抑制するものである。
In other words, in the case of this embodiment, the -order superheater has two functions as an original superheating heat transfer section and an evaporation heat transfer section, and can be used as an arbitrary function depending on the increase or decrease in the heat absorption amount of the boiler evaporation section (mainly the furnace water tube). By making the switch possible, fluctuations in the fluid enthalpy at the inlet of the steam/water separator can be suppressed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、気水分離器へ導入する気水混合流体の
主管路からの取出口が複数個所に設けられたので、蒸発
伝熱部として機能する伝熱部の範囲を変化させて蒸発伝
熱部の熱吸収量変動に伴う気水分離器入口流体のエンタ
ルピの変動を抑制することが可能となり、ボイラの運用
性に制約をうけることなく異種燃料、例えば重油とガス
、伝熱面への付着特性の異なる銘柄の石灰、を燃焼でき
る効果がある。
According to the present invention, since the outlet from the main pipe for the steam/water mixed fluid to be introduced into the steam/water separator is provided at a plurality of locations, the range of the heat transfer section that functions as the evaporation heat transfer section can be changed to allow evaporation. It is now possible to suppress fluctuations in the enthalpy of the fluid at the inlet of the steam-water separator due to fluctuations in the amount of heat absorbed by the heat transfer section, allowing the use of different types of fuels, such as heavy oil and gas, on the heat transfer surface without restricting the operability of the boiler. It is effective in burning lime of different brands with different adhesion characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す系統図であり、第2図は
ボイラの熱吸収特性の一例を示す圧力−エンタルピ線図
であり、第3図は、従来のボイラの例を示す系統図であ
る。 4・・・気水分離器。 5・・・過熱伝熱部(1次過熱器)。 6・・・過熱伝熱部(2次過熱器)、 7・・・過熱伝熱部(3次過熱器)、 10.11・・・連絡管(第1人口、出口連絡管)。 12.13・・・出入口止め弁(第1人口、出口止め弁
)、14.15・・・連絡管(第2人口、出口連絡管)
、16.17・・・出入口止め弁(第2人口、出口止め
弁)、18.19・・・止め弁、 20・・・土管路。
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a pressure-enthalpy diagram showing an example of heat absorption characteristics of a boiler, and Fig. 3 is a system diagram showing an example of a conventional boiler. It is a diagram. 4...Steam water separator. 5... Superheating heat transfer section (primary superheater). 6... Superheating heat transfer section (secondary superheater), 7... Superheating heat transfer section (tertiary superheater), 10.11... Communication pipe (first population, outlet communication pipe). 12.13... Inlet/outlet stop valve (first port, outlet stop valve), 14.15... Connecting pipe (second port, outlet connecting pipe)
, 16.17... Entrance/exit stop valve (second population, exit stop valve), 18.19... Stop valve, 20... Earthen pipe.

Claims (1)

【特許請求の範囲】[Claims] (1)複数の過熱伝熱部を直列に接続する主管路に過熱
伝熱部を隔てて止め弁を設け、前記主管路と気水分離器
とを出入口止め弁を介して連通する連絡管を前記止め弁
それぞれの上流側と下流側に設けたボイラ装置。
(1) A stop valve is provided in a main pipe connecting a plurality of superheating heat transfer parts in series across the superheating heat transfer part, and a connecting pipe is provided that communicates the main pipe with the steam/water separator via the inlet/outlet stop valve. A boiler device provided on the upstream side and downstream side of each of the stop valves.
JP32497587A 1987-12-22 1987-12-22 Boiler equipment Expired - Fee Related JP2610915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32497587A JP2610915B2 (en) 1987-12-22 1987-12-22 Boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32497587A JP2610915B2 (en) 1987-12-22 1987-12-22 Boiler equipment

Publications (2)

Publication Number Publication Date
JPH01167501A true JPH01167501A (en) 1989-07-03
JP2610915B2 JP2610915B2 (en) 1997-05-14

Family

ID=18171720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32497587A Expired - Fee Related JP2610915B2 (en) 1987-12-22 1987-12-22 Boiler equipment

Country Status (1)

Country Link
JP (1) JP2610915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0663561A1 (en) * 1994-01-14 1995-07-19 ABB Management AG Steam generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0663561A1 (en) * 1994-01-14 1995-07-19 ABB Management AG Steam generator
US5568793A (en) * 1994-01-14 1996-10-29 Abb Management Ag Steam generator
CH688837A5 (en) * 1994-01-14 1998-04-15 Asea Brown Boveri Steam generator.

Also Published As

Publication number Publication date
JP2610915B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JP4540719B2 (en) Waste heat boiler
US6189491B1 (en) Steam generator
US4869210A (en) Method of operating a once-through steam generator
JP3032005B2 (en) Gas / steam turbine combined facility
US5950574A (en) Boiler
US6460490B1 (en) Flow control system for a forced recirculation boiler
KR100367920B1 (en) A control scheme for large circulating fluid bed steam generators(cfb)
RU2217654C2 (en) Parallel-current steam generator operating on fossil fuel
US4632064A (en) Boiler
CS33090A3 (en) Steam generator and method of its intermediate superheater temperature control
JP2012502250A (en) Once-through boiler
KR840000583B1 (en) Vapour generator with a partition between two combustion chambers
JPH01167501A (en) Boiler device
KR0167633B1 (en) Economizer system for vapor generation apparatus
US5398644A (en) Temperature measurement at evaporator outlet
US3508526A (en) Flow-through steam generator
US3364904A (en) Vapour generator for ship propulsion unit
RU2099542C1 (en) Steam power plant and method of control of same
JP4077974B2 (en) Fluidized bed heat exchanger
Kumar et al. Effect of Parameters in Once-Through Boiler for Controlling Reheat Steam Temperature in Supercritical Power Plants
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
JPH1194204A (en) Boiler
US3261332A (en) Vapor generator vapor temperature control
JPH0688605A (en) Controlling device for temperature of steam in boiler
SU1583713A1 (en) Drum-type boiler

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees