JPH01166750A - Nuclear magnetic resonance image diagnostic apparatus for angiography - Google Patents

Nuclear magnetic resonance image diagnostic apparatus for angiography

Info

Publication number
JPH01166750A
JPH01166750A JP62324022A JP32402287A JPH01166750A JP H01166750 A JPH01166750 A JP H01166750A JP 62324022 A JP62324022 A JP 62324022A JP 32402287 A JP32402287 A JP 32402287A JP H01166750 A JPH01166750 A JP H01166750A
Authority
JP
Japan
Prior art keywords
blood vessel
slice
images
slices
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324022A
Other languages
Japanese (ja)
Inventor
Kazuo Chitoku
千徳 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62324022A priority Critical patent/JPH01166750A/en
Publication of JPH01166750A publication Critical patent/JPH01166750A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance resolving power, by dividing the thickness of a slice into a plurality of thicknesses to calculate the angiograms of respective slices and adding said images to obtain a final angiogram of a angiographic range. CONSTITUTION:With respect to a region desired to be imaged, especially, to a thickness direction, the thickness of each of slices and the number of the slices are set to perform imaging in the same way as a multistylus. Angiograms at every slices are obtained by the 'Subfraction' between images. As a method for adding the obtained angiograms at every slices, a method (A) for simply adding said images and a method (B) for adding the same at every regions carrying angiogram at every slices are used. Especially, in the method (B), no division is performed with respect to a Y-axis and the images are partially added with respect to an X-axis. Since a thickness direction is divided, the signal data in the thickness direction is reduced in partial volume effect by the reduction quantity of the slice thickness and the signal data of the angiograms can be effectively reflected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核磁気共鳴画像診断装置に係り、特に血管描
画に好適な撮影、画像構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a nuclear magnetic resonance imaging diagnostic apparatus, and particularly to imaging and image configuration suitable for drawing blood vessels.

〔従来の技術〕[Conventional technology]

核磁気共鳴画像診断装置による血管描画については、X
線による血管造影に準じ、血管描出範囲のスライス厚さ
を30〜100Iに設定することが多い、この様に、ス
ライス厚さが厚くなるとパーシャルボリウム効果により
、画像の解像度(特に深さ方向の解像度)が低下する。
For blood vessel drawing using nuclear magnetic resonance imaging equipment, please refer to
Similar to line angiography, the slice thickness of the blood vessel depiction range is often set to 30 to 100I.As the slice thickness becomes thicker, the partial volume effect causes the image resolution (especially the resolution in the depth direction) to increase. ) decreases.

血管の形態を診断する上でマイナスである。This is a disadvantage in diagnosing blood vessel morphology.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、スライス厚さの点で、パーシャルボリ
ウム効果について配慮されておらず、血管描出の際の解
像度の低下の問題があった。
The above-mentioned conventional technology does not take into account the partial volume effect in terms of slice thickness, and there is a problem in that the resolution decreases when depicting blood vessels.

本発明の目的は、このパーシャルボリウム効果による解
像度の低下を防止することにある。
An object of the present invention is to prevent resolution degradation due to this partial volume effect.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、血管描出範囲の厚さ方向(スライス厚さ)
を複数に分割し、マルチスライスと同じ手法により、そ
れぞれ分割撮影された画像を基にして得られた血管描画
像を加え合せて、最終的に血管描画範囲にわたる厚さの
血管描画を構築することができる。
The above purpose is to measure the thickness direction (slice thickness) of the blood vessel visualization range.
Divide the image into multiple parts, and use the same method as multi-slice to add the blood vessel images obtained based on each divided image to finally construct a blood vessel drawing with a thickness that covers the blood vessel drawing range. Can be done.

〔作用〕[Effect]

血管の走行は単純でなく、したがって、5ミリ。 The course of blood vessels is not simple, therefore, 5 mm.

10ミリの単一なスライス面内ではカバーし切れないた
め、30〜100ミリと言う厚いスライス面が使用され
る。一般に、−平面(スライス面)の画像を構成するマ
トリクスは256X256マトリクスが使用されるため
、1ピクセルの大きさは1ミリ位になり、かなりの分解
能を有することになる。しかし、スライス厚さ方向につ
いては3o〜100ミリとすると、平面の30〜100
倍の値となり、分解能は1/30〜1/100に低下す
る。これを仮に、一般撮影のスライス厚さ10ミリと比
較すると、173〜1/10に低下する6 いま、30ミリの厚さの撮影に対し、スライス厚さを1
0ミリの3枚によって撮影し、それぞれの画像3枚を合
せる方法で、30ミリ厚さの画像を構築するとすれば、
30ミリ−枚撮影のものに比較して、分解能を3倍向上
させることが出来る。
Since it cannot be covered completely within a single slice plane of 10 mm, a thick slice plane of 30 to 100 mm is used. Generally, a 256×256 matrix is used to form an image of the - plane (slice plane), so the size of one pixel is about 1 mm, which means that it has a considerable resolution. However, if the slice thickness direction is 3o~100mm, then 30~100mm of the plane
The value is doubled, and the resolution is reduced to 1/30 to 1/100. If we compare this with the slice thickness of 10 mm for general radiography, it will be reduced to 173 to 1/10.
If you take three images of 0mm and combine the three images to create a 30mm thick image, then
The resolution can be improved three times compared to the one that takes 30mm images.

また、血管描画の信号情報もパーシャルボリウム効果を
軽減できる効果をもっている。
Furthermore, signal information for drawing blood vessels also has the effect of reducing the partial volume effect.

〔実施例〕〔Example〕

第5図に本発明に用いられる核磁気共鳴画像診断装置の
構成を示す。図から分るように標準的な構成のものであ
る。
FIG. 5 shows the configuration of a nuclear magnetic resonance imaging diagnostic apparatus used in the present invention. As you can see from the figure, it has a standard configuration.

以下、本発明の一実施例を第1図、第2図、第3図、お
よび第4図によって説明する。まず、撮影しようと思う
領域、特に厚さ方向について、スライス厚さと枚数を設
定し、マルチスライスと同じ様に撮影する。パルスシー
ケンスとしては一般にS R(Saturation 
Recovery)法が用いられる。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4. First, set the slice thickness and number of slices for the area you want to photograph, especially in the thickness direction, and photograph in the same way as multi-slice. The pulse sequence is generally S R (Saturation
Recovery method is used.

また、撮影のタイミングはECG (心電図)のR波の
立上りに同期して第1スライスの拡張期の信号を取り込
む。(Gate delay 1)。つゾいて、R波か
ら100〜200m5ec遅らして、第1スライスの収
縮期の信号を取込む(Gate delay2)。さら
に、同様に、第2スライス面について拡張期と収縮期の
信号を取込む。以上のようにして得られた各スライス毎
の拡張期、収縮期の信号を256プロジエクシヨン分取
込み、画像を構成する。
Furthermore, the imaging timing is synchronized with the rising edge of the R wave of an ECG (electrocardiogram), and the diastolic signal of the first slice is captured. (Gate delay 1). Then, the systolic signal of the first slice is acquired with a delay of 100 to 200 m5ec from the R wave (Gate delay 2). Furthermore, diastolic and systolic signals are similarly captured for the second slice plane. The diastolic and systolic signals of each slice obtained as described above are captured for 256 projections to form an image.

このようにして得られた各スライス毎の拡張期と収縮期
の画像は、第2図に示すように、画像間で5ubfra
ctionとすることで各スライス毎の血管描画が得ら
れる。かくして得られた各スライス毎の血管描画を加え
合せる方法として、第4図に示すように、単純に加え合
せる(A)の方法と、各スライス毎に血管が描画されて
いる領域毎に加え合せる(B)の方法とが用いられる。
The diastolic and systolic images for each slice obtained in this way are separated by 5 ubfra between images, as shown in Figure 2.
By setting it as ction, a blood vessel drawing for each slice can be obtained. As shown in Fig. 4, there are two methods for adding together the blood vessel drawings for each slice obtained in this way: a simple addition method (A), and a method for adding each region in which blood vessels are drawn for each slice. Method (B) is used.

特に(B)の方法は第4図で分るように、Y軸について
は分割せず、X軸について部分的に加え合せるものであ
る。第4図の例では、第1スライス面はX軸の1〜10
0マトリツクスまで、第2スライス面は90〜190マ
トリツクス、第3スライス面は180〜256マトリツ
クスについて加え合せた様子を示した。
In particular, method (B), as shown in FIG. 4, does not divide the Y-axis, but adds parts of the X-axis. In the example in Figure 4, the first slice plane is 1 to 10 on the X axis.
The figure shows how 90 to 190 matrices are added on the second slice plane, and 180 to 256 matrices are added on the third slice plane up to 0 matrix.

以上で分るように、厚さ方向を分割するので、厚さ方向
の信号情報はスライス厚さを薄くした分、パーシャルボ
リウム効果が軽減され、血管描画の信号情報を有効に反
映させることが出来る。
As you can see above, since it is divided in the thickness direction, the partial volume effect is reduced as the slice thickness is reduced, and the signal information in the blood vessel drawing can be effectively reflected in the signal information in the thickness direction. .

例えば、血管の太さが、3ミリで、スライス厚さ30ミ
リの撮影に対し、10ミリスライスの3枚について血管
描画の信号情報の有効さを見ると次のように評価できる
For example, when the thickness of a blood vessel is 3 mm and the slice thickness is 30 mm, the effectiveness of signal information for blood vessel drawing for three 10 mm slices can be evaluated as follows.

30ミリスライスで撮影の場合(収縮期と拡張期の血管
描画の信号情報を、それぞれ0.9゜0.1と仮定し、
筋肉などの信号情報は0.5  と仮定すると、 収縮期(3X0.9) / ((3X0.9)+(27
+0.5)) =0.167拡張期(3XO,1) /
 ((3xo、t)+(27+0.5)) =0.02
2収縮期と拡張期の差は、0.167−0.022=0
.145となる。一方、10ミリスライス3枚の場合は
、収縮期(3X0.9) / ((3X0.9)+(7
+0.5)) =0.435拡張期(3X0.1) /
 ((3X0.1)+(7+0.5)) =0.079
収縮期と拡張期の差は、0.435−0.079 = 
0.356となる。
In the case of imaging with 30 mm slices (assuming that the signal information for blood vessel drawing in systole and diastole is 0.9° and 0.1, respectively,
Assuming that the signal information of muscles etc. is 0.5, the contraction period (3X0.9) / ((3X0.9) + (27
+0.5)) =0.167 diastole (3XO,1) /
((3xo,t)+(27+0.5)) =0.02
2 The difference between systole and diastole is 0.167-0.022=0
.. It becomes 145. On the other hand, in the case of three 10 mm slices, the systolic period (3X0.9) / ((3X0.9) + (7
+0.5)) =0.435 diastole (3X0.1) /
((3X0.1)+(7+0.5)) =0.079
The difference between systole and diastole is 0.435-0.079 =
It becomes 0.356.

30ミリスライス1枚と、1oミリスライス3枚とを比
較すると、 0.35610.145=2.46 すなわち、血管描画の信号情報として、本考案の方が優
れていることが分る。
Comparing one 30 mm slice and three 10 mm slices, 0.35610.145=2.46 That is, it can be seen that the present invention is superior as signal information for drawing blood vessels.

なお、血管描画には、実施例でも示した方法(ECG同
期サブトラクション法、すなわち、血流の早い時と、遅
い時との画像間のサブトラクション)の外に、位相不感
パルスシーケンスと、位相有感パルスシーケンスとの画
像間のサブトラクション法もある。本発明は、いづれの
方法にも適用できるものである。
In addition to the method shown in the example (ECG synchronized subtraction method, i.e., subtraction between images when blood flow is fast and slow), blood vessel drawings can be performed using a phase-insensitive pulse sequence and a phase-sensitive method. There are also subtraction methods between images with pulse sequences. The present invention can be applied to either method.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スライス厚さ方向を分割し。 According to the present invention, the slice is divided in the thickness direction.

それぞれの血管描画を作り、それらを合成して、本来の
血管描画を得るので、パーシャルボリウム効果を軽減で
きるため、血管描画情報を有効に反映させる効果がある
。たとえば、血管の太さを3ミリとし、スライス厚さ3
0ミリに対して10ミリ3枚による血管描画情報は約2
.4倍向上する。
Since each blood vessel drawing is created and combined to obtain the original blood vessel drawing, the partial volume effect can be reduced, which has the effect of effectively reflecting the blood vessel drawing information. For example, if the thickness of the blood vessel is 3 mm, the slice thickness is 3 mm.
Blood vessel drawing information with three 10mm sheets is approximately 2 for 0mm.
.. Improved by 4 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の撮影パルスシーケンス図、
第2図は第1図のパルスシーケンスによって得られた画
像とその画像からの血管描画の合成方法を示す図、第3
図は大伏在静脈と撮影部位を示す図、第4図は分割撮影
した画像を合成する方法を示す図、第5図はMRIの構
成を示す図である。 1・・・右下腿の大伏在静脈、2・・・撮影部位とスラ
イス位置、3・・・静磁場、4・・・傾斜磁場コイル、
5・・・RF照射コイル、6・・・RF受信コイル、7
・・・患者為 10 篤 4図
FIG. 1 is an imaging pulse sequence diagram of an embodiment of the present invention.
Figure 2 is a diagram showing the image obtained by the pulse sequence in Figure 1 and a method of synthesizing blood vessel drawing from that image.
The figure shows the great saphenous vein and the imaging site, FIG. 4 shows a method of compositing divided images, and FIG. 5 shows the configuration of MRI. 1... Great saphenous vein of the right lower leg, 2... Imaging site and slice position, 3... Static magnetic field, 4... Gradient magnetic field coil,
5... RF irradiation coil, 6... RF receiving coil, 7
...For patients 10 Atsushi Figure 4

Claims (1)

【特許請求の範囲】 1、静磁場、傾斜磁場(X、Y、Z軸用)、RF送受信
コイル、画像処理ユニット、操作卓、および患者テーブ
ルとから構成される核磁気共鳴画像診断装置において、
血管描出画像を撮影する場合、スライス厚さを複数に分
割し、それぞれのスライスの血管描画像を求め、これら
の血管描画像を加え合せて、最終的に血管描画範囲の血
管像を得ることを特徴とする血管描画用核磁気共鳴画像
診断装置。 2、特許請求の範囲第1項において、各スライスの血管
描画像を加え合せる方法として、各スライス面で血管の
描出している部分を選択し、加え合せることを特徴とす
る血管描画用核磁気共鳴画像診断装置。
[Claims] 1. A nuclear magnetic resonance imaging diagnostic apparatus comprising a static magnetic field, a gradient magnetic field (for X, Y, and Z axes), an RF transmitting/receiving coil, an image processing unit, an operation console, and a patient table,
When capturing a blood vessel depiction image, the slice thickness is divided into multiple slices, a blood vessel depiction image of each slice is obtained, and these blood vessel depiction images are added together to finally obtain a blood vessel image of the blood vessel depiction range. Features: Nuclear magnetic resonance imaging system for drawing blood vessels. 2. Nuclear magnetism for blood vessel drawing according to claim 1, characterized in that, as a method for adding blood vessel drawing images of each slice, a portion where a blood vessel is drawn on each slice plane is selected and added. Resonance imaging diagnostic equipment.
JP62324022A 1987-12-23 1987-12-23 Nuclear magnetic resonance image diagnostic apparatus for angiography Pending JPH01166750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324022A JPH01166750A (en) 1987-12-23 1987-12-23 Nuclear magnetic resonance image diagnostic apparatus for angiography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324022A JPH01166750A (en) 1987-12-23 1987-12-23 Nuclear magnetic resonance image diagnostic apparatus for angiography

Publications (1)

Publication Number Publication Date
JPH01166750A true JPH01166750A (en) 1989-06-30

Family

ID=18161273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324022A Pending JPH01166750A (en) 1987-12-23 1987-12-23 Nuclear magnetic resonance image diagnostic apparatus for angiography

Country Status (1)

Country Link
JP (1) JPH01166750A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201246A (en) * 1988-02-05 1989-08-14 Hitachi Ltd Nuclear magnetic resonance imaging device
JP2001178699A (en) * 1999-12-24 2001-07-03 Ge Yokogawa Medical Systems Ltd Magnetic resonance imaging instrument and recording medium
JP2007144144A (en) * 2005-10-31 2007-06-14 Toshiba Corp Magnetic resonance imaging device and imaging method in magnetic resonance imaging device
US7656155B2 (en) 2005-10-31 2010-02-02 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and imaging method in the same
JP2010240468A (en) * 2010-07-16 2010-10-28 Toshiba Corp Mri apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201246A (en) * 1988-02-05 1989-08-14 Hitachi Ltd Nuclear magnetic resonance imaging device
JP2001178699A (en) * 1999-12-24 2001-07-03 Ge Yokogawa Medical Systems Ltd Magnetic resonance imaging instrument and recording medium
JP2007144144A (en) * 2005-10-31 2007-06-14 Toshiba Corp Magnetic resonance imaging device and imaging method in magnetic resonance imaging device
US7656155B2 (en) 2005-10-31 2010-02-02 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and imaging method in the same
JP2010240468A (en) * 2010-07-16 2010-10-28 Toshiba Corp Mri apparatus

Similar Documents

Publication Publication Date Title
Mistretta et al. 3D time‐resolved contrast‐enhanced MR DSA: advantages and tradeoffs
JP2646663B2 (en) Moving body imaging method and apparatus
Wigström et al. Temporally resolved 3D phase‐contrast imaging
JP3742114B2 (en) Gated and time-resolved contrast-amplified 3D MR angiography
US20130066211A1 (en) Systems and methods for composite myocardial elastography
JP2000048185A (en) Method for obtaining high quality image of desired structure, and system displaying the image
Stern et al. Noninvasive assessment of coarctation of the aorta: comparative measurements by two-dimensional echocardiography, magnetic resonance, and angiography
JP2005185853A (en) Gated and time-resolved contrast-amplified 3d mr angiography
Botnar et al. Free‐breathing 3D coronary MRA: the impact of “isotropic” image resolution
US10152799B2 (en) Registering first image data of a first stream with second image data of a second stream
JPH02234747A (en) Synchronous picture photographing device
CN104814737B (en) MR imaging apparatus and MR imaging method
US8200311B2 (en) Cardiac motion artifact suppression using ECG ordering
WO1996031156A1 (en) Velocity adaptive filtered angiography
JP2005202675A (en) Image processor, image processing method, program, storage medium, and image processing system
JPH01166750A (en) Nuclear magnetic resonance image diagnostic apparatus for angiography
JPH08126634A (en) Image display of three-dimensional (stereoscopic) or four-dimensional (three dimensions having time axis) data in stereoscopic imaging centering around blood vessel angiography utilizing x-rays
JPH024333A (en) Nuclear magnetic resonance image diagnosing method
Nieman et al. Three‐Dimensional Coronary Anatomy in Contrast‐Enhanced Multislice Computed Tomography
JP4451528B2 (en) Magnetic resonance imaging device
US20200337663A1 (en) Medical imaging system and method for operating same, storage medium and processor
US20060173276A1 (en) Contrast-enhanced moving table mr arteriography with stochastic sampling of central k-space
KR100375922B1 (en) Method for removing artifact at implementing image of MRA
JPH0471080A (en) Method and device for processing image
JPS62167540A (en) X-ray image processing apparatus