JPH01166299A - Two-wire differential pressure transmitter - Google Patents

Two-wire differential pressure transmitter

Info

Publication number
JPH01166299A
JPH01166299A JP32408387A JP32408387A JPH01166299A JP H01166299 A JPH01166299 A JP H01166299A JP 32408387 A JP32408387 A JP 32408387A JP 32408387 A JP32408387 A JP 32408387A JP H01166299 A JPH01166299 A JP H01166299A
Authority
JP
Japan
Prior art keywords
differential pressure
transmitter
valves
microcomputer
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32408387A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamoto
伸一 坂本
Junichi Makino
牧野 淳一
Yasushi Shimizu
康司 清水
Yukio Ito
幸男 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Instruments Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Instruments Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Instruments Engineering Co Ltd
Priority to JP32408387A priority Critical patent/JPH01166299A/en
Publication of JPH01166299A publication Critical patent/JPH01166299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)

Abstract

PURPOSE:To easily reduce expense and to easily hold the measuring accuracy of a transmitter by executing a zero point calibration under a state in which a differential pressure transmitter is fitted to a plant. CONSTITUTION:Valves 2-4 are provided between a digital differential pressure transmitter 5 and a process line 1. These valves are connected so that they can open and close by a microcomputer, the valves 2-4 are controlled from the microcomputer so that all of them can close, and a pressure sensor at this time is read. The microcomputer makes a multiplexer MPX into a differential pressure sensor input mode after closing a signal to close the valves 2-4. After that, the microcomputer takes the signal of a differential pressure sensor in itself. The taken-in value is written in an EEPROM. After the writing, the valves 2-4 are opened. The correction of the differential pressure sensor can be obtained by a prescribed calculating direction from the zero point value written in the EEPROM. Thus, the zero point calibration of the differential pressure sensor can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディジタル式差圧伝送器の校正方法に係わり、
特に従来の伝送器の入力端に設けられた3つのバルブを
ディジタル式差圧伝送器で制御することにより、伝送器
をプロセスのラインから外さずに高精度の校正をするの
に、好適なディジタル伝送器に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for calibrating a digital differential pressure transmitter,
In particular, by controlling the three valves installed at the input end of a conventional transmitter with a digital differential pressure transmitter, a digital differential pressure transmitter is suitable for performing high-precision calibration without removing the transmitter from the process line. Regarding transmitters.

〔従来の技術〕[Conventional technology]

従来の差圧伝送器に於ける校正はプラントから差圧伝送
器をはずして校正装置があるところまで差圧伝送器を運
び、校正を行っており、プラントの運転停止に行うか、
プラントを停止させて行ういなければならず、多大な労
力を要していた。
Conventional calibration of differential pressure transmitters involves removing the differential pressure transmitter from the plant and transporting it to the location where the calibration equipment is located.
This had to be done with the plant stopped, which required a great deal of effort.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来の差圧伝送器においてプラントから外して
行っていた、校正のうち零点校正を差圧伝送器をプラン
トに装着した状態で行えるようにし1校正に要していた
費用の削減及び差圧伝送器の精度向上を図る方法を提供
することにある6〔問題点を解決するための手段〕 上記目的は、マイクロコンピュータを内蔵したディジタ
ル差圧伝送器に差圧伝送器に入力される圧力を制御する
3つのバルブをディジタル差圧伝送器で制御可能とし、
その3つのバルブをマイクロコンピュータで0N10F
FL、、そのときの各センサの信号を測定することより
差圧伝送器の零点を校正する。バルブは電気信号でON
10FFできる電子制御バルブを使用し、マイクロコン
ピュータには電子制御のバルブの制御信号出力端子を設
ける。3つのバルブは差圧伝送器の2つの圧力端間を接
続する第1のバルブ、各圧力入力に第2、第3のバルブ
が直列に接続される構成である。
The present invention makes it possible to perform zero point calibration with the differential pressure transmitter installed in the plant, which was performed by removing it from the plant in conventional differential pressure transmitters, thereby reducing the cost required for one calibration and the difference The purpose of the above is to provide a method for improving the accuracy of a pressure transmitter. 6 [Means for solving the problem] The above purpose is to provide a method for improving the accuracy of a pressure transmitter. The three valves that control the can be controlled with a digital differential pressure transmitter,
The three valves are controlled by a microcomputer to 0N10F.
FL, calibrate the zero point of the differential pressure transmitter by measuring the signals of each sensor at that time. Valve is turned on by electric signal
An electronically controlled valve capable of 10FF is used, and the microcomputer is provided with a control signal output terminal for the electronically controlled valve. The three valves are a first valve that connects two pressure ends of the differential pressure transmitter, and a second and third valve that are connected in series to each pressure input.

〔作用〕[Effect]

マイクロコンピュータを内蔵したディジタル差圧伝送器
で上記第2、第3のバルブを閉じ、その後筒1のバルブ
を閉じると差圧センサに加わる差圧は零となり、そのと
きの差圧センサの値を測定することに差圧センサのオフ
セット量が測定できる。そのオフセット量を工場で測定
した値と比較し、その後の差圧データを2線式で送信す
る時の演算処理の方法に反映させ、差圧伝送器の計測精
度向上が図れる。また、差圧伝送器においてプラントか
ら外して行っていた、校正のうち零点校正を差圧伝送器
をプラントに装着した状態で行えるようにし、校正に要
していた費用の削減が図れる。
When the second and third valves are closed using a digital differential pressure transmitter with a built-in microcomputer, and then the valve of cylinder 1 is closed, the differential pressure applied to the differential pressure sensor becomes zero, and the value of the differential pressure sensor at that time is calculated. The amount of offset of the differential pressure sensor can be measured. The offset amount is compared with the value measured at the factory, and is reflected in the arithmetic processing method used when transmitting subsequent differential pressure data using a two-wire system, thereby improving the measurement accuracy of the differential pressure transmitter. In addition, the zero point calibration of the differential pressure transmitter, which was previously performed when the differential pressure transmitter was removed from the plant, can be performed with the differential pressure transmitter installed in the plant, thereby reducing the cost required for calibration.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。第1
図は本発明を採用したディジタル差圧伝送器をプロセス
に装着した状態を表した図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a state in which a digital differential pressure transmitter employing the present invention is installed in a process.

プロセスの圧力を差圧伝送器に導く配管の途中に3つの
バルブをおく、第1のバルブは2つの配管をつなぐよう
に、また第2、第3のバルブは伝送器とライン間に装着
する。ディジタル差圧伝送器は、2線で受信装置と接続
し、差圧の計測データを受信装置からの供給される電流
を4〜20mAに制御することで伝送する。6のコミュ
ニケータは受診装置と並列に接続し、ディジタル差圧伝
送器と通信を行い伝送器の診断、校正、使用圧力レンジ
の変更等を行う。3つのバルブは、ディジタル差圧伝送
器からオン、オフ制御ができるように接続されている。
Three valves are placed in the middle of the piping that leads the process pressure to the differential pressure transmitter.The first valve connects the two piping, and the second and third valves are installed between the transmitter and the line. . The digital differential pressure transmitter is connected to a receiving device through two wires, and transmits differential pressure measurement data by controlling the current supplied from the receiving device to 4 to 20 mA. The communicator 6 is connected in parallel with the examination device and communicates with the digital differential pressure transmitter to diagnose, calibrate, change the operating pressure range, etc. of the transmitter. The three valves are connected so that they can be controlled on and off by a digital differential pressure transmitter.

第2図にディジタル差圧伝送器の構成を、第3図に伝送
器の動作を示すフローを示す。
FIG. 2 shows the configuration of the digital differential pressure transmitter, and FIG. 3 shows a flowchart showing the operation of the transmitter.

MPU (以下マイコンと呼ぶ)はプロセスの差圧、温
度、静圧の情報を受圧部で電気信号に変換し、アナログ
/ディジタル変換器(以下A/D変換器と略す)でディ
ジタル値に変換して得る。ここで、差圧情報得る方法例
に説明する。プロセスの物理量を電気信号に変換する受
圧部には差圧、温度、静圧(絶対圧)計測可能な複合セ
ンサ取り付けである。マイコンはMPX(マルチプレク
サ)にプログラマブルゲインアンプ(PGAと呼ぶ)と
接続するセンサを複合センサの中から差圧センサを選択
する信号を与える。ところでセンサの出力はセンサに加
わる差圧により変化するまた。
The MPU (hereinafter referred to as a microcomputer) converts information on differential pressure, temperature, and static pressure in the process into electrical signals at the pressure receiving section, and converts them into digital values using an analog/digital converter (hereinafter referred to as the A/D converter). get it. Here, an example of a method for obtaining differential pressure information will be explained. The pressure receiving section, which converts the physical quantities of the process into electrical signals, is equipped with a composite sensor that can measure differential pressure, temperature, and static pressure (absolute pressure). The microcomputer gives a signal to the MPX (multiplexer) to select a differential pressure sensor from among the composite sensors to be connected to a programmable gain amplifier (referred to as PGA). By the way, the output of the sensor also changes depending on the differential pressure applied to the sensor.

A/D変換器の分解能は一定である。A/D変換器の能
力を最大限に生かすためセンサ信号を適意のゲインで増
幅して用いる方法様るためPGAを設けである。マイコ
ンは該PGAのゲインを適意の値、一般にはA/D変換
器の最上位ビットにt′l rrとなり、且つオーバー
フローしない最も大きいゲインにセットする。次に、A
/D変換器に変換開始信号を与える。A/D変換器から
変換終了信号を得たらA/D変換結果をRAM内の定め
られた測定差圧信号エリアに書き込む。このようにして
差圧情報は取り込まれる。同様な方法にて、温度、静圧
情報も取り込む。ここで、得られた情報はあらかじめマ
イコン内に記憶しておいた手順で処理されディジタル/
アナログ変換器(以下。
The resolution of the A/D converter is constant. The PGA is provided in order to use a method of amplifying the sensor signal with an appropriate gain in order to make the most of the ability of the A/D converter. The microcomputer sets the gain of the PGA to an appropriate value, generally the highest gain that gives t'l rr to the most significant bit of the A/D converter and that does not overflow. Next, A
/Gives a conversion start signal to the D converter. When a conversion end signal is obtained from the A/D converter, the A/D conversion result is written into a predetermined measurement differential pressure signal area in the RAM. In this way, differential pressure information is captured. Temperature and static pressure information are also taken in using a similar method. Here, the obtained information is processed according to the procedure stored in the microcontroller in advance and converted into digital/digital data.
Analog converter (hereinafter referred to as

D/A変換器と略す)、電圧−電流変換装置(以下、V
−1変換装置と略す)を介して伝送される。
D/A converter), voltage-current converter (hereinafter referred to as V
-1 conversion device).

ここで、受圧部の差圧、温度、静圧センサの特性は、E
EFROM (電気書き込み電気消去メモリ)に記憶さ
れており、各センサの出力信号はA/D変換器によって
ディジタル化された後、EEPROMの内容と参照され
、各々の物理量に変換し、更に使用圧力レンジに応じて
出力電流に変換し、D/A変換器、V−1変換装置を介
して受診装置に伝送される。EEFROM内には、差圧
センサの零点のデータも記憶されている。圧力センサは
長時間使用されていると、該零点が変化してくる。そこ
で、該零点を定期的に校正することが、伝送器に取って
非常に需要である。そのため、従来はプロセスの停止時
に伝送器をプロセスから取り外し、校正を行っていた。
Here, the characteristics of the differential pressure, temperature, and static pressure sensor of the pressure receiving part are E
The output signal of each sensor is stored in an EFROM (electrical write/erase memory), and after being digitized by an A/D converter, the output signal of each sensor is referred to the contents of the EEPROM, converted to each physical quantity, and further converted into a working pressure range. The output current is converted into an output current according to the output current, and transmitted to the receiving device via a D/A converter and a V-1 converter. The zero point data of the differential pressure sensor is also stored in the EEFROM. When a pressure sensor is used for a long time, the zero point changes. Therefore, it is very necessary for the transmitter to periodically calibrate the zero point. Therefore, conventionally, the transmitter was removed from the process and calibrated when the process was stopped.

本発明は、マイコン内蔵の伝送器でこの零点校正を伝送
器をプロセスから取り外すことなく実現させるものであ
る。その方法を次ぎに述べる、伝送器とプロセス間に第
1図に示すような3つのバルブが設けられている。該バ
ルブを、マイコンにより開閉できるように接続し、3つ
のバルブを、総て閉じるようマイコンから制御、このと
き差圧センサを読み取る。第4図に制御プログラムの一
例を示す、マイコンは3つのバルブを閉じる信号を出力
した後MPXを差圧センサ入力モードにする。あとは通
常のプログラムと同様に差圧センサの信号をマイコンに
取り込む、このとき取り込まれた値はEEFROM (
電気書込電気消去FROM)に書き込む、書き込み後は
3つのバルブを開く。
The present invention realizes this zero point calibration using a transmitter with a built-in microcomputer without removing the transmitter from the process. Three valves as shown in FIG. 1 are provided between the transmitter and the process, the method of which will be described below. The valves are connected to a microcomputer so that they can be opened and closed, and the microcomputer controls all three valves to close. At this time, the differential pressure sensor is read. An example of the control program is shown in FIG. 4. After the microcomputer outputs signals to close the three valves, it puts the MPX into differential pressure sensor input mode. The rest is to import the signal of the differential pressure sensor into the microcontroller in the same way as a normal program, and the value imported at this time is stored in the EEFROM (
Electrical write/electrical erase FROM) After writing, open the three valves.

該プログラムの起動方法の1つは第2図に示しであるコ
ミュニケータから起動信号を送り伝送器内のV/1変換
回路、通信回路介してマイコンで受信する。マイコンは
起動信号を受信すると通常行っている第3図に示すプロ
グラムを一旦中止し、該プログラムを実行し終了後再び
第3図に示すプログラムを実行する。D/A変換器から
出力される差圧信号DPは次に示す式により計算される
One method for starting the program is as shown in FIG. 2, in which a starting signal is sent from a communicator and received by the microcomputer via the V/1 conversion circuit and communication circuit in the transmitter. When the microcomputer receives the activation signal, it temporarily suspends the normally executed program shown in FIG. 3, executes the program, and after finishing, executes the program shown in FIG. 3 again. The differential pressure signal DP output from the D/A converter is calculated by the following formula.

DP=DP1+δP        ・・・・・・(1
)DPIは差圧センサ、温度センサ及び静圧センサの信
号からあらかじめ決められた手順で求められた差圧信号
出力値でありδPは差圧センサの零点補正値であり、第
3図に示したプログラムによってEEFROMに書き込
まれた零点値より定められた計算方法により求める。こ
のことにより、差圧センサの零点校正が可能である。
DP=DP1+δP ・・・・・・(1
) DPI is the differential pressure signal output value obtained by a predetermined procedure from the signals of the differential pressure sensor, temperature sensor, and static pressure sensor, and δP is the zero point correction value of the differential pressure sensor, as shown in Figure 3. It is calculated using a predetermined calculation method from the zero point value written in the EEFROM by the program. This allows zero point calibration of the differential pressure sensor.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で差圧伝送器は、従来の伝送器を取り外し
て零点校正していた作業が、コミュニケータ等から指令
する方法等でプロセスから取り外すことなく実現できる
ので経費の削減及び伝送器の計測精度の保持が容易にで
きる。
With the method of the present invention, the differential pressure transmitter can be used to perform zero point calibration by removing the transmitter in the past, but can be done by issuing commands from a communicator or the like without removing it from the process. Measurement accuracy can be easily maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるディジタル式差圧伝送
器の使用例を示す図、第2図はマイコンを内蔵したディ
ジタル伝送器のブロック図、第3図は伝送器の動作を示
すフロー図、第4図は制御プログラムを示す図である。 1・・・プロセスライン、2・・・第1バルブ、3・・
・第2バルブ、4・・・第3バルブ、5・・・ディジタ
ル差圧伝送器、6・・・コミュニケータ、7・・・受信
装置。 第1I¥1 嘉2 口 第3図
Fig. 1 is a diagram showing an example of the use of a digital differential pressure transmitter which is an embodiment of the present invention, Fig. 2 is a block diagram of a digital transmitter with a built-in microcomputer, and Fig. 3 is a diagram showing the operation of the transmitter. The flowchart, FIG. 4, is a diagram showing the control program. 1... Process line, 2... First valve, 3...
- Second valve, 4... Third valve, 5... Digital differential pressure transmitter, 6... Communicator, 7... Receiving device. 1st I ¥1 Ka 2 Mouth Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、プロセス変量を計測演算処理して、前記プロセス変
量に対応したデータを、供給を受ける電源の電流変化と
して通信する2線式の計測演算通信装置と、該装置にプ
ロセス変量の供給を制御する装置を備えたものに於いて
、計測演算通信装置から、プロセス変量供給制御装置を
制御し、該計測演算通信装置の校正を行うことを特徴と
する2線式差圧伝送器。
1. A two-wire measurement, calculation, and communication device that performs measurement and calculation processing on process variables and communicates data corresponding to the process variables as changes in current from a supplied power source, and controls the supply of process variables to the device. A two-wire differential pressure transmitter, characterized in that the measurement calculation communication device controls a process variable supply control device and calibrates the measurement calculation communication device.
JP32408387A 1987-12-23 1987-12-23 Two-wire differential pressure transmitter Pending JPH01166299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32408387A JPH01166299A (en) 1987-12-23 1987-12-23 Two-wire differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32408387A JPH01166299A (en) 1987-12-23 1987-12-23 Two-wire differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPH01166299A true JPH01166299A (en) 1989-06-30

Family

ID=18161960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32408387A Pending JPH01166299A (en) 1987-12-23 1987-12-23 Two-wire differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPH01166299A (en)

Similar Documents

Publication Publication Date Title
US7577539B2 (en) Sensor interface and sensor calibration technique
US5083288A (en) Apparatus for configuring a remote process sensor and signal transmitter
US6519546B1 (en) Auto correcting temperature transmitter with resistance based sensor
US4715003A (en) Method for temperature compensation and measuring circuit therefor
US6450005B1 (en) Method and apparatus for the calibration and compensation of sensors
US4576035A (en) Self-calibrating differential condition sensor
US4872349A (en) Microcomputerized force transducer
RU98122371A (en) METHOD FOR TARING THE SYSTEM FOR MEASURING THE DIFFERENCE OF PRESSURE OF THE FLUID FLOW
CN104713675B (en) Double range high-precision pressure sensor
EP2841879B1 (en) Process variable compensation in a process transmitter
EP0803054A1 (en) A temperature compensation method in pressure sensors
US5109533A (en) Method and apparatus for cancelling noise in a received signal by signal subtraction
KR940010207B1 (en) Self-zeroing pressure transmitter with automatic pressure mainfold
EP0178368B1 (en) Process variable transmitter and method for correcting its output signal
JPH0243236B2 (en)
JPH01166299A (en) Two-wire differential pressure transmitter
KR101377531B1 (en) The moudule of smart pressure sensor
JPH04133199A (en) Calibrator for signal transmitter
US4884019A (en) Accurate analog measurement system
TWI763146B (en) Piezoresistive pressure sensor to realize a high-precision sensing system
JP3074895B2 (en) Pressure / differential pressure transmitter
JPH07281834A (en) Analog signal converter
JP2541438B2 (en) Signal input circuit
JPH04262408A (en) Mass flow controller
JPH04318698A (en) Sensor signal input unit