JPH01165772A - Vacuum device - Google Patents

Vacuum device

Info

Publication number
JPH01165772A
JPH01165772A JP32373087A JP32373087A JPH01165772A JP H01165772 A JPH01165772 A JP H01165772A JP 32373087 A JP32373087 A JP 32373087A JP 32373087 A JP32373087 A JP 32373087A JP H01165772 A JPH01165772 A JP H01165772A
Authority
JP
Japan
Prior art keywords
signal
detection
furnace
vacuum
vacuum furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32373087A
Other languages
Japanese (ja)
Inventor
Noriyuki Hirata
教行 平田
Shigeyuki Motokawa
元川 茂行
Nobushi Suzuki
鈴木 悦四
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32373087A priority Critical patent/JPH01165772A/en
Publication of JPH01165772A publication Critical patent/JPH01165772A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain the title vacuum device capable of detecting furnace conditions in a short time with high precision by providing a detection signal processor for processing the information signal transmitted from the detecting element of a detecting plate in a vacuum furnace, a unit for outputting a signal to the outside, and a device for conveying the detection plate from the outside to the inside of the furnace. CONSTITUTION:The detection signal from the detecting element 4 connected to the detecting plate 3 placed in the vacuum furnace 1 is inputted 8 to a signal input unit 9. The detection signal is periodically converted in the input unit 9 into a signal capable of being processed by the signal processor 10. The converted detection signal is operated in the processor 10 to obtain a signal capable of being stored in a signal storage 11, and the signals are sucessively stored in the specified locations of the storage 11. The stored signals are displayed by the signal output unit 12, when a series of actions for detecting the condition in the furnace 1 is completed. In this case, the detection signal processor 13 is arranged in the furnace 1, and the condition in the furnace 1 can be easily detected with high precision. In addition, since the connection state can be detected, the workhours necessary for the purpose can be remarkably reduced as compared with the conventional method.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は真空装置に係り、特に大型ロードロック式連続
成膜装置の状態検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum apparatus, and more particularly to a state detection device for a large-scale load-lock type continuous film forming apparatus.

(従来の技術) 一般に、工業製品を加熱処理する装置において、炉内温
度を測温する手段として熱電対が使用される。
(Prior Art) Generally, in an apparatus for heat-treating industrial products, a thermocouple is used as a means for measuring the temperature inside the furnace.

例えばアクティブマトリックス型液晶デイスプレィ等に
用いる薄膜トランジスタ等を製造するために用いられる
成膜装置は、真空炉の容量約10012、成膜可能面積
約10000mm”を有する。また、連続して複数の基
板への成膜が可能なように、成膜用の真空炉の前後に予
備真空炉が配置されている。また、各真空炉間では基板
が移動するようになっており、基板は脱着可能な基板カ
ート(トレイ)に取り付けられ、真空炉に設けられたカ
ート搬送部によって移動される。このような真空成膜装
置では、基板に付着する薄膜の厚さや特性を均一にがつ
再現性の良いものにするために、真空炉中の基板及び基
板カートの温度を均一にし、安定に保つことが必要であ
る。そこで、真空炉中の基板及び基板カートの温度分布
を定期的に測定し、改善、管理を行なっている。
For example, a film forming apparatus used to manufacture thin film transistors used in active matrix liquid crystal displays, etc. has a vacuum furnace capacity of approximately 10,012 mm and a film forming area of approximately 10,000 mm. To enable film formation, preliminary vacuum furnaces are placed before and after the vacuum furnace for film formation.In addition, substrates can be moved between each vacuum furnace, and substrates are transported using removable substrate carts. It is attached to a tray (tray) and moved by a cart transport unit installed in a vacuum furnace.Such vacuum film forming equipment is capable of producing uniform thickness and properties of the thin film adhered to the substrate with good reproducibility. In order to achieve this, it is necessary to make the temperature of the substrate and substrate cart in the vacuum furnace uniform and keep it stable.Therefore, the temperature distribution of the substrate and substrate cart in the vacuum furnace is regularly measured, improved, and managed. is being carried out.

以下、従来の温度の検出装置を第6図を参照して説明す
る。
Hereinafter, a conventional temperature detection device will be explained with reference to FIG.

第6図は、真空炉内の温度の検出装置を示す斜視図であ
り、成膜用基板を取り付ける基板カートである検出板■
に例えば、基板4枚を取り付け、それに応じて4個の熱
電対に)をそれぞれの基板に貼り付けている。そして、
検出板■は、真空炉ω内の所定位置に搬送部■によって
設置され、真空炉■の側壁に設けられた孔から熱電対に
)に接続された外部引き出し周線■を引き出し、真空シ
ールが可能な測温用フランジ0を介して真空炉■外部の
計測器等に外部引き出し周線■を接続する。この状態で
、真空炉■の真空排気を行ない、加熱部■で設定温度に
達するまで加熱し、被測温板(3)の温度及び温度分布
を測定していた。
FIG. 6 is a perspective view showing the temperature detection device in the vacuum furnace, and the detection plate 1, which is a substrate cart to which a film-forming substrate is attached.
For example, four boards are attached, and four thermocouples (4 thermocouples) are attached to each board accordingly. and,
The detection plate ■ is installed at a predetermined position in the vacuum furnace ω by the conveyor unit ■, and the external lead wire connected to the thermocouple () is pulled out from the hole provided in the side wall of the vacuum furnace ■, and the vacuum seal is Connect the external lead-out circumferential line ■ to a measuring instrument, etc. outside the vacuum furnace ■ via a possible temperature measuring flange 0. In this state, the vacuum furnace (1) was evacuated, heated in the heating section (2) until it reached a set temperature, and the temperature and temperature distribution of the temperature measurement plate (3) were measured.

(発明が解決しようとする問題点) しかしながら、上述した従来の測温装置によると、加熱
平衡状態である真空炉内を室温状態まで冷却し、大気圧
状態まで戻してから検出板を配置し、取り付けられた基
板に熱電対を付着させた後、再び真空炉内を真空排気、
加熱しなければならない。そして、測温完了時には、再
度真空炉を冷却し大気圧状態にして測温板を取り出す作
業を行なう必要があり、真空炉の測温に多大な労力と時
間を要し、測温後の真空炉内の到達真空度が十分得られ
ないという問題があった。
(Problems to be Solved by the Invention) However, according to the conventional temperature measuring device described above, the inside of the vacuum furnace, which is in a heating equilibrium state, is cooled down to room temperature, and the detection plate is placed after returning to the atmospheric pressure state. After attaching the thermocouple to the attached board, evacuate the vacuum furnace again.
Must be heated. When the temperature measurement is completed, it is necessary to cool the vacuum furnace again to bring it to atmospheric pressure and take out the temperature measurement plate, which requires a great deal of effort and time to measure the temperature of the vacuum furnace. There was a problem that the ultimate vacuum level inside the furnace could not be obtained sufficiently.

また、測温板を搬送するに際し、真空炉外部に引き出す
ことが可能な長さを有する外部引き出し周線を熱電対に
接続しているため、熱電対の検出板からのはがれや外部
引き出し周線の断線が発生しやすいという問題点があっ
た。
In addition, when transporting the temperature measuring plate, since the external lead-out circumferential wire is connected to the thermocouple with a length that allows it to be pulled out to the outside of the vacuum furnace, the thermocouple may peel off from the detection plate or the external lead-out circumferential line may come off. There was a problem that wire breakage was likely to occur.

本発明は、上記問題点を解決するためになされたもので
、短時間で高精度の真空炉内の状態検出が行なえる真空
装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a vacuum device that can detect the state inside a vacuum furnace with high precision in a short time.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、少なくとも1つの真空炉内に配設された検出
板と、この検出板に連結された検出部と、この検出部か
ら信号線を介して情報伝達され信号を処理する検出信号
処理部と、この検出信号処理部からの信号を少なくとも
真空炉外に出力させる信号出力部と、前記検出板を真空
炉外から真空炉内に搬送する搬送部とを具備することを
特徴とする真空装置である。
(Means for Solving the Problems) The present invention includes a detection plate disposed in at least one vacuum furnace, a detection part connected to the detection plate, and information transmitted from the detection part via a signal line. a detection signal processing unit that processes the transmitted signal; a signal output unit that outputs the signal from the detection signal processing unit to at least the outside of the vacuum furnace; and a transport unit that transports the detection plate from outside the vacuum furnace into the vacuum furnace. This is a vacuum device characterized by comprising:

(作  用) このように構成された溝曇半城填空装置によれば、検出
板を有する真空炉内の雰囲気を一定に保った状態で検出
部により真空炉内の状態を検出する。次いで、必要な情
報を検出信号処理部によって処理し、得られた出力信号
を表示器等に接続することにより短時間で高精度の真空
炉内の状態を検出することができる。
(Function) According to the groove-cloudy-half-castle filling device configured in this way, the state inside the vacuum furnace is detected by the detection section while the atmosphere inside the vacuum furnace having the detection plate is kept constant. Next, the necessary information is processed by the detection signal processing section, and the obtained output signal is connected to a display, etc., thereby making it possible to detect the state inside the vacuum furnace with high precision in a short time.

(実 施 例) 以下1本発明の実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は、検出信号処理部(13)を示すブロックダイ
アグラムであり、真空炉内に配設された検出板■に連結
された検出部に)からの検出信号は、信号線■を介し信
号入力部(2)に接続される。この信号入力部(9)で
は、一定の周期で検出信号を信号処理部(10)にて処
理可能な信号に変換する。信号入力部■で変換された検
出信号は、信号処理部(lO)にて信号記憶部(11)
に格納可能な状態に演算処理され、信号記憶部(11)
の所定の場所に順次格納される。信号記憶部(11)に
格納記憶された検出信号は、真空炉内の状態検出の一連
の動作が完了した時点で、信号出力部(12)に表示器
等を接続することにより表示可能となっている。
FIG. 1 is a block diagram showing the detection signal processing unit (13), in which the detection signal from the detection unit (which is connected to the detection plate (13) arranged in the vacuum furnace) is transmitted via the signal line (13). Connected to the input section (2). The signal input section (9) converts the detection signal into a signal that can be processed by the signal processing section (10) at regular intervals. The detection signal converted by the signal input section ■ is sent to the signal storage section (11) at the signal processing section (lO).
The signal storage unit (11) is processed into a state that can be stored in the
are sequentially stored in predetermined locations. The detection signal stored in the signal storage section (11) can be displayed by connecting a display device, etc. to the signal output section (12) when a series of operations for detecting the state inside the vacuum furnace is completed. ing.

以上のように構成すれば、検出信号処理部(13)を真
空炉内に配設することにより、容易にかつ高精度で真空
炉内の状態検出が行なえる。さらに連続した状態検出が
可能なため、これに要する作業時間が従来に比べ大幅に
短縮できる。
With the above configuration, by disposing the detection signal processing section (13) inside the vacuum furnace, the state inside the vacuum furnace can be detected easily and with high precision. Furthermore, since continuous state detection is possible, the work time required for this can be significantly reduced compared to conventional methods.

次に本発明を真空炉内の温度の検出に用いた場合を例に
とり、第1図及び第2図を参照して説明する。
Next, an example in which the present invention is used to detect the temperature inside a vacuum furnace will be described with reference to FIGS. 1 and 2.

第2図は、本発明の装置の斜視図であり、一般に真空成
膜用の真空炉ω内の温度検出に用いる検出板■は、基板
搬送用のカートと同一形状にし、検出部に)は熱電対を
用いる。この検出部に)は検出板■に連結させた状態で
搬送部■によって所定の位置に配置される。また、検出
板■には、検出部に)から信号線■を介し検出信号処理
部(13)が取り付けられている。
FIG. 2 is a perspective view of the apparatus of the present invention, in which the detection plate (2), which is generally used for temperature detection in the vacuum furnace (ω) for vacuum film deposition, has the same shape as the cart for transporting the substrate, and the detection plate (2) is Use a thermocouple. This detection section) is placed at a predetermined position by the conveyance section (2) while being connected to the detection plate (2). Further, a detection signal processing section (13) is attached to the detection plate (1) via a signal line (2) from the detection section (to the detection section).

なお、信号線■は熱電対と同一金属とし1例えばクロメ
ル線とアルメル線を用いている。また、検出信号処理部
(13)は、その構成部品が加熱劣化及び真空炉内へガ
ス放出するのを防止するために、耐熱レンガ等を用いて
周囲を囲み、予め真空状態とした密閉容器に収納してい
る。
Note that the signal wire (2) is made of the same metal as the thermocouple, and is made of, for example, a chromel wire and an alumel wire. In addition, the detection signal processing unit (13) is housed in a sealed container that is surrounded by heat-resistant bricks or the like and is evacuated in advance in order to prevent its components from deteriorating due to heating and releasing gas into the vacuum furnace. It is stored.

このように構成された本発明の装置では、次のようにし
て真空炉内の温度検出が行なわれる。
In the apparatus of the present invention configured as described above, the temperature inside the vacuum furnace is detected as follows.

先ず、図示しない予備真空炉等から搬送部■によって検
出板■が真空加熱状態になった真空炉ω内に搬送され、
ストッパ(14)に当接した所で停止する。搬送部■は
、カートに設けられたラック(22)と真空炉内に設け
られたビニオン■をかみ合わせ移動するようになってお
り、カートは搬送ガイド(23)によって保持されてい
る。また、各真空炉間は図示しない仕切扉によって仕切
られている。
First, the detection plate (■) is conveyed from a preliminary vacuum furnace (not shown) by the conveyance section (■) into the vacuum furnace (ω) which is heated under vacuum.
It stops when it comes into contact with the stopper (14). The transport section (2) is moved by engaging a rack (22) provided on the cart with a pinion (2) provided in the vacuum furnace, and the cart is held by a transport guide (23). Further, each vacuum furnace is separated by a partition door (not shown).

真空炉間でのカートの搬送に際しては、ストッパ(14
)を下降させ、仕切扉を開ける6次いでピニオン■をモ
ータ等で回転駆動させ、ピニオン■にカートのラック(
22)がかみ合い、ガイドに沿って移動され、連続した
真空炉においては次の処理を行なう炉内のストッパにカ
ートが到着したところでビニオン■の回転を停止させる
。一方、処理後の炉内のストッパは再び上昇し、仕切扉
を閉じて搬送完了となる。この時は、予め検出信号処理
部(13)の信号入力部(9)は一定周期で検出信号を
信号処理部(10)に送出している。この状態で、一定
時間真空炉ω内に検出板■を放置し、検出終了後検出板
■は搬送部■によって図示しない予備真空炉等へ送り出
される。従って、検出板■内に温度測定に必要な機能を
全て塔載しているため、外部引き出し周線(ハ)を必要
としないので、検出板■の真空炉外への出し入れが容易
となり、検出部に)のはがれや信号線■の断線を生ずる
ことがない、更に、検出板■の搬送中においても温度を
検出し続けることが可能であり、基板等の温度を間絶な
く連続して検出することが可能となる。
When transporting the cart between vacuum furnaces, use a stopper (14
) to open the partition door 6 Next, rotate the pinion ■ with a motor, etc., and attach the rack of the cart to the pinion ■ (
22) are engaged and moved along the guide, and in a continuous vacuum furnace, the rotation of the pinion (2) is stopped when the cart reaches the stopper in the furnace where the next process is performed. On the other hand, the stopper inside the furnace after processing rises again, the partition door closes, and the transport is completed. At this time, the signal input section (9) of the detection signal processing section (13) sends the detection signal to the signal processing section (10) at a constant cycle in advance. In this state, the detection plate (2) is left in the vacuum furnace (ω) for a certain period of time, and after the detection is completed, the detection plate (2) is sent to a pre-vacuum furnace (not shown) by the conveyance unit (2). Therefore, since all the functions necessary for temperature measurement are mounted inside the detection plate ■, there is no need for an external lead-out wire (c), making it easy to take the detection plate ■ in and out of the vacuum furnace. There is no possibility of peeling off (on the part) or disconnection of the signal line (■).Furthermore, it is possible to continue detecting the temperature even while the detection plate (■) is being transported, and the temperature of the board, etc. can be continuously detected without interruption. It becomes possible to do so.

次に本発明の他の実施例を第3図乃至第5図を参照して
説明する。但し1図面において同一箇所は同一符号を記
すことにする。
Next, another embodiment of the present invention will be described with reference to FIGS. 3 to 5. However, the same parts in one drawing will be denoted by the same reference numerals.

第3図は、検出信号処理部(13)の実施例を説明する
ためのブロックダイアグラムであり、検出板■に連結さ
れた検出部に)からの信号は信号線(ハ)を介して信号
入力部0に入力される。この信号入力部0は、一定周期
で複数の検出部(イ)からの信号を入力し、整列させた
後に、信号処理部(10)に送出する。信号処理部(1
0)では、入力信号をアナログ信号からディジタル(f
f号に予め定められた手順に従って変換し、さらにパラ
レル信号からシリアル信号に変換した後に信号送信部(
21)に送出する。
FIG. 3 is a block diagram for explaining an embodiment of the detection signal processing unit (13), and the signal from the detection unit connected to the detection plate (1) is inputted via the signal line (C). It is input into section 0. This signal input section 0 inputs signals from a plurality of detection sections (a) at regular intervals, arranges them, and sends them out to a signal processing section (10). Signal processing unit (1
0), the input signal is converted from an analog signal to a digital signal (f
After converting the parallel signal into a serial signal according to a predetermined procedure, the signal transmitter (
21).

信号送信部(21)では、入力信号を予め定められた手
順によって発信信号に変換する。
The signal transmitter (21) converts the input signal into a transmission signal according to a predetermined procedure.

この発信信号は、内蔵されたアンテナから電波として真
空炉ω内に発せられる。
This transmission signal is emitted from the built-in antenna as a radio wave into the vacuum furnace ω.

第4図は、受信信号処理部(19)の実施例を説明する
ためのブロックダイアグラムであり、検出信号処理部(
15)から発信された信号は、アンテナ(20)によっ
て受信され信号受信部(16)に入力される。信号受信
部(16)では受信信号を予め定められた手順により、
シリアルディジタル信号に変換し、受信信号変換部(1
7)に送出する。受信イε号変換部(17)では、入力
されたシリアルディジタル信号を予め定められた手順に
より、パラレルディジタル信号とした後、アナログ信号
に変換し、信号出力部(18)に送出する。信号出力部
(18)は、検出する情報を表示する表示器等の仕様に
合わせ、アナログ出力仕様を選定可能となっている。例
えば、ぺンレコーダ等にアナログ出力を接続すれば、検
出部に)によって得られた情報が実時間で表示される。
FIG. 4 is a block diagram for explaining an embodiment of the received signal processing section (19).
15) is received by the antenna (20) and input to the signal receiving section (16). The signal receiving unit (16) receives the received signal according to a predetermined procedure.
Converts it to a serial digital signal and sends it to the received signal converter (1
7). The reception signal ε signal conversion section (17) converts the input serial digital signal into a parallel digital signal according to a predetermined procedure, converts it into an analog signal, and sends it to the signal output section (18). The signal output section (18) can select an analog output specification according to the specifications of a display device or the like that displays the information to be detected. For example, if an analog output is connected to a pen recorder or the like, the information obtained by the detector) will be displayed in real time.

次に、これらの構成に基づき、前述した実施例と同様に
真空炉内の温度の検出に適用した場合の実施例について
図面を参照して述べる。
Next, based on these configurations, an embodiment in which the present invention is applied to detecting the temperature inside a vacuum furnace will be described with reference to the drawings, similar to the embodiments described above.

第5図は、前述した第2図のように、真空成膜用の真空
炉内の温度検出に適用した本発明の装置の斜視図であり
、真空炉■の上部壁面には、検出信号処理部(15)か
らの送信信号を受信可能なように、真空炉ω外から真空
炉ω内に向けてアンテナ(20)が設置されており、こ
のアンテナ(20)には受信信号処理部(19)が接続
される。その他は、前述した第2図に示す装置と同様の
構成からなる。従って、検出信号処理部(15)の信号
入力部■は、−定周期で検出信号を信号処理部(10)
に送出し、受信信号処理部(19)に表示器等を接続す
れば真空炉内の温度を連続的に検出することができる。
FIG. 5 is a perspective view of the device of the present invention applied to temperature detection in a vacuum furnace for vacuum film deposition, as shown in FIG. 2 described above. An antenna (20) is installed from outside the vacuum furnace ω toward the inside of the vacuum furnace ω so as to be able to receive the transmitted signal from the reception signal processing unit (15). ) are connected. Otherwise, the configuration is similar to that of the device shown in FIG. 2 described above. Therefore, the signal input section (1) of the detection signal processing section (15) sends the detection signal to the signal processing section (10) at - regular intervals.
If a display device or the like is connected to the received signal processing section (19), the temperature inside the vacuum furnace can be continuously detected.

さらに、検出板■内に温度検出に必要な機能及び検出信
号送信手段を塔載し、真空炉外部に受信手段及び受信信
号解読機能を有するため、特に検出板■の搬送中におけ
る温度の検出が実時間で表示することが可能となる。
Furthermore, since the functions necessary for temperature detection and detection signal transmitting means are mounted inside the detection plate (■), and the receiving means and reception signal decoding function are provided outside the vacuum furnace, it is especially easy to detect the temperature while the detection plate (■) is being transported. It becomes possible to display in real time.

なお、本発明の実施例では、独立した真空炉内の温度の
検出についてのみ説明してきたが、予備真空中を含めた
複数の真空炉を有する真空装置にも同様に適用できるこ
とは言うまでもない。
In the embodiments of the present invention, only the detection of the temperature inside an independent vacuum furnace has been described, but it goes without saying that the present invention can be similarly applied to a vacuum apparatus having a plurality of vacuum furnaces including a preliminary vacuum.

さらに1本発明は真空炉内の温度検出に限るものではな
く、検出部(4)として熱電対以外に光センサ、電位検
出器、成膜厚モニタセンサ等の検出手段を適用すること
もでき、真空炉内の種々の状態検出を容易に実施するこ
とが可能である。
Furthermore, the present invention is not limited to temperature detection in a vacuum furnace, and detecting means other than a thermocouple such as an optical sensor, a potential detector, a film-forming thickness monitor sensor, etc. can also be applied as the detecting section (4). It is possible to easily detect various conditions within the vacuum furnace.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の真空装置によれば。 According to the vacuum apparatus of the present invention as explained above.

真空炉内の状態の検出を容易に、かつ高精度に行なえ、
さらに連続した検出が可能なため1作業時間が大幅に短
縮されると共に、量産対応の連続真空成膜装置において
きわめて有効なものである。
The state inside the vacuum furnace can be detected easily and with high precision.
Furthermore, since continuous detection is possible, the time required for one operation is greatly shortened, and it is extremely effective in continuous vacuum film forming equipment for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る真空装置の検出信号処
理部におけるブロックダイアグラムを説明するための図
、第2図は本発明の一実施例に係る真空装置を示す斜視
図、第3図は本発明の真空装置の他の実施例の検出信号
処理部におけるブロックダイアグラムを説明するための
図、第4図は第3図に対応する受信信号処理部における
ブロックダイアグラムを説明するための図、第5図は第
3図及び第4図に係る真空装置を示す斜視図、第6図は
従来の真空装置を示す斜視図である。 ω・・・真空炉      ■・・・搬送部■・・・検
出板      (4)・・・検出部(ハ)・・・外部
引き出し周線 (ハ)・・・信号線(9)・・・信号入
力部    (13)・・・検出信号処理部(12)、
 (18)・・・信号出力部代理人 弁理士 則 近 
憲 佑 同    竹 花 喜久男 第1図 第2図 第3図 診i穐1 第4図 第5図
FIG. 1 is a diagram for explaining a block diagram of a detection signal processing section of a vacuum device according to an embodiment of the present invention, FIG. 2 is a perspective view showing a vacuum device according to an embodiment of the present invention, and FIG. The figure is a diagram for explaining a block diagram in a detection signal processing section of another embodiment of the vacuum apparatus of the present invention, and FIG. 4 is a diagram for explaining a block diagram in a reception signal processing section corresponding to FIG. 3. , FIG. 5 is a perspective view showing the vacuum device according to FIGS. 3 and 4, and FIG. 6 is a perspective view showing a conventional vacuum device. ω...Vacuum furnace ■...Transportation section■...Detection plate (4)...Detection section (C)...External pull-out circumferential line (C)...Signal line (9)... Signal input section (13)...detection signal processing section (12),
(18)...Signal output department agent Chika Nori, patent attorney
Ken Yudo Kikuo Takehana Figure 1 Figure 2 Figure 3 Diagnosis i Aki 1 Figure 4 Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも1つの真空炉内に配設された検出板と
、 この検出板に連結された検出部と、 この検出部から信号線を介して情報伝達され信号を処理
する検出信号処理部と、 この検出信号処理部からの信号を少なくとも真空炉外に
出力させる信号出力部と、 前記検出板を真空炉外から真空炉内に搬送する搬送部 とを具備することを特徴とする真空装置。
(1) A detection plate disposed in at least one vacuum furnace; a detection unit connected to the detection plate; and a detection signal processing unit that processes signals transmitted from the detection unit via a signal line. A vacuum apparatus comprising: a signal output section that outputs at least a signal from the detection signal processing section to the outside of the vacuum furnace; and a transport section that transports the detection plate from outside the vacuum furnace into the vacuum furnace.
(2)前記検出部は熱電対であることを特徴とする特許
請求の範囲第1項記載の真空装置。
(2) The vacuum apparatus according to claim 1, wherein the detection section is a thermocouple.
(3)前記検出信号処理部は信号記憶部または信号送信
部を有することを特徴とする特許請求の範囲第1項記載
の真空装置。
(3) The vacuum apparatus according to claim 1, wherein the detection signal processing section has a signal storage section or a signal transmission section.
(4)前記信号出力部は前記信号記憶部に接続され情報
を表示可能にした表示手段、または前記信号送信部から
情報を受信可能にした受信手段であることを特徴とする
特許請求の範囲第1項または第3項記載の真空装置。
(4) The signal output section is a display means connected to the signal storage section and capable of displaying information, or a reception means capable of receiving information from the signal transmission section. The vacuum device according to item 1 or 3.
JP32373087A 1987-12-23 1987-12-23 Vacuum device Pending JPH01165772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32373087A JPH01165772A (en) 1987-12-23 1987-12-23 Vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32373087A JPH01165772A (en) 1987-12-23 1987-12-23 Vacuum device

Publications (1)

Publication Number Publication Date
JPH01165772A true JPH01165772A (en) 1989-06-29

Family

ID=18157969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32373087A Pending JPH01165772A (en) 1987-12-23 1987-12-23 Vacuum device

Country Status (1)

Country Link
JP (1) JPH01165772A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319675A (en) * 1988-06-22 1989-12-25 Hitachi Ltd Vacuum treatment system and control method thereof
JP2009013437A (en) * 2007-06-29 2009-01-22 Fujifilm Corp Substrate holder and vacuum film deposition apparatus
JP2010196116A (en) * 2009-02-25 2010-09-09 Shimadzu Corp In-line film deposition processing apparatus
WO2015198975A1 (en) * 2014-06-27 2015-12-30 東洋製罐株式会社 Cap-equipped tube container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319675A (en) * 1988-06-22 1989-12-25 Hitachi Ltd Vacuum treatment system and control method thereof
JP2595048B2 (en) * 1988-06-22 1997-03-26 株式会社日立製作所 Vacuum processing system and control method thereof
JP2009013437A (en) * 2007-06-29 2009-01-22 Fujifilm Corp Substrate holder and vacuum film deposition apparatus
JP2010196116A (en) * 2009-02-25 2010-09-09 Shimadzu Corp In-line film deposition processing apparatus
WO2015198975A1 (en) * 2014-06-27 2015-12-30 東洋製罐株式会社 Cap-equipped tube container

Similar Documents

Publication Publication Date Title
JP2003045954A (en) Inspection system for substrate processing process apparatus, sensor for inspection system and inspection method for process apparatus
JP6586394B2 (en) How to get data representing capacitance
JPH01165772A (en) Vacuum device
GB8914244D0 (en) Temperature reference junction for a multichanel temperature sensing system
US11150140B2 (en) Instrumented substrate apparatus for acquiring measurement parameters in high temperature process applications
US5988877A (en) Method and apparatus for temperature calibration in microwave assisted chemistry
US20070074660A1 (en) Thermal processing appratus and thermal processing method
JPH06163340A (en) Processed substrate provided with information measuring mean
US5367786A (en) Method and apparatus for monitoring the processing of a material
KR20090007426A (en) Server and program
US20040052297A1 (en) Thermal monitoring system
JP3334162B2 (en) Vacuum processing apparatus, film forming apparatus and film forming method using the same
US5273424A (en) Vertical heat treatment apparatus
US4989991A (en) Emissivity calibration apparatus and method
KR20070005235A (en) Temperaturemeasurement system inside themal vacuum chamber in a high vacuumm, extremely hot and cold conditions
US3637985A (en) Portable remote location measuring system
JPS63304122A (en) Temperature measuring device
US8070356B2 (en) Method for the temperature measurement of substrates, and vacuum processing apparatus
CN115910834A (en) Semiconductor device and control method thereof
JPH04297054A (en) Method and apparatus for processing semiconductor wafer
JP2780005B2 (en) Automatic warehouse temperature measurement device
JPH04165642A (en) Temperature measurement
JPS59187271A (en) Method and apparatus for measuring specific resistance
JPH0689840A (en) Exposure device
JPH06281504A (en) Measuring, displaying and recording device for high temperature furnace inner temperature