JPH01165555A - Production of allyl type amine - Google Patents

Production of allyl type amine

Info

Publication number
JPH01165555A
JPH01165555A JP62323833A JP32383387A JPH01165555A JP H01165555 A JPH01165555 A JP H01165555A JP 62323833 A JP62323833 A JP 62323833A JP 32383387 A JP32383387 A JP 32383387A JP H01165555 A JPH01165555 A JP H01165555A
Authority
JP
Japan
Prior art keywords
allyl
amine
allyl alcohol
mmol
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62323833A
Other languages
Japanese (ja)
Other versions
JPH0757743B2 (en
Inventor
Yoshimasa Ishimura
石村 善正
Takami Oe
孝美 大江
Nobuyuki Nagato
伸幸 永戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62323833A priority Critical patent/JPH0757743B2/en
Priority to DE88311646T priority patent/DE3883724T2/en
Priority to EP88311646A priority patent/EP0320269B1/en
Priority to US07/282,095 priority patent/US4942261A/en
Priority to KR1019880016446A priority patent/KR890009827A/en
Publication of JPH01165555A publication Critical patent/JPH01165555A/en
Publication of JPH0757743B2 publication Critical patent/JPH0757743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the title compound useful as a raw material for drugs efficiently, inexpensively and in high yield without preparing a salt as a by- product, by reacting an allyl alcohol with an amine in the presence of a palladium compound and a phosphorus compound. CONSTITUTION:An allyl alcohol shown by the formula (R1-R3 are H, 1-8C aliphatic hydrocarbon or alicyclic hydrocarbon) is reacted with a primary amine (e. g., CH3NH2 or C2H5NH2) and/or a secondary amine [(CH3)2NH] in the presence of a palladium compound (e. g., PdCl2 or PdBr2) and a multi-coordination phosphorus compound as a catalyst to give an allylamine. The amount of the catalyst used is preferably 1/10-1/100,000, especially 1/50-1/2,000mol based on 1 mol allyl alcohol.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアリル型アミンの製造法に関する。更に詳しく
述べるならば、本発明は、凝集剤等として有用なカチオ
ン型ポリマーや医薬および農薬の原料として広く用いら
れるアリル型アミンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing allylic amines. More specifically, the present invention relates to a method for producing cationic polymers useful as flocculants, etc., and allylic amines widely used as raw materials for pharmaceuticals and agricultural chemicals.

〔従来の技術〕[Conventional technology]

塩化アリルとアンモニアを反応させることによりアリル
アミンを製造することが、今日、行われている(米国特
許2216548および3175009参照)。また、
アリル型不飽和エーテルまたはアリル型不飽和アルコー
ルのカルボン酸エステルとアンモニアを、パラジウム化
合物と3価の燐化合物または砒素化合物とを組み合わせ
て触媒として用いて反応させ、アリル型アミンを製造す
ることが提案されている(特公昭49−20162参照
)。しかし、塩化アリルやアリルエステルを用いた場合
、アリルアミンの合成に伴い、塩酸またはカルボン酸が
生じる。
It is currently practiced to produce allylamine by reacting allyl chloride with ammonia (see US Pat. Nos. 2,216,548 and 3,175,009). Also,
It is proposed to produce an allyl amine by reacting a carboxylic acid ester of an allyl unsaturated ether or an allyl unsaturated alcohol with ammonia using a combination of a palladium compound and a trivalent phosphorus compound or an arsenic compound as a catalyst. (Refer to Japanese Patent Publication No. 49-20162). However, when allyl chloride or allyl ester is used, hydrochloric acid or carboxylic acid is generated during the synthesis of allylamine.

そして、これらは、アンモニアまたは生成したアミンと
塩を形成するため酸は再利用できず、またアミンを回収
するためには等モルの強アルカリにて中和する必要があ
る。また塩を生じるためプロセスが複雑になるという問
題を生じる。
Since these forms salts with ammonia or the produced amine, the acid cannot be reused, and in order to recover the amine, it is necessary to neutralize it with an equimolar amount of strong alkali. Moreover, since salt is produced, the process becomes complicated.

一方、アリル型アルコールを原料に用いる場合には、副
生物として水が生成し、この水はアミンと反応すること
がないので、上記の如き損失が生じないだけでなく、プ
ロセスも簡単になる。しかし、アリル型アルコールは、
塩化アリルやアリルエステルに較べ、その反応性が非常
に低い。
On the other hand, when allyl alcohol is used as a raw material, water is produced as a by-product, and this water does not react with the amine, so that not only does the loss as described above not occur, but the process is also simplified. However, allylic alcohol
Its reactivity is very low compared to allyl chloride and allyl ester.

このことは、下記衣(Research Disclo
sure、 May1978.35頁より抜粋)にみら
れるアリルアセテートとアリルアルコールの反応性の違
いにより確認される。
This is explained in the Research Disclo below.
This is confirmed by the difference in reactivity between allyl acetate and allyl alcohol, which can be seen in ``Sure, May 1978, page 35''.

以下余白 同−触媒を用いているにもかかわらず、アリルアルコー
ルの場合、温度、アリル化合物と触媒のモル比および反
応時間のいずれも有利な条件下においても、収率はむし
ろ低い値である。このようにアリルアルコールの反応性
は、カルボン酸エステルに比べ圧倒的に乏しい。
In the case of allyl alcohol, the yield is rather low even under favorable conditions of temperature, molar ratio of allyl compound to catalyst, and reaction time, even though the same catalyst is used. As described above, the reactivity of allyl alcohol is overwhelmingly poorer than that of carboxylic acid ester.

アリルアルコールをアリル源に用いる場合には、他にも
問題点がある。それは反応にともない、配位子であるホ
スフィンがアリルアルコールの酸素原子により酸化され
ることである。
There are other problems when using allyl alcohol as an allyl source. This is because the phosphine ligand is oxidized by the oxygen atom of allyl alcohol during the reaction.

Atkinsらは、Pd(CH2COCH2COCH3
)zを出発錯体に用い、トリフェニルホスフィンをパラ
ジウムと等モル量添加した系で、アリルアルコールとジ
エチルアミンよりアリルジエチルアミンを合成している
(Tetrahedron Letters flh4
3.3821〜3824頁(1970年)〕。しかし、
前述したように、トリフェニルホスフィンはアリルアル
コールにより徐々に酸化されるため、黒色のパラジウム
化合物の析出が認められ、活性が持続しないことが実験
により認められた。一方、多座配位リン化合物を用いる
と、触媒の安定性は飛躍的に向上し、黒色のパラジウム
化合物の析出もなく、またくり返して触媒を使用しても
ほとんど活性の低下は見られなかった。
Atkins et al.
) Z is used as a starting complex, and allyl diethylamine is synthesized from allyl alcohol and diethylamine in a system in which triphenylphosphine is added in an equimolar amount to palladium (Tetrahedron Letters flh4
3.3821-3824 (1970)]. but,
As mentioned above, since triphenylphosphine is gradually oxidized by allyl alcohol, a black palladium compound was observed to be deposited, and it was found through experiments that the activity did not last. On the other hand, when a multidentate phosphorus compound was used, the stability of the catalyst was dramatically improved, there was no precipitation of black palladium compounds, and there was almost no decrease in activity even when the catalyst was used repeatedly. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のようにアリルアルコールはカルボン酸エステルに
比べ、酸を副生じないので有利であるが、反応性が低く
、またアリルアルコールの構成原子である酸素原子によ
り配位子であるホスフィンが酸化される欠点がある。
As mentioned above, allyl alcohol is advantageous over carboxylic acid esters because it does not produce acid as a by-product, but it also has low reactivity and the phosphine, which is a ligand, is oxidized by the oxygen atom that is a constituent atom of allyl alcohol. There are drawbacks.

本発明は、これらの欠点を解消し、実用可能な方法を提
供するものである。
The present invention eliminates these drawbacks and provides a practical method.

C問題点を解決するための手段〕 本発明によれば即ちアリル型アミンの製造方法が提供さ
れるのであって、この方法は、下記式、R,R。
Means for Solving Problem C] According to the present invention, there is provided a method for producing an allylic amine, which has the following formula, R, R.

\ 1 /C=C−C11・−011 〔上式中、R,、R2およびR1は、それぞれ独立に、
水素原子、炭素数1〜8の脂肪族炭化水素基、脂環族炭
化水素基、または芳香族炭化水素基を表す〕で示される
アリル型アルコールと第一級アミンおよび/または第二
級アミンとを、パラジウムの化合物と多座配位リン化合
物の存在下に、反応させることを特徴とする。
\ 1 /C=C-C11・-011 [In the above formula, R,, R2 and R1 are each independently,
represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 8 carbon atoms, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group] and a primary amine and/or a secondary amine. is characterized by reacting with a palladium compound and a polydentate phosphorus compound.

本発明に有用な第一級アミンの例としては、脂肪族鎖状
および環状アミン、例えば、CII s N II 2
 。
Examples of primary amines useful in the present invention include aliphatic linear and cyclic amines, such as CII s N II 2
.

C2H3NH2、Cl2NH2,n  C3H?NH2
、+so  CJtNHz 。
C2H3NH2, Cl2NH2,n C3H? NH2
, +so CJtNHz.

n  CjlJt12. iso  CJJtl□、 
t  C411JIIz 、 n−C5HsNHz 、
 n−C3HIINH2、1so−CsH+ INH2
、n −CsH+JIlz 、 n  C2H3NH2
、cyclo  Ca1l 1NH2など、芳香族アミ
ン、例えば、Cl2NH2、C6H,Cl2NH2゜o
−Cl1CJ<N112. m−Cl、CJ4NILz
 、 p−Cl1sC6114Nllz。
n CjlJt12. iso CJJtl□,
tC411JIIz, n-C5HsNHz,
n-C3HIINH2, 1so-CsH+ INH2
, n -CsH+JIlz, n C2H3NH2
, cyclo Ca1l 1NH2, etc., aromatic amines such as Cl2NH2, C6H, Cl2NH2゜o
-Cl1CJ<N112. m-Cl, CJ4NILz
, p-Cl1sC6114Nllz.

0−CH30C6H4NH2、m−Cl、0CJnNH
2,p−CHsOCsllJH2゜o  CIC611
4NtJ2. m  CIC5lLNR2,p  CI
C611JJI2゜2 、6−(Cl5)2C6H,N
H2,2、4、6−(CH3)、C6112NH2など
、および脂肪族および芳香族ジアミン、例えば、NH2
CH2CH2N1+2. NH,CH2CH2C112
N112゜NH2CH2CHzCH2CH2NHz 、
 NLCLCLCLCII2CLCLNL。
0-CH30C6H4NH2, m-Cl, 0CJnNH
2, p-CHsOCsllJH2゜o CIC611
4NtJ2. m CIC5lLNR2, p CI
C611JJI2゜2,6-(Cl5)2C6H,N
H2,2,4,6-(CH3), C6112NH2, etc., and aliphatic and aromatic diamines, e.g. NH2
CH2CH2N1+2. NH, CH2CH2C112
N112゜NH2CH2CHzCH2CH2NHz,
NLCLCLCLCII2CLCLNL.

o  Nll2CIlH4NH2、ra  NHzCs
)I<N11z 、 pNII2CsH4Nl12など
をあげることができるが、これらに限定されるものでは
ない。
o Nll2CIlH4NH2, ra NHzCs
)I<N11z, pNII2CsH4Nl12, etc., but are not limited to these.

第二級アミンとしては、脂肪族鎖状および環状アミン、
例えば、(CI+3)2NH、(C2115)2N11
 、 (C,H5)2NI+。
Secondary amines include aliphatic chain and cyclic amines,
For example, (CI+3)2NH, (C2115)2N11
, (C,H5)2NI+.

(n  C3H?>2NH、(n  C<HshNH、
(iso  C4H9)2NH。
(n C3H?>2NH, (n C<HshNH,
(iso C4H9)2NH.

(t  C<Hi)2Nfl 、 (n  C5Hs)
2Nll 、 (n  Cs1l+ 1)2NI+ 。
(t C<Hi)2Nfl, (n C5Hs)
2Nll, (n Cs1l+ 1)2NI+.

(n  C,H+ 5)zN)f 、 (cyclo 
 CJh +)(CHs)NH。
(n C, H+ 5)zN)f , (cyclo
CJh+)(CHs)NH.

(CI+、)(C2H5)N11 、 (C2115)
(C,1I5)N11など、芳香族アミン、例えば、(
C,H5)(CH3)NFI 、 (C,H6CH2)
(CH3)NH。
(CI+,)(C2H5)N11, (C2115)
Aromatic amines such as (C,1I5)N11, e.g.
C,H5)(CH3)NFI, (C,H6CH2)
(CH3)NH.

(o−C113C,ll4)(C113)N11 、(
w+−CI!、C,1I4)(CI!、)Nll 。
(o-C113C,ll4)(C113)N11 , (
w+-CI! ,C,1I4)(CI!,)Nll.

(p−CHsC,H4)(CHs)NH、(o−C1,
OC,L)(C■、)NH。
(p-CHsC,H4)(CHs)NH, (o-C1,
OC,L)(C■,)NH.

(C611,)2NHなと、および複素環式アミン、例
えば、本発明に有用なパラジウムの化合物としては、P
dCl2. PdBr2. PdI2. Pd(OCO
CH*)2゜Pd(CH2COC)I2COCR,)2
に2PdC1,、K2PdC1,、K2Pd(No3)
4などの無機塩、Pc1CI2(C211,)2 、 
Pd(π−C,II、)2゜PdCl2(C−H12)
 、 Pd(CsH42)zなどの有機配位子錯体、P
dCl2(NH3)2. PdC1z[N(C2115
)、]2.Pd(NOz)z(NH13)sなどのN−
配位錯体、Pd[P(CH3)3コ、。
(C611,)2NH, and heterocyclic amines, such as palladium compounds useful in the present invention, include P
dCl2. PdBr2. PdI2. Pd(OCO
CH*)2゜Pd(CH2COC)I2COCR,)2
2PdC1,,K2PdC1,,K2Pd(No3)
Inorganic salts such as 4, Pc1CI2(C211,)2,
Pd(π-C, II,)2゜PdCl2(C-H12)
, organic ligand complexes such as Pd(CsH42)z, P
dCl2(NH3)2. PdC1z[N(C2115
), ]2. N- such as Pd(NOz)z(NH13)s
Coordination complex, Pd[P(CH3)3.

pd[P(C2■S)3]4. Pd[P(n  C3
H7)3]4 。
pd[P(C2■S)3]4. Pd[P(n C3
H7)3]4.

Pd[P(iso−CJt)+]4. Pd[P(n 
 CJs)z]4゜Pd[P(Cslls)、]4. 
PdCO2[P(C−Hs)3]z 。
Pd[P(iso-CJt)+]4. Pd[P(n
CJs)z]4°Pd[P(Cslls), ]4.
PdCO2[P(C-Hs)3]z.

Pd(CJ−)[P(CsHs)、]2 、PdCl2
[P(CJs)3コ、。
Pd(CJ-)[P(CsHs),]2, PdCl2
[3 P(CJs).

PdCl2[P(n  C4H’9)3]2 、 Pd
Brz[P(C,)Is)z]z 1PdBr2[P(
n−C4H6)、コ2  、PdCl2[P(OCR−
)、コ、。
PdCl2[P(n C4H'9)3]2, Pd
Brz[P(C,)Is)z]z 1PdBr2[P(
n-C4H6), Co2, PdCl2[P(OCR-
),Ko,.

Pd12[P(OCH3)ff]2 、 PdC1(C
6H5)[P(C6JI5)3]2ノ如き三価のホスフ
ィン化合物を配位子とする錯体などを挙げることができ
るが、これらに限定されるものではない。
Pd12[P(OCH3)ff]2, PdC1(C
Examples include, but are not limited to, complexes having a trivalent phosphine compound such as 6H5)[P(C6JI5)3]2 as a ligand.

多座配位リン化合物としては、−最大、(式中、R4,
Rs 、 R?およびR6は炭素数1〜2゜の脂肪族炭
化水素基、芳香族炭化水素基、または脂環族炭化水素基
であり、R6は二価の炭化水素基である)で表される2
座配位の燐化合物も有効である。このような化合物の具
体例としては、(CH,)2PCH2P(CH3)2 
、 (C2HshP(CHz)2P(C2u、>2゜(
Cstls)2P(CH2)zP(Cslls)2. 
(n  C4Hs)zP(CHz)2P(n  C4H
11)’2 、 (t  CtHり2P(CH2)2P
(t  C4H9)2 。
As a polydentate phosphorus compound, -max, (in the formula, R4,
Rs, R? and R6 is an aliphatic hydrocarbon group, aromatic hydrocarbon group, or alicyclic hydrocarbon group having 1 to 2 carbon atoms, and R6 is a divalent hydrocarbon group).
Coordinated phosphorus compounds are also effective. Specific examples of such compounds include (CH,)2PCH2P(CH3)2
, (C2HshP(CHz)2P(C2u, >2°(
Cstls)2P(CH2)zP(Cslls)2.
(n C4Hs)zP(CHz)2P(n C4H
11)'2, (t CtHri2P(CH2)2P
(tC4H9)2.

(CsHs)2P(CH2)sP(CJs)2. (n
  C4H9)2P(CH2)3P(n  CJs)z
 、 (CsHs)2P(Cfh)4P(CJs)z 
(CsHs)2P(CH2)sP(CJs)2. (n
C4H9)2P(CH2)3P(n CJs)z
, (CsHs)2P(Cfh)4P(CJs)z
.

(C2H5)2P (Ctl□)4P(C2115)2
 、 (C6H5)2P(C11□)5P(C,ll、
)2゜(n  C<Hs)2P(CHz)sP(n  
C4H9)2 、 (C2H5)2P(C12)SP(
C211,)2などを挙げることができるが、これらに
限定されるものではない。
(C2H5)2P (Ctl□)4P(C2115)2
, (C6H5)2P(C11□)5P(C,ll,
)2゜(n C<Hs)2P(CHz)sP(n
C4H9)2, (C2H5)2P(C12)SP(
Examples include, but are not limited to, C211, )2, etc.

本発明の方法に含まれる反応は、アルカリを添加するこ
とにより、有利に進行する。この目的に用いることので
きるアルカリとしては以下のようなものを挙げることが
できる。即ち、水酸化アンモニウム塩、例えば、(CI
、)、NOH、(C2H5)4NO1l 。
The reactions involved in the process of the invention proceed advantageously by adding an alkali. Examples of alkalis that can be used for this purpose include the following. That is, ammonium hydroxide salts, such as (CI
), NOH, (C2H5)4NO1l.

(C,H5)4NOR、(n−C,l(、)、NOH、
(iso−C3H,)4NOH。
(C,H5)4NOR, (n-C,l(,),NOH,
(iso-C3H,)4NOH.

(n−C4111)4NOR、(iso−C4H9)4
NOH、(t−C411!1)4NOI+。
(n-C4111)4NOR, (iso-C4H9)4
NOH, (t-C411!1)4NOI+.

(CH3)(n  C4tls)3NOH、(CJs)
2(n  C3H2)2Non 。
(CH3) (n C4tls)3NOH, (CJs)
2(n C3H2)2Non.

(C,H,CH2)(CL)、NOHなど、アルカリ金
属化合物、例えば、Na011 、 KOH、LiOH
、NaH、Kl 、 LiH、Nal111. 。
Alkali metal compounds such as (C,H,CH2)(CL), NOH, e.g. Na011, KOH, LiOH
, NaH, Kl, LiH, Nal111. .

Li^I8.など、有機アルカリ金属化合物、例えば、
C1l、Li 、 CJ5Li 、 n−CJyLi 
、 n−C4LLiなど、アルカリ金属アルコキシド、
例えば、CH*ONa 。
Li^I8. Organic alkali metal compounds such as, for example,
C1l, Li, CJ5Li, n-CJyLi
, an alkali metal alkoxide such as n-C4LLi,
For example, CH*ONa.

C211sONa 、 n  C4H90Na 、 C
J、OL! 、 C2115OKなど、フェノール類の
アルカリ金属塩、例えばCJsONa 。
C211sONa, n C4H90Na, C
J.OL! , C2115OK, alkali metal salts of phenols, such as CJsONa.

Cs1lsOK 、 Ca1150Li 、 o−CI
、CsH40Na 、 n−C11−C6114ONa
Cs1lsOK, Ca1150Li, o-CI
, CsH40Na, n-C11-C6114ONa
.

p  CH:+C6H40Na 、 o  CHyC6
H40K 、 m  CHiCsH4OK 。
p CH:+C6H40Na, o CHyC6
H40K, mCHiCsH4OK.

p−C113CsH<OKなどを挙げることができるが
、もちろんこれらに限られるものではない。
Examples include, but are not limited to, p-C113CsH<OK.

アルカリ添加量は、パラジウム化合物のパラジウム金属
に対するモル比で1〜500、・好ましくは1〜200
の量であるのが望しい。
The amount of alkali added is 1 to 500, preferably 1 to 200, in molar ratio of palladium compound to palladium metal.
It is desirable that the amount of

本発明の方法においては、上記の如きパラジウム化合物
と多座配位リン化合物を組み合わせてなる触媒を、アリ
ル型アルコールの1モルに対して1 /10〜1 /1
00,000、好ましくは115o〜1/20.000
モルの量で用いるのが望ましい。また、この場合、多座
配位リン化合物は、パラジウム化合物のパラジウム金属
に対するモル比で、1〜100、好ましくは1〜20の
量で用いるのが望ましく、パラジウム化合物中に多座配
位リン化合物が含まれている場合は更に多座配位リン化
合物を用いる必要がないこともある。本発明においては
、多座配位リン化合物を用いることが必須であるが、単
座配位リン化合物が共存しても何らさしつがえない。
In the method of the present invention, the catalyst consisting of a combination of a palladium compound and a polydentate phosphorus compound as described above is used in an amount of 1/10 to 1/1 per mole of allyl alcohol.
00,000, preferably 115o to 1/20.000
Preferably, it is used in molar amounts. Further, in this case, the polydentate phosphorus compound is desirably used in an amount of 1 to 100, preferably 1 to 20 in molar ratio of the palladium compound to palladium metal. is included, it may not be necessary to further use a polydentate phosphorus compound. In the present invention, it is essential to use a polydentate phosphorus compound, but there is no problem even if a monodentate phosphorus compound coexists.

本発明の方法において、アミンは、アリル型アルコール
に対するモル比で1/100〜100、好ましくは1/
10〜10の量で用いられるのが望ましい。
In the method of the present invention, the amine is used in a molar ratio of 1/100 to 100, preferably 1/1 to the allylic alcohol.
Preferably, it is used in an amount of 10 to 10.

アリル型アルコールとアミンとの反応は、0〜200℃
、好ましくは30〜150℃の温度で行われるのがよい
The reaction between allylic alcohol and amine is carried out at 0 to 200°C.
, preferably at a temperature of 30 to 150°C.

本発明の方法は、溶媒の存在下にもしくは溶媒の存在な
しに実施することができる。有用な溶媒の例としては、
メタノール、エタノール、n−プロピルアルコール、1
so−プロピルアルコール、n−ブチルアルコール、1
so−ブチルアルコール、L−ブチルアルコール、エチ
レングリコール、プロピレングリコール等のアルコール
類、ベンゼン、トルエン、ヘキサン等の芳香族もしくは
脂肪族炭素水素類、アセトニトリル、ベンゾニトリル、
アクリロニトリル、アジポニトリル等のニトリル類。
The method of the invention can be carried out in the presence of a solvent or without the presence of a solvent. Examples of useful solvents include:
methanol, ethanol, n-propyl alcohol, 1
so-propyl alcohol, n-butyl alcohol, 1
Alcohols such as so-butyl alcohol, L-butyl alcohol, ethylene glycol, propylene glycol, aromatic or aliphatic hydrocarbons such as benzene, toluene, hexane, acetonitrile, benzonitrile,
Nitriles such as acrylonitrile and adiponitrile.

クロロベンゼン、ジクロロベンゼン、四塩化炭素、クロ
ロホルム、ジクロロメタン等のハロゲン化炭化水素類、
ジブチルエーテル、ジオキサン、ジエチレングリコール
ジメチルエーテル、トリエチレングリコールジメチルエ
ーテル等のエーテル類、トリエチルアミン、トリプロピ
ルアミン、トリブチルアミン、N、N−ジメチルアニリ
ン等の三級アミン類および水を挙げることができるが、
これらに限定されるものではない。
Halogenated hydrocarbons such as chlorobenzene, dichlorobenzene, carbon tetrachloride, chloroform, dichloromethane,
Examples include ethers such as dibutyl ether, dioxane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tertiary amines such as triethylamine, tripropylamine, tributylamine, N,N-dimethylaniline, and water.
It is not limited to these.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、アリル型アルコールとアミンと
を原料として用いて、塩の副生を伴うことなく、アリル
型アミンを収率よく得ることができ、極めて効率的がっ
安価にアリル型アミンを製造することができる。
According to the method of the present invention, allyl-type amines can be obtained in high yields without salt by-products using allyl-type alcohols and amines as raw materials, and allyl-type amines can be obtained in high yields extremely efficiently and inexpensively. Amines can be produced.

〔実施例〕〔Example〕

以下、実施例を挙げて、本発明をさらに説明する。もち
ろん、本発明はこれらの例によって限定されるべきもの
ではない。
The present invention will be further explained below with reference to Examples. Of course, the invention should not be limited to these examples.

実施例1〜13 3.0g(52,5ミリモル)のモノアリルアミンおよ
び8.4g(144,6ミリモル)のアリルアルコール
を、5gのプロピレングリコールおよび3.6gの水か
らなる溶媒中において、下記の第1表に示す触媒および
アルカリの存在下に、110℃で2時間反応させた。得
られた生成物の組成およびアリルアルコールの転化率を
第2表に示す。
Examples 1-13 3.0 g (52.5 mmol) of monoallylamine and 8.4 g (144.6 mmol) of allyl alcohol were prepared as follows in a solvent consisting of 5 g of propylene glycol and 3.6 g of water. The reaction was carried out at 110° C. for 2 hours in the presence of the catalyst and alkali shown in Table 1. The composition of the product obtained and the conversion rate of allyl alcohol are shown in Table 2.

以下余日 尚、表中、DPPBは1,4−ビス(ジフェニルホスフ
ィノ)ブタン、叶PEは1.2−ビス(ジフェニルホス
フィノ)エタン、TBAHOはテトラブチルアンモニウ
ムハイドロオキサイドである。
Hereinafter, in the table, DPPB is 1,4-bis(diphenylphosphino)butane, PE is 1,2-bis(diphenylphosphino)ethane, and TBAHO is tetrabutylammonium hydroxide.

第2表 実施例14および15 3.79g (51,8ミリモル)のジエチルアミンお
よび8.4g(144,6ミリモル)のアリルアルコー
ルを、5gのプロピレングリコールおよび3.6gの水
からなる溶媒中において、下記の第3表に示す触媒およ
びアルカリの存在下に、110℃で1時間反応させた。
Table 2 Examples 14 and 15 3.79 g (51.8 mmol) diethylamine and 8.4 g (144.6 mmol) allyl alcohol in a solvent consisting of 5 g propylene glycol and 3.6 g water. The reaction was carried out at 110° C. for 1 hour in the presence of the catalyst and alkali shown in Table 3 below.

得られた生成物の組成およびアリルアルコールの転化率
を第4表に示す。
Table 4 shows the composition of the product obtained and the conversion rate of allyl alcohol.

第3表 表中、υ)’PIJは1.4−ビス(ジフェニルホスフ
ィカプタンである。
In Table 3, υ)'PIJ is 1,4-bis(diphenylphosphcaptan).

第4表 実施例16 下記、 Pd(CH2COCH2COCH,)23.1mg(0
,01ミリモル)TBAHo          13
0mg(0,50ミリモル)プロピレングリコール  
5mZ 水              3.6mNアリルアル
コール    8.41g(144,8ミリモル)N−
メチルアニリン   5.57g(52,0ミリモル)
からなる系を110℃で2時間の反応に付した。
Table 4 Example 16 Below, Pd (CH2COCH2COCH,) 23.1 mg (0
,01 mmol) TBAHo 13
0 mg (0,50 mmol) propylene glycol
5mZ Water 3.6mN Allyl alcohol 8.41g (144.8 mmol) N-
Methylaniline 5.57g (52.0 mmol)
The system consisting of was subjected to a reaction at 110°C for 2 hours.

アリルアルコールの転化率は36.4%であり、生成物
は2.69g (25,1ミリモル)のN−メチル−N
−アリルアニリンと1.35g (13,8ミリモル)
のジアリルエーテルを含んでいた。
The conversion of allyl alcohol was 36.4% and the product was 2.69 g (25.1 mmol) of N-methyl-N
- allylaniline and 1.35 g (13,8 mmol)
It contained diallyl ether.

実施例17 下記、 Pct(CI+2COC112COCH3)215.3
mg(0,05ミリモル)TB^110       
  130mg(0,50ミリモル)1.4−ブタンジ
オール10社 アリルアルコール    8.40g(144,8ミリ
モル)ジエチルアミン     3.79g(51,8
ミリモル)からなる系を110℃で2時間の反応に付し
た6アリルアルコールの転化率は34.8%であり、生
成物は5.2g(46,0ミリモル)のアリルジエチル
アミンと0.1g (1,0ミリモル)のジアリルエー
テルを含んでいた。
Example 17 Below, Pct(CI+2COC112COCH3)215.3
mg (0.05 mmol) TB^110
130 mg (0,50 mmol) 1,4-butanediol 10 companies Allyl alcohol 8.40 g (144,8 mmol) Diethylamine 3.79 g (51,8
The conversion rate of hexaallylic alcohol was 34.8% when the system consisting of 5.2 g (46.0 mmol) of allyl diethylamine and 0.1 g ( 1.0 mmol) of diallyl ether.

実施例18 下記、 PdCl23.5mg(0,02ミリモル)14−ビス
(ジフェニ ルポスフィノ)ブタン  25.6…g(0,06ミリ
モル)TMΔtlo           45.5m
g(0,50ミリモル)1.3−ブタンジオール 5m
l メタリルアルコール  10.8g(150,0ミリモ
ル)ジエチルアミン     3.80g(52゜1ミ
リモル)からなる系を100℃で4時間の反応に付した
Example 18 Below, PdCl 23.5 mg (0.02 mmol) 14-bis(diphenylphosphino)butane 25.6...g (0.06 mmol) TMΔtlo 45.5 m
g (0.50 mmol) 1,3-butanediol 5m
A system consisting of 10.8 g (150.0 mmol) of methallyl alcohol and 3.80 g (52.0 mmol) of diethylamine was subjected to a reaction at 100° C. for 4 hours.

メタリルアルコールの転化率は32.3%であり、生成
物は5.9g(46,5ミリモル)のメタリルジエチル
アミンと0.1g (1,0ミリモル)のジアリルエー
テルを含んでいた。
The conversion of methallyl alcohol was 32.3% and the product contained 5.9 g (46.5 mmol) methallyl diethylamine and 0.1 g (1.0 mmol) diallyl ether.

Claims (1)

【特許請求の範囲】 1、下記式、 ▲数式、化学式、表等があります▼ 〔上式中、R_1、R_2およびR_3は、それぞれ独
立に、水素原子、炭素数1〜8の脂肪族炭化水素基、脂
環族炭化水素基、または芳香族炭化水素基を表す〕で示
されるアリル型アルコールと第一級アミンおよび/また
は第二級アミンとを、パラジウムの化合物と多座配位リ
ン化合物の存在下に、反応させることを特徴とするアリ
ル型アミンの製造法。
[Claims] 1. The following formula, ▲ Numerical formula, chemical formula, table, etc.▼ [In the above formula, R_1, R_2 and R_3 each independently represent a hydrogen atom or an aliphatic hydrocarbon having 1 to 8 carbon atoms. group, alicyclic hydrocarbon group, or aromatic hydrocarbon group] and a primary amine and/or a secondary amine, a palladium compound and a polydentate phosphorus compound. 1. A method for producing an allyl amine, which comprises reacting in the presence of an allyl amine.
JP62323833A 1987-12-11 1987-12-23 Method for producing allylic amine Expired - Fee Related JPH0757743B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62323833A JPH0757743B2 (en) 1987-12-23 1987-12-23 Method for producing allylic amine
DE88311646T DE3883724T2 (en) 1987-12-11 1988-12-08 Process for the preparation of allyl type amines.
EP88311646A EP0320269B1 (en) 1987-12-11 1988-12-08 Process for preparation of allyl type amine
US07/282,095 US4942261A (en) 1987-12-11 1988-12-09 Process for preparation of allyl type amine
KR1019880016446A KR890009827A (en) 1987-12-11 1988-12-10 Method for preparing allyl amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323833A JPH0757743B2 (en) 1987-12-23 1987-12-23 Method for producing allylic amine

Publications (2)

Publication Number Publication Date
JPH01165555A true JPH01165555A (en) 1989-06-29
JPH0757743B2 JPH0757743B2 (en) 1995-06-21

Family

ID=18159105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323833A Expired - Fee Related JPH0757743B2 (en) 1987-12-11 1987-12-23 Method for producing allylic amine

Country Status (1)

Country Link
JP (1) JPH0757743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510280A (en) * 2006-11-23 2010-04-02 チバ ホールディング インコーポレーテッド Method for producing N-allyl sterically hindered tertiary amine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037641A (en) * 1973-06-25 1975-04-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037641A (en) * 1973-06-25 1975-04-08

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510280A (en) * 2006-11-23 2010-04-02 チバ ホールディング インコーポレーテッド Method for producing N-allyl sterically hindered tertiary amine
KR101454703B1 (en) * 2006-11-23 2014-10-27 시바 홀딩 인코포레이티드 Process for the preparation of tertiary N-allyl sterically hindered amines

Also Published As

Publication number Publication date
JPH0757743B2 (en) 1995-06-21

Similar Documents

Publication Publication Date Title
US8586742B2 (en) Process for preparing amines from alcohols and ammonia
KR101821987B1 (en) Metal catalysts for selective formation of cyclic carbonates, process for preparing cyclic carbonate using the same and use of cyclic carbonate
EP0581131B1 (en) A process for producing alkylene carbonates
Sroor et al. Lanthanide (III)-bis (cyclopropylethinylamidinates): Synthesis, structure, and catalytic activity
KR101839877B1 (en) New organocatalysts and method of manufacturing alkylene carbonates using the same
JPH04211075A (en) Preparation of alkylene carbonate
JPH0161097B2 (en)
US4942261A (en) Process for preparation of allyl type amine
WO2003006420A1 (en) Catalytic method to convert aryl compounds to aryl amines
US6225499B1 (en) Process for preparing aminoarylacetylenes
Karmakar et al. Aluminium alkyl complexes supported by imino-phosphanamide ligand as precursors for catalytic guanylation reactions of carbodiimides
GB2082181A (en) A process for the production of acetaldehyde and ethanol
JPH01165555A (en) Production of allyl type amine
CA1208657A (en) Process for the preparation of formamides
US4355168A (en) Process for preparing aryl- or heteroarylhexadienoic acids
US4709087A (en) Process for the synthesis of isocyanates and of isocyanate derivatives
JPH01153660A (en) Production of allyl-type amine
US20190039990A1 (en) Homogeneous iron catalysts for the conversion of methanol to methyl formate and hydrogen
JPS632958A (en) Production of allyl type amine
US10266467B2 (en) Synthesis of glycols via transfer hydrogenation of alpha-functional esters with alcohols
KR101654787B1 (en) Catalyst Composition Comprising Palladium Ketoiminate Complex and Preparation Method for Cross-Coupling Compound Using the Composition
JPS58213745A (en) Preparation of alpha-ketoamide
JPS5982947A (en) Catalyst and method for producing acetic acid by catalytic rearrangement of methyl formate
US20190039991A1 (en) Homogeneous iron catalysts for the conversion of ethanol to ethyl acetate and hydrogen
JPS63307847A (en) Production of p-aminostyrene

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees