【考案の詳細な説明】
本考案は、ハニカム構造体の壁面に細孔を特定
の開口比で穿つたエアエレメントに関するもので
ある。
更に詳しくは、吸着処理又は除湿処理等の素子
として用いられるハニカム構造体の壁面に細孔を
特定の開口比で穿つことによつて気体流に乱流を
生ぜしめ、気体とハニカム構造体との接触を効果
的に行うことのできるハニカム構造のエアエレメ
ントに関するものである。
従来、悪臭や溶剤の吸着や除湿を目的として、
種々のハニカム構造体が利用され、また、提案が
なされている。
これらの構造体は、不織布タイプや三次元網状
体タイプに比べ、定型性に優れ、圧損が低い反
面、処理気体が一定方向の平行流となり、特に線
速度が速い場合にエレメント壁面への気体の接触
効率が低く、吸着速度又は吸湿速度が遅い。
このような問題点を解決するために、ハニカム
セルの大きさをより小さくするなどの検討が試み
られたが、ハニカム成形時にハニカム原料紙又は
シートが切断しやすくなり、生産生が著しく低下
し、また、成形がうまくできた場合でも、成形物
は、圧損が増大し、ハニカム構造体の長所が失わ
れてしまう。
本考案者らは、これらの問題を考慮に入れ、検
討した結果、ハニカム構造体の壁面に細孔を特定
の開口比で穿つことにより、吸着速度又は吸湿速
度の速い、しかも圧損の比較的低いエアエレメン
トが得られることを見出した。
本考案は下記の通りである。
すなわち、ハニカム構造体の壁面に0.05〜5mm2
の細孔を開口比0.05〜10%の範囲で穿つたエアエ
レメントである。
本考案のエアエレメントを図面にて示すと第1
図〜第5図の通りである。
第1図は、コルゲート加工体をハニカム状に巻
き上げた本考案エアエレメントの一部解除斜視図
を示す。第2図は、壁面に穿つ細孔の断面状態
図、第3図及び第4図は、コルゲート加工体の波
方向を一方向にそろえて積層した本考案エアエレ
メントの斜視図である。第5図は、コルゲート加
工体の波方向を90度交互に換えて積層した本考案
エアエレメントの斜視図である。
図面において、1は細孔、2及び3は壁面を示
す。
細孔を穿つ場所については、第2図aの如
く、波形壁の谷部と平形壁との接合部に穿つ場
合、第2図bの如く、平形壁に穿つ場合、第
2図cの如く、波形壁の側面に穿つ場合などいず
れの場所にも穿孔できる。
第5図の如く、波方向を90度交互に換えて積層
した場合、90度方向に吸着、脱着が行われるた
め、穿孔は、第2図cの場所、すなわち、波形壁
の側面に穿つことが必要である。
壁面2及び3は吸着能又は吸湿能を有する素材
にて構成されている。具体的には、活性炭の混抄
紙とした吸着能を有する素材、耐炎繊維、炭素繊
維、アスベストなどの混抄紙、カーボン材などに
吸着材、吸湿材などを担持した素材にて構成され
る。
本考案のエアエレメントは、例えば吸着素子と
して室内の悪臭や大気中のオキシダントの除去、
有機溶剤の除去及び回収等に用いられ、また、除
湿素子として、素子に吸湿材を担持させた形で除
湿に用いられる。
エアエレメントのハニカム構造体としては、例
えば吸着素子の場合、粉末状、破砕状活性炭、繊
維状活性炭を混抄したシート、もしくは紙をハニ
カム加工したもの、又は、直接上記原料を複合成
型等したものが用いられる。また、除湿素子の場
合、上記吸着素子の構造体がそのまま用いられる
ほか、耐炎繊維、炭素繊維、アスベスト繊維など
を混抄したシートもしくは紙をハニカム加工した
もの、又は、直接前記原料を複合成形等したもの
が用いられる。その他、セラミツクハニカム構造
体等でもよい。
除湿素子として用いる場合、ハニカム成型前又
は成形後に吸湿性塩類を5〜75重量%、好ましく
は10〜40重量%担持せしめる。
吸湿性塩類の担持量が5重量%未満の場合、そ
の効果が低く実用性に欠ける。75重量%を超える
場合、吸湿後素子の定型性が低く、型くずれし易
くなる。
吸湿性塩類としては、通常用いられている塩類
でよく、特にLiCl、LiBrが好ましい。
本考案のエアエレメントのハニカムセルの形状
は、波形、丸型、三角、四角、六角型等いずれで
もよく、セル1個の面積は、0.5〜50mm2の範囲、
特に1〜35mm2が好ましい。0.5mm2未満のように小
さくなると、圧損が高くなり、また、50mm2を超え
ると、吸着速度が著しく低下する。ハニカム壁面
に穿つ細孔の形状は任意のものが採用され得る
が、円形のものが好ましい。
本考案において、細孔は0.05〜5mm2で、かつ、
開口比は0.05〜10%、好ましくは、1〜5%であ
る。細孔は、均一に、かつ、等間隔に穿つことが
好ましい。
細孔が0.05mm2未満の場合、または、5mm2を超え
る場合において、開口比が0.05未満の場合は吸着
速度又は除湿速度の向上効果が認め難く、また、
10%を超える場合はハニカム素材の強度及び形態
安定性が低下する。
例えば、ポリアクリロニトリル系の繊維状活性
炭60重量%とレーヨン40重量%を混抄した、ベン
ゼン吸着量19.0重量%の紙を用いて、セル断面積
3.4mm2のコルゲート加工紙を作成し、更に、0.05
〜5mm2の細孔を壁面に対し種々の開口比になるよ
うに穿ち、これをハニカム状に巻き上げた。この
ペーパーハニカムについて性能を調べたところ、
下記の通りであつた。
【表】[Detailed Description of the Invention] The present invention relates to an air element in which pores are bored at a specific aperture ratio in the wall surface of a honeycomb structure. More specifically, by creating pores with a specific opening ratio in the wall of a honeycomb structure used as an element for adsorption treatment or dehumidification treatment, turbulence is created in the gas flow, and the interaction between the gas and the honeycomb structure is improved. This invention relates to an air element with a honeycomb structure that can effectively make contact. Traditionally, for the purpose of adsorbing bad odors and solvents and dehumidifying,
Various honeycomb structures have been used and proposed. These structures have superior formability and low pressure loss compared to non-woven fabric types and three-dimensional network types, but on the other hand, the process gas flows in parallel in a fixed direction, which prevents the gas from flowing against the element wall especially when the linear velocity is high. The contact efficiency is low and the rate of adsorption or moisture absorption is slow. In order to solve these problems, attempts have been made to reduce the size of the honeycomb cells, but the honeycomb raw paper or sheet becomes easier to cut during honeycomb forming, resulting in a significant drop in production. Furthermore, even if the molding is successful, the pressure loss of the molded product increases and the advantages of the honeycomb structure are lost. Taking these issues into consideration, the inventors of the present invention found that by drilling pores with a specific opening ratio in the wall of the honeycomb structure, the adsorption rate or moisture absorption rate is high, and the pressure drop is relatively low. It has been found that an air element can be obtained. The present invention is as follows. That is, 0.05 to 5 mm 2 on the wall of the honeycomb structure.
This air element has pores with an aperture ratio of 0.05 to 10%. The air element of this invention is shown in the drawing as follows.
As shown in Figs. FIG. 1 shows a partially exploded perspective view of the air element of the present invention in which a corrugated body is rolled up into a honeycomb shape. FIG. 2 is a cross-sectional view of the pores drilled in the wall surface, and FIGS. 3 and 4 are perspective views of the air element of the present invention in which the corrugated bodies are laminated with their wave directions aligned in one direction. FIG. 5 is a perspective view of the air element of the present invention, in which corrugated bodies are laminated with the wave directions alternated by 90 degrees. In the drawings, 1 indicates a pore, and 2 and 3 indicate a wall surface. Regarding the location of drilling the pores, as shown in Figure 2a, when drilling in the joint between the trough of the corrugated wall and the flat wall, as shown in Figure 2b, when drilling in the flat wall, as shown in Figure 2c Can be drilled in any location, such as on the side of a corrugated wall. As shown in Figure 5, when stacking layers with the wave direction alternated by 90 degrees, adsorption and desorption occur in the 90 degree direction, so the holes should be drilled at the location c in Figure 2, that is, on the side of the corrugated wall. is necessary. The wall surfaces 2 and 3 are made of a material having adsorption or moisture absorption ability. Specifically, it is made of a material having an adsorption capacity such as a paper mixed with activated carbon, a paper mixed with flame-resistant fiber, carbon fiber, asbestos, etc., or a material in which an adsorbent, a moisture absorbent, etc. are supported on a carbon material, etc. The air element of the present invention can be used, for example, as an adsorption element to remove indoor odors and atmospheric oxidants.
It is used for the removal and recovery of organic solvents, and is also used as a dehumidifying element in the form of a hygroscopic material supported on the element. As the honeycomb structure of the air element, for example, in the case of an adsorption element, a sheet made of a mixture of powdered, crushed activated carbon, or fibrous activated carbon, or paper processed into a honeycomb, or a composite formed from the above raw materials directly can be used. used. In addition, in the case of a dehumidifying element, the structure of the adsorption element described above can be used as is, or a sheet or paper mixed with flame-resistant fibers, carbon fibers, asbestos fibers, etc. can be honeycomb-processed, or the above-mentioned materials can be directly composite-molded, etc. things are used. In addition, a ceramic honeycomb structure or the like may be used. When used as a dehumidifying element, 5 to 75% by weight, preferably 10 to 40% by weight of hygroscopic salts are supported before or after honeycomb molding. When the supported amount of hygroscopic salts is less than 5% by weight, the effect is low and it lacks practicality. If it exceeds 75% by weight, the shape of the element after moisture absorption will be low and it will easily lose its shape. As the hygroscopic salts, commonly used salts may be used, and LiCl and LiBr are particularly preferred. The shape of the honeycomb cells of the air element of the present invention may be any shape such as wave, round, triangular, square, hexagon, etc., and the area of one cell is in the range of 0.5 to 50 mm2 ,
Particularly preferred is 1 to 35 mm2 . When it is smaller, such as less than 0.5 mm 2 , the pressure drop becomes high, and when it exceeds 50 mm 2 , the adsorption rate decreases significantly. Although any shape of the pores formed in the honeycomb wall surface may be adopted, a circular shape is preferable. In the present invention, the pores are 0.05 to 5 mm2 , and
The aperture ratio is 0.05-10%, preferably 1-5%. It is preferable that the pores be formed uniformly and at equal intervals. When the pores are less than 0.05 mm 2 or more than 5 mm 2 and the aperture ratio is less than 0.05, it is difficult to see an improvement in the adsorption rate or dehumidification rate, and
If it exceeds 10%, the strength and shape stability of the honeycomb material will decrease. For example, using paper with a benzene adsorption capacity of 19.0% by weight, which is made by mixing 60% by weight of polyacrylonitrile-based fibrous activated carbon and 40% by weight of rayon, the cell cross-sectional area
Create 3.4mm 2 corrugated paper and add 0.05
Pores of ~5 mm 2 were bored in the wall to give various opening ratios, and the pores were rolled up into a honeycomb shape. When we investigated the performance of this paper honeycomb, we found that
It was as follows. 【table】
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は、コルゲート加工体をハニカム状に巻
き上げた本考案エアエレメントの一部解除斜視
図、第2図a,b,cは、壁面に穿つ細孔の断面
状態図、第3図及び第4図は、コルゲート加工体
の波方向を一方向にそろえて積層した本考案エア
エレメントの斜視図、第5図は、コルゲート加工
体の波方向を90度交互に換えて積層した本考案エ
アエレメントの斜視図である。
図面において、1は細孔、2及び3は壁面を示
す。
Fig. 1 is a partially exploded perspective view of the air element of the present invention in which a corrugated body is rolled up into a honeycomb shape, Figs. Figure 4 is a perspective view of the air element of the present invention in which corrugated bodies are laminated with the wave directions aligned in one direction, and Figure 5 is a perspective view of the air element of the present invention in which the corrugated bodies are laminated with the wave directions alternated by 90 degrees. FIG. In the drawings, 1 indicates a pore, and 2 and 3 indicate a wall surface.