JPH01164918A - Two-dimensional optical scanner - Google Patents

Two-dimensional optical scanner

Info

Publication number
JPH01164918A
JPH01164918A JP62323525A JP32352587A JPH01164918A JP H01164918 A JPH01164918 A JP H01164918A JP 62323525 A JP62323525 A JP 62323525A JP 32352587 A JP32352587 A JP 32352587A JP H01164918 A JPH01164918 A JP H01164918A
Authority
JP
Japan
Prior art keywords
light beam
optical system
movable condensing
movable
condensing optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62323525A
Other languages
Japanese (ja)
Inventor
Tomio Sonehara
富雄 曽根原
Michio Yanagisawa
通雄 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62323525A priority Critical patent/JPH01164918A/en
Publication of JPH01164918A publication Critical patent/JPH01164918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To execute a raster scan at a high speed and with high accuracy by using rotary polygon mirror deflectors having each different rotation speed for executing horizontal and vertical deflections and a movable condensing means which is moved by a position information generating means of a light beam. CONSTITUTION:A light beam emitted from a laser light source 101 is made incident on a movable condensing system 103, and subsequently, brought to two-dimensional deflection by two rotary polygon mirror deflectors 104, 105. Also, in a position information generating means 102 whose timing is taken by a signal of a photodetector 107 for detecting a start point of the light beam, a position of the movable condensing optical system 103 corresponding to the beam position is programmed in advance, and by this signal, the movable condensing optical system 103 is driven. In such a way, a high speed raster having a high quality can be given simply.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザービームを2次元走査する走査装置の構
成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the configuration of a scanning device for two-dimensionally scanning a laser beam.

〔従来の技術〕[Conventional technology]

従来の2次元走査装置はNHK技術研究27NQ1、P
2O(1975)に記載の装置のように水平偏向は回転
多面鏡偏向器、垂直偏向はガルバノスキャナを用い、ア
ナモルフィツクなレンズによって像面湾曲補正をするも
のであった。またもうひとつの従来技術は第5図に示す
、ガルバノスキャナ501を2つ用いて、合焦補正のた
めの可動結像系502を有するものであった。なお50
3はレーザー光源、504は被走査平面である。
The conventional two-dimensional scanning device is NHK Technical Research 27NQ1, P
2O (1975), a rotating polygon mirror deflector was used for horizontal deflection, a galvano scanner was used for vertical deflection, and field curvature was corrected using an anamorphic lens. Another conventional technique, shown in FIG. 5, uses two galvano scanners 501 and has a movable imaging system 502 for focus correction. Furthermore, 50
3 is a laser light source, and 504 is a scanned plane.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の従来技術では、高精度高速制御を行うガルバノス
キャナを必要とし、高価な装置のために工作機械、レー
ザープロジェクタ−等に使用されるのみであった。そこ
で本発明は、このような問題点を解決するもので、その
目的は、簡便で、高品質な高速ラスターを与える2次元
光走査装置を提供するところにある。
The above-mentioned conventional technology requires a galvano scanner that performs high-precision, high-speed control, and is an expensive device that can only be used in machine tools, laser projectors, etc. SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide a two-dimensional optical scanning device that is simple and provides high-quality, high-speed rasters.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の2次元光走査装置は、水平、垂直の偏向手段が
異なった回転速度を有する回転多面鏡1目内器、光ビー
ムの位置情報発生手段、光ビームを被走査平面上に点状
結像させる可動集光光学系、光ビームの位置に対応し可
動集光光学系の位置情報を発生する手段及び駆動手段を
有することを特徴とする。
The two-dimensional optical scanning device of the present invention includes a rotary polygon mirror in which the horizontal and vertical deflection means have different rotational speeds, a light beam position information generating means, and a light beam that forms a dot on a scanned plane. It is characterized by comprising a movable condensing optical system for imaging, a means for generating position information of the movable condensing optical system corresponding to the position of the light beam, and a driving means.

〔作 用〕[For production]

本発明の上記の構成は、水平、垂直の偏向に回転多面鏡
偏向装置を用いて、高速2次元偏向を行なう。この時回
転多面鏡の偏向点の位置変動に伴なう非点収差、補正を
可動集光光学系によって電気的に能動的に行なう。さら
に、可動集光光学系の移動位置は、あらかじめプログラ
ムされた位置情報発生手段から与えられるものである。
The above configuration of the present invention performs high-speed two-dimensional deflection using a rotating polygon mirror deflection device for horizontal and vertical deflection. At this time, astigmatism caused by the positional variation of the deflection point of the rotating polygon mirror is corrected actively and electrically by a movable condensing optical system. Further, the movement position of the movable condensing optical system is given by a preprogrammed position information generating means.

〔実 施 例〕〔Example〕

第1図は本発明の2次元光走査装置の斜視図である。レ
ーザ光源101から出射した光と一1\は、可動集光光
学系103に入り、次に2つの回転多面鏡偏向器、10
4.105によって2次元偏向される。また107は光
ビームの始点検出を行なう光検出器であり、この信号に
よって位置情報発生手段102のタイミングがとられて
いる。位置情報発生手段には、あらかじめビーム位置に
対応した可動集光光学系の位置がプログラムされており
、この信号によって可動集光光学系103が駆動される
。106は被走査平面である。
FIG. 1 is a perspective view of a two-dimensional optical scanning device of the present invention. The light emitted from the laser light source 101 enters the movable condensing optical system 103, and then passes through two rotating polygonal mirror deflectors, 10
4.2-dimensionally deflected by 105. Further, 107 is a photodetector for detecting the starting point of the light beam, and the timing of the position information generating means 102 is determined based on this signal. The position of the movable condensing optical system corresponding to the beam position is programmed in advance in the position information generating means, and the movable condensing optical system 103 is driven by this signal. 106 is a scanned plane.

次により具体的な実施例を示す、第1表は本実施例の主
たる構成部品である。
Next, a more specific example is shown in Table 1, which shows the main components of this example.

第  1  表 第2図(a)(b)は光学系の概要図である。Table 1 FIGS. 2(a) and 2(b) are schematic diagrams of the optical system.

201はX−偏向面、202はY−偏向面を示し、第2
図(a)はY−1向面内、第2図(b)はX−偏向面内
へ、光路を斜影したものである。
201 is the X-deflection plane, 202 is the Y-deflection plane, and the second
FIG. 2(a) shows the optical path in the Y-1 direction plane, and FIG. 2(b) shows the optical path in the X-direction plane.

ここで可動集光光学系から被走査平面までの距離をy、
レーザー光源までの距離をX、可動集光光学系の焦点距
離をfとすると、基本的に、結像ない。
Here, the distance from the movable focusing optical system to the scanned plane is y,
If the distance to the laser light source is X and the focal length of the movable condensing optical system is f, basically no image is formed.

次に走査角を±θとすれば、yの補正量は、y(1−c
osθ)        ・・・<1)である。
Next, if the scanning angle is ±θ, the correction amount of y is y(1-c
osθ) ...<1).

さらに回転多面鏡の偏向面の光軸方向での移動が加わる
。一般に面数N、外接円半径r、するとこの補正量は最
大で である。
Furthermore, the deflection surface of the rotating polygon mirror is moved in the optical axis direction. Generally, if the number of surfaces is N and the radius of the circumscribed circle is r, then this correction amount is maximum.

以上からyの補正量の最大は、 ・・・(3) となる。From the above, the maximum correction amount for y is ...(3) becomes.

第1表のデータと、X ” 400 mmを入れると(
3)式は 24市+0.17市+1.8川mとなり、像面湾曲が支
配的であることがわかる。
If we enter the data in Table 1 and X” 400 mm, we get (
Equation 3) is 24 m + 0.17 m + 1.8 m, and it can be seen that field curvature is dominant.

y補正の最大を241T1w+とすると、可動集光光学
系の移動1は、(1)の結像式よりXの補正量は4μで
済むことになる。
Assuming that the maximum y correction is 241T1w+, the movement 1 of the movable condensing optical system requires only 4 μ of X correction according to the imaging formula (1).

第3図は、可動集光光学系の断面図である。ガラスレン
ズ301はレンズホルダ302に固定され、レンズホル
ダの外側に長手方向に着磁された永久磁石303と補助
磁極304.305が固定されている。レンズホルダは
、支持ばね306.307によってヨーク308に弾性
結合され支持ばねとヨークの間には、ダンパゴム309
.310が挿入されている。コイル311.312にそ
れぞれ逆方向の電流を流すことによって永久磁石に働く
力を制御することが可能で、CLを微小に変位させるこ
とか可能になっている。本アクチュエータの構造は、部
品が全て円筒状であるため加工か容易で、精度が確保し
易い。またダンパゴムの接着固定か不要であるため、接
着は容易でないが減衰特性の優れたシリコンゴム等をダ
ンパゴムに用いる事が可能となる。
FIG. 3 is a cross-sectional view of the movable condensing optical system. A glass lens 301 is fixed to a lens holder 302, and a permanent magnet 303 magnetized in the longitudinal direction and auxiliary magnetic poles 304 and 305 are fixed to the outside of the lens holder. The lens holder is elastically coupled to the yoke 308 by support springs 306 and 307, and a damper rubber 309 is provided between the support spring and the yoke.
.. 310 is inserted. By passing currents in opposite directions through the coils 311 and 312, it is possible to control the force acting on the permanent magnet, making it possible to minutely displace CL. The structure of this actuator is easy to process because all parts are cylindrical, and accuracy is easy to ensure. Furthermore, since it is not necessary to fix the damper rubber with adhesive, it becomes possible to use silicone rubber or the like, which is not easy to adhere but has excellent damping properties, as the damper rubber.

第4図は可動集光光学系の制御回路の構成図である。第
1図に示した始点検出器107からのインデックス信号
401によりクロック発生回路402からノラインカウ
ンタ403、データセレクタ404とアドレスカウンタ
404にクロックを供給する。ノラインカウンタは、メ
スキャンノラインの終点ないし始点を決定するものであ
り、メスキャナからの同期信号に用いることもできる。
FIG. 4 is a configuration diagram of a control circuit for the movable condensing optical system. A clock is supplied from a clock generation circuit 402 to a no-line counter 403, a data selector 404, and an address counter 404 in response to an index signal 401 from a start point detector 107 shown in FIG. The no-line counter determines the end point or starting point of the female scan no-line, and can also be used as a synchronization signal from the female scanner.

次にアドレスカウンタ404からのアドレスに従いビデ
オ信号405を一時記憶したフレームメモリ406、ア
クチュエータの補正位置情報を格納したメモリ407、
からそれぞれレーザー駆動用信号とアクチュエータの位
置信号が読み出される。
Next, a frame memory 406 temporarily stores the video signal 405 according to the address from the address counter 404, a memory 407 stores the corrected position information of the actuator,
A laser drive signal and an actuator position signal are respectively read out from the two.

404のデータセレクタは、シリアル変換を行なうもの
である。レーザー駆動信号はレーザードライバー408
でレベルシフトされレーザダイオード409の変調信号
となる。一方、アクチュエータ位置信号は同じくシリア
ル変換され、アクチュエータドライバー410によって
駆動レベルに変えられる。
A data selector 404 performs serial conversion. Laser drive signal is laser driver 408
The signal is level-shifted and becomes a modulation signal for the laser diode 409. Meanwhile, the actuator position signal is also serially converted and converted into a drive level by the actuator driver 410.

アクチュエータの駆動は絶対的な位置情報によって、開
レープの制御をかけるのが簡便である。
It is convenient to drive the actuator by controlling the open loop using absolute position information.

第4図はそのため位置検出を行なっていないが、精度を
必要とする際には、閉ループ制御を行なうとよい。
Therefore, position detection is not performed in FIG. 4, but when accuracy is required, closed loop control is preferably performed.

以上の構成でX−Y走査を行なったところ良好な解像点
数が得られた。尚、可動部をレーザーダイオードにした
場合も同様な結果が得られた。
When XY scanning was performed with the above configuration, a good number of resolution points was obtained. Similar results were obtained when the movable part was a laser diode.

以上実施例に基づき本発明を説明したが、上述の実施例
の工学系に、光路切り換えミラー、ビームの頭出し受光
系、面倒れ補正光学系が加わっても本発明の効果を何等
損なうものでは無いことは、自明である。また、応用分
野については、レーザビームプリンタに限らず、デイス
プレィ装置等にも使用することが可能である。
Although the present invention has been explained based on the embodiments above, even if an optical path switching mirror, a beam cue receiving system, and a surface tilt correction optical system are added to the engineering system of the above embodiments, the effects of the present invention will not be impaired in any way. It is self-evident that there is no such thing. Further, in terms of applied fields, the present invention is not limited to laser beam printers, but can also be used in display devices and the like.

〔発明の効果〕〔Effect of the invention〕

以上示したように本発明の2次元光走査装置によれば、
水平、垂直面向を行なう異なった回転速度を有する回転
多面i!allil向器、光ビー内器位置情報発生手段
により移動する可動集光手段を用いるために、従来必要
とした像面湾曲補正のためのアナモルフィックなレンズ
を用いることなく、高精度な光走査を行なうことができ
る。更に、量産性に優れた、回転多面鏡偏向器を用いる
ため、高速で、高精度なラスタースキャン走査を行なう
ことができる。
As shown above, according to the two-dimensional optical scanning device of the present invention,
A rotating polygon i! with different rotational speeds in horizontal and vertical directions. High-precision optical scanning is possible without using an anamorphic lens for field curvature correction, which was required in the past, by using a movable condensing means that is moved by the allil direction device and the optical beam internal position information generation means. can be done. Furthermore, since a rotating polygonal mirror deflector, which is excellent in mass production, is used, high-speed and highly accurate raster scanning can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の2次元光走査装置の斜視構成図。 第2図(a)、第2図(b)は光学系の概要図であり、
(a)はY−偏向面内、(b)はXI再自白面内光路を
示している。 第3図はアクチュエータの断面図。 第4図は可動集光光学系の制御回路の構成図である。 第5図は従来の2次元走査光学系の構成図である。 101・・・・・・レーザ光源 102・・・・・・位置情報発生手段 103・・・・・・可動集光光学系 104.105・・回転多面鏡偏向器 106・・・・・・被走査平面 107・・・・・・光検出器 以  上 出願人 セイコーエプソン株式会社 第3図 ttbj、け7情さ 第4図
FIG. 1 is a perspective configuration diagram of a two-dimensional optical scanning device of the present invention. FIG. 2(a) and FIG. 2(b) are schematic diagrams of the optical system,
(a) shows the optical path in the Y-deflection plane, and (b) shows the optical path in the XI reconfession plane. FIG. 3 is a sectional view of the actuator. FIG. 4 is a configuration diagram of a control circuit for the movable condensing optical system. FIG. 5 is a block diagram of a conventional two-dimensional scanning optical system. 101...Laser light source 102...Position information generating means 103...Movable condensing optical system 104.105...Rotating polygonal mirror deflector 106...Target Scanning plane 107...Photodetector and above Applicant: Seiko Epson Corporation, Figure 3, Figure 4

Claims (1)

【特許請求の範囲】[Claims] 光ビームを垂直及び水平に偏向する2つの偏向手段によ
って2次元走査する光走査装置において水平、垂直偏向
を行なう異なった回転速度を有する回転多面鏡偏向器、
光ビームの位置情報発生手段、光ビームを被走査平面上
に点状結像させる可動集光光学系、光ビームの位置情報
に対応し可動集光光学系の位置情報を発生する手段、及
び駆動手段を有することを特徴とする2次元光走査装置
In an optical scanning device that performs two-dimensional scanning using two deflection means that deflect a light beam vertically and horizontally, a rotating polygon mirror deflector having different rotational speeds that performs horizontal and vertical deflection;
A means for generating positional information of a light beam, a movable condensing optical system that forms a point-like image of the light beam on a scanned plane, a means for generating positional information of the movable condensing optical system corresponding to the positional information of the light beam, and a drive. A two-dimensional optical scanning device characterized by having a means.
JP62323525A 1987-12-21 1987-12-21 Two-dimensional optical scanner Pending JPH01164918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62323525A JPH01164918A (en) 1987-12-21 1987-12-21 Two-dimensional optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62323525A JPH01164918A (en) 1987-12-21 1987-12-21 Two-dimensional optical scanner

Publications (1)

Publication Number Publication Date
JPH01164918A true JPH01164918A (en) 1989-06-29

Family

ID=18155665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62323525A Pending JPH01164918A (en) 1987-12-21 1987-12-21 Two-dimensional optical scanner

Country Status (1)

Country Link
JP (1) JPH01164918A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021131A3 (en) * 1995-12-05 1997-07-24 Martin Capey Scanning system
KR100366155B1 (en) * 2000-04-10 2002-12-31 송태선 Two-dimensional optical scanning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021131A3 (en) * 1995-12-05 1997-07-24 Martin Capey Scanning system
KR100366155B1 (en) * 2000-04-10 2002-12-31 송태선 Two-dimensional optical scanning apparatus

Similar Documents

Publication Publication Date Title
US5225923A (en) Scanning microscope employing improved scanning mechanism
JP2004507710A5 (en)
CN106303264A (en) Controllable motor and the camera module of rapid focus sensor and control method is tilted based on camera lens
DE112013006119T5 (en) Optical scanner and projector
US7573626B2 (en) Optical scanner and image display apparatus having the same
US5835249A (en) Apparatus and method for exposing a liquid crystal panel by beam scanning
US4906061A (en) Collimated light beam scanning method including curvature of field correction
JPH01164918A (en) Two-dimensional optical scanner
US4560869A (en) Method and apparatus for scanning radiated energy using a single mirror with a plurality of pivotal positions
JP2000171742A (en) Scanning optical system and scanning image pickup optical system
JPS6256919A (en) Power varying method for optical scanning system
JPS58179815A (en) Optical scanner
CN114994892A (en) Laser confocal microscopic imaging system and method
JP4222895B2 (en) Optical deflector and scanning optical microscope using the optical deflector
KR930009683B1 (en) Operating device of optical system
CN104776920A (en) Super-resolution infrared imaging and stabilization integrated device
JPH03120509A (en) Light deflector
JP2003066353A (en) Cylinder inner surface scanning type image recorder
JPH0540951A (en) Rotational mirror device for tracking
JPS5888836A (en) Optical pickup device
JPH04150662A (en) Picture input device
CN118567091A (en) Visual field variable light path system based on double two-dimensional MEMS micro-mirrors and scanning method
JPH01167718A (en) Two-dimensional scanning device
KR910001796B1 (en) Light scanning method
JPH01145622A (en) Optical scanning device