JPH01164700A - Airframe cooling cycle - Google Patents

Airframe cooling cycle

Info

Publication number
JPH01164700A
JPH01164700A JP32359787A JP32359787A JPH01164700A JP H01164700 A JPH01164700 A JP H01164700A JP 32359787 A JP32359787 A JP 32359787A JP 32359787 A JP32359787 A JP 32359787A JP H01164700 A JPH01164700 A JP H01164700A
Authority
JP
Japan
Prior art keywords
hydrogen
airframe
turbine
cooling
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32359787A
Other languages
Japanese (ja)
Other versions
JPH052559B2 (en
Inventor
Takeshi Karita
苅田 丈士
Akio Kan
冠 昭夫
Yoshio Wakamatsu
義男 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP32359787A priority Critical patent/JPH01164700A/en
Publication of JPH01164700A publication Critical patent/JPH01164700A/en
Publication of JPH052559B2 publication Critical patent/JPH052559B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE: To improve efficiency by cooling an airframe with a propellant, and spouting the heated propellant after this heat exchange from a nozzle in a missile exposed to a high temperature by aerodynamic heating, etc. CONSTITUTION: The hydrogen fed from a liquid hydrogen tank 2 provided in an airframe 1 exposed to a high temperature is boosted by a pump 3, then it is used for the heat exchange (cooling) with the airframe 1 by a heat exchanger 4. The heat-exchanged hydrogen drives a turbine 6' with its whole quantity, for example, then the hydrogen is exhausted through a nozzle 5. Power is obtained by a large turbine flow in this cycle, the hydrogen temperature at a turbine outlet is relatively high in a range that the pressure ratio required for the turbine 6' is near 1, and a high specific impulse can be expected.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、機体が高温に曝される高速飛翔体の機体の
冷却サイクル、特にその冷媒が吸収したエネルギーを機
体の推進に用いる冷却サイクルに関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a cooling cycle for the airframe of a high-speed flying object where the airframe is exposed to high temperatures, and particularly to a cooling cycle in which the energy absorbed by the coolant is used to propel the airframe. .

(従来技術) スペースシャトルの大気圏への再突入時等に機体が空力
加熱等により2000℃にも及ぶ高温に曝され、この高
温から機体を護るため、断熱タイルを機体表面に張る等
の対策が講じられていることはよく知られている。
(Prior art) When a space shuttle re-enters the atmosphere, the aircraft is exposed to high temperatures of up to 2000 degrees Celsius due to aerodynamic heating, etc., and in order to protect the aircraft from this high temperature, measures such as placing heat insulating tiles on the surface of the aircraft have been taken. What is being taught is well known.

(この発明が解決しようとする問題点)従来のスペース
シャトルの再突入等の場合には、高温に曝される時間は
そう長くは無く、断熱層によって機体が直接高温に曝さ
れるのを防ぐことが可能であったが、超音速大陸間飛翔
体等にあっては、空力加熱を受ける時間が長く、断熱層
だけで十分に機体の温度上昇を防ぐことは難しくなる。
(Problem to be solved by this invention) In the case of conventional space shuttle re-entry, etc., the period of exposure to high temperatures is not very long, and the insulating layer prevents the aircraft from being directly exposed to high temperatures. However, in the case of supersonic intercontinental vehicles, etc., the time spent undergoing aerodynamic heating is long, making it difficult to sufficiently prevent the temperature of the vehicle from rising with just the insulation layer.

さらに、断熱層による機体の防護は、発生する熱を単に
遮断し、逃すだけで、これを積極的に利用するものでは
なかった。
Furthermore, the protection of the aircraft with a heat insulating layer merely blocked the generated heat and allowed it to escape, but did not actively utilize it.

(問題を解決するための手段) この発明では、スペース・プレーンなどの高速飛翔体に
おいて、空力加熱などのために機体は高温の空気に曝さ
れるが、この高温から機体を護る為に、液体水素等の推
進剤によって冷却すると共に、この熱交換を行った後の
加熱された冷却剤をノズルから噴出させることによって
補助推進系に用いる。
(Means for Solving the Problem) In this invention, in high-speed flying vehicles such as space planes, the aircraft body is exposed to high-temperature air due to aerodynamic heating, etc. In order to protect the aircraft body from this high temperature, liquid It is cooled by a propellant such as hydrogen, and the heated coolant after this heat exchange is ejected from a nozzle and used for the auxiliary propulsion system.

熱交換を行うためには、熱交換に伴う圧力損失分の昇圧
をして冷却剤を圧送する必要があるが、圧送器の開動に
、機体冷却に用いた後の冷却剤を用いるのがよい。
In order to perform heat exchange, it is necessary to increase the pressure to compensate for the pressure loss caused by heat exchange and pump the coolant, but it is better to use the coolant that has been used to cool the aircraft to open the pump. .

(実施例) 以下、この発明の実施例を示す。(Example) Examples of this invention will be shown below.

第1図に燃料を冷却剤に用いた場合の機体冷却サイクル
の概念図を示す。この実施例においては燃料には水素を
用いた。図中1は高温に曝される機体であり、その上部
の枠内は機体内に配設された冷却系統の概念図である。
Figure 1 shows a conceptual diagram of the airframe cooling cycle when fuel is used as the coolant. In this example, hydrogen was used as the fuel. In the figure, numeral 1 is an aircraft body exposed to high temperatures, and the frame above it is a conceptual diagram of a cooling system installed within the aircraft body.

液体水素タンク2から送られた水素は、ポンプ3で昇圧
された後、熱交換部4で機体との熱交換(冷却)に使わ
れる。
Hydrogen sent from the liquid hydrogen tank 2 is pressurized by a pump 3 and then used for heat exchange (cooling) with the aircraft body in a heat exchange section 4.

熱交換後の水素はノズル5を通して排気され、推進力が
得られる。図中6はポンプ3の開動装置を示すが、この
駆動には何を用いても良い。
The hydrogen after heat exchange is exhausted through the nozzle 5, and propulsive force is obtained. In the figure, 6 indicates an opening device for the pump 3, but any device may be used for this drive.

第2図は、このポンプ邸動系をタービンにした実施例を
示す。第2図(a)は熱交換後の水素全量でタービン6
′を開動し、その後ノズルを通して水素を排気する場合
であり、同図(b)は熱交換後の水素の一部をタービン
6′の駆動に充て、残りはノズル5を通して排気する。
FIG. 2 shows an embodiment in which this pump housing system is a turbine. Figure 2 (a) shows the total amount of hydrogen at the turbine 6 after heat exchange.
' is opened, and then hydrogen is exhausted through the nozzle. In FIG. 2B, part of the hydrogen after heat exchange is used to drive the turbine 6', and the rest is exhausted through the nozzle 5.

また、タービン駆動に使われた水素は、ノズル5′から
排気される。図中、第1図と同じ構成部分は同一符号で
表される。
Furthermore, the hydrogen used to drive the turbine is exhausted from the nozzle 5'. In the figure, the same components as in FIG. 1 are represented by the same symbols.

(a)のサイクルは大きなタービン流量で動力を得るタ
イプである。タービンで必要な圧力比が1に近い範囲で
はタービン出口での水素温度も比較的高く、高比推力が
期待される。
The cycle (a) is a type that obtains power with a large turbine flow rate. In a range where the pressure ratio required by the turbine is close to 1, the hydrogen temperature at the turbine outlet is also relatively high, and high specific impulse is expected.

(b)のサイクルは比較的大きなタービン圧力比で動力
を得るタイプである。そのためにタービン出口での水素
温度はかなり低下し、ノズル5′からのタービン排気水
素に高比推力は望めないが、主ノズル5から排気される
水素の温度は高いので、全体としては(a)の場合と大
きな違いはないものと考えられる。
The cycle (b) is a type that obtains power at a relatively large turbine pressure ratio. For this reason, the hydrogen temperature at the turbine outlet drops considerably, and high specific impulse cannot be expected from the turbine exhaust hydrogen from the nozzle 5', but the temperature of the hydrogen exhausted from the main nozzle 5 is high, so as a whole, (a) It is thought that there is no big difference from the case of .

第3図は、ポンプ3からの水素の一部とタンク7からの
酸化剤(ここでは酸素)をガス・ジェネレイタ−8で燃
焼させ、燃焼ガスでタービン6′を開動するようにした
実施例を示す。
FIG. 3 shows an embodiment in which part of the hydrogen from the pump 3 and the oxidizer (here oxygen) from the tank 7 are combusted in a gas generator 8, and the combustion gas is used to open the turbine 6'. show.

このサイクルは第2図(b)に示すサイクルとほぼ同じ
である。酸化剤が必要になるが、第2図(b)に示すサ
イクルよりも柔軟性に富んだサイクルを構成することが
できる。
This cycle is almost the same as the cycle shown in FIG. 2(b). Although an oxidizing agent is required, it is possible to construct a cycle with greater flexibility than the cycle shown in FIG. 2(b).

これらの実施例の冷却、推進サイクルの性能を具体的に
検討する。第4図に、今回の検討に用いた飛行マツハ数
と高度の関係を示し、マツハ6では高度20km、マツ
ハ8では高度25kI11、マツハ10では高度30k
m、マツハ12では高度35kmと仮定した。これは動
圧100kPaでの飛行経路に近いものである。
The performance of the cooling and propulsion cycles of these examples will be specifically examined. Figure 4 shows the relationship between the flying Matsuha number and altitude used in this study. Matsuha 6 has an altitude of 20 km, Matsuha 8 has an altitude of 25 kI11, and Matsuha 10 has an altitude of 30 km.
m, and Matsuha 12 was assumed to be at an altitude of 35 km. This is close to the flight path at a dynamic pressure of 100 kPa.

スペース・プレーンの全長70m、幅10m、先端部の
曲率は半径1m、冷却を必要とする表面面積を600 
m2とし、空気側の壁温は10006K、冷却流路出口
での水素温度を800”Kとし、また、機体表面の放射
率は0.5とした場合の、機体冷却サイクルでの冷却剤
流量を第5図に示す。
The total length of the space plane is 70 m, the width is 10 m, the radius of curvature at the tip is 1 m, and the surface area requiring cooling is 600 m.
m2, the wall temperature on the air side is 10006K, the hydrogen temperature at the exit of the cooling channel is 800"K, and the emissivity of the aircraft surface is 0.5, then the coolant flow rate in the aircraft cooling cycle is It is shown in FIG.

横軸に飛行マツハ数、縦軸に水素流量をとっている。マ
ツハ6ではほとんど熱交換をしないが、マツハ10にな
ると約9kg−5−”の冷却剤が使われる。これは、マ
ツハ10で推力500kNを発生する空気吸込エンジン
の水素流量の約1/3にあたる。
The horizontal axis shows the flight Matsuha number, and the vertical axis shows the hydrogen flow rate. In the Matsuha 6, there is almost no heat exchange, but in the Matsuha 10, about 9 kg-5" of coolant is used. This is about 1/3 of the hydrogen flow rate of the air-breathing engine that generates 500 kN of thrust in the Matsuha 10. .

第6図にポンプ出口圧力を示す。ノズル上流側マニホル
ド圧力をQ、5MPaにし、冷却に必要な水素をポンプ
で圧送した場合の結果である。第2図(a)に示すよう
なタービンでの圧力差は含まれていない。冷却流路は代
表直径2■とし、機体中央から先端部へ行き、再び機体
中央に戻る経路を仮定している。
Figure 6 shows the pump outlet pressure. The results are obtained when the manifold pressure on the upstream side of the nozzle was set to Q, 5 MPa, and hydrogen necessary for cooling was pumped. The pressure difference in the turbine as shown in FIG. 2(a) is not included. The cooling flow path has a typical diameter of 2 square meters, and assumes a path that goes from the center of the fuselage to the tip and returns to the center of the fuselage.

マツハ6では冷却剤流量が極めて小さいのでポンプ出口
圧力も低いが、マツハ10になると約5MPaのポンプ
出口圧力が必要となる。
In the Matsuha 6, the coolant flow rate is extremely small, so the pump outlet pressure is also low, but in the Matsuha 10, a pump outlet pressure of approximately 5 MPa is required.

第2図(a)のサイクルを用いる場合、例えばノズル上
流側マニホルド圧力を0.4MPaにし、かわってター
ビン入口圧力を0.5MPaとすると1.25 (=0
.510.4)のタービン圧力比でサイクルは充分に成
立する。圧力比がほぼ1であるために、タービンを出た
水素の温度も約760’ Kとあまり下がらない。
When using the cycle shown in FIG. 2(a), for example, if the manifold pressure on the upstream side of the nozzle is set to 0.4 MPa and the turbine inlet pressure is set to 0.5 MPa, then 1.25 (=0
.. The cycle is sufficiently established at a turbine pressure ratio of 510.4). Since the pressure ratio is approximately 1, the temperature of the hydrogen exiting the turbine does not drop much to about 760'K.

第3図に示すサイクルを用いた場合、ポンプ水素流量は
、タービン駆動に要する水素流量だけ今回の検討結果よ
りも多くなる。そのためポンプ出口圧力は第6図に示す
値よりも若干高くなることが予想される。
When the cycle shown in FIG. 3 is used, the pump hydrogen flow rate will be greater than the present study result by the hydrogen flow rate required to drive the turbine. Therefore, the pump outlet pressure is expected to be slightly higher than the value shown in FIG.

第7図に10=1のノズルを用いて800’にの水素を
排気した場合の推力を示す。800’にの水素では約3
70秒の比推力が得られる。よってマツハ1oでは約3
0kNの推力がこの機体冷却サイクルによって発生され
る。上記のように第2図(a)のサイクルを用いると、
タービン出口温度760’にでの比推力は約360秒と
なり、マツハ10での推力は800’にの場合よりも約
1kN低下する。
Figure 7 shows the thrust when hydrogen is exhausted at 800' using a 10=1 nozzle. About 3 for hydrogen at 800'
A specific impulse of 70 seconds is obtained. Therefore, Matsuha 1o is about 3
A thrust of 0 kN is generated by this airframe cooling cycle. Using the cycle shown in Figure 2(a) as above,
The specific impulse at a turbine outlet temperature of 760' is approximately 360 seconds, and the thrust at Matsuha 10 is approximately 1 kN lower than at 800'.

スペースプレーン等においては、周知のように。As is well known in space planes, etc.

液体水素等で空気吸込エンジンを冷却するが、高速にな
ると冷却に必要な液体水素は燃焼の必要量をオーバーし
てしまい、全量を燃焼室に送入すると水素/酸素比の崩
れによってエンジンの性能低下を招く傾向が生じる。従
って、機体の冷却に用いた水素をエンジンに送入するこ
とは多くの場合不適当であり、加熱水素はそのままノズ
ルから排気し、補助推進系とするのがよい。この補助推
進系は、機体の姿勢制御、ブレーキ用の逆噴射等に利用
するのが有利であると考えられる。
The air-breathing engine is cooled with liquid hydrogen, etc., but at high speeds, the amount of liquid hydrogen required for cooling exceeds the amount required for combustion, and if the entire amount is sent to the combustion chamber, the hydrogen/oxygen ratio collapses, causing engine performance to deteriorate. A tendency to decline occurs. Therefore, in many cases it is inappropriate to feed the hydrogen used for cooling the aircraft to the engine, and it is better to exhaust the heated hydrogen directly from the nozzle and use it as an auxiliary propulsion system. This auxiliary propulsion system is considered to be advantageous for use in controlling the attitude of the aircraft, reverse injection for braking, and the like.

(発明の効果) この発明は、上記のように搭載した冷却剤で機体を強制
的に冷却するので、空力加熱等による昇温に対する耐熱
性を向上させるだけでなく、冷却剤が吸収したエネルギ
ーを積極的に補助推進系として利用することが出来るの
で、効率の高い飛行を可能とする。
(Effects of the Invention) This invention forcibly cools the aircraft using the on-board coolant as described above, which not only improves heat resistance against temperature increases due to aerodynamic heating, but also reduces the energy absorbed by the coolant. Since it can be actively used as an auxiliary propulsion system, highly efficient flight is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料を冷却剤に用いた場合の機体冷却サイクル
の概念図、第2図は、ポンプ駆動系をタービンにした場
合の機体冷却サイクルの概念図、第3図はガス・ジェネ
レイタ−を用いた場合の機体冷却サイクルの概念図、第
4図は飛行マツハ数と高度の関係を示すグラフ、第5図
は機体冷却サイクルでの冷却剤流量を示すグラフ、第6
図は冷却サイクルのポンプ出口圧力を示すグラフ、第7
図は機体冷却サイクルで発生される推力を示すグラフで
ある。図中の符号は に機体  2:液体水素タンク  3:ポンプ4:熱交
換部  5:排気ノズル  5′ :タービン排気ノズ
ル  6:ポンプ駆動装置  6′:タービン  7:
酸化剤タンク  8:ガス・ジェネレイタ−を示す。 特許出願人 科学技術庁航空宇宙技術研究所張長  洲
  秀  夫 第1図 第   2   図   (a) 第4図 マ、・・数 第5図 マツハ数
Figure 1 is a conceptual diagram of the airframe cooling cycle when fuel is used as the coolant, Figure 2 is a conceptual diagram of the airframe cooling cycle when the pump drive system is a turbine, and Figure 3 is a conceptual diagram of the airframe cooling cycle when the pump drive system is a turbine. Figure 4 is a graph showing the relationship between flight Matsuha number and altitude, Figure 5 is a graph showing the coolant flow rate in the aircraft cooling cycle, and Figure 6
Figure 7 is a graph showing the pump outlet pressure of the cooling cycle.
The figure is a graph showing the thrust generated during the airframe cooling cycle. Symbols in the figure indicate the fuselage 2: Liquid hydrogen tank 3: Pump 4: Heat exchange section 5: Exhaust nozzle 5': Turbine exhaust nozzle 6: Pump drive device 6': Turbine 7:
Oxidizer tank 8: Shows gas generator. Patent Applicant Hideo Su, National Institute of Aerospace Science and Technology, Japan

Claims (1)

【特許請求の範囲】 1)空力加熱等によって高温に曝される飛翔体において
、機体を推進剤によって冷却すると共にこの熱交換を行
った後の加熱された冷却剤をノズルから噴出させること
によって推力を得ることを特徴とする機体冷却サイクル 2)上記加熱された冷却剤によって得られる推力を姿勢
制御等の推進系に用いることを特徴とする特許請求の範
囲第1項記載の機体冷却サイクル3)機体冷却で得られ
た熱を用いて機体冷却サイクルを駆動することを特徴と
する特許請求の範囲第1項記載の機体冷却サイクル
[Claims] 1) In a flying object that is exposed to high temperatures due to aerodynamic heating, etc., thrust is generated by cooling the airframe with a propellant and ejecting the heated coolant after this heat exchange from a nozzle. 2) An airframe cooling cycle according to claim 1, wherein the thrust obtained by the heated coolant is used for a propulsion system such as attitude control 3) The airframe cooling cycle according to claim 1, characterized in that the airframe cooling cycle is driven using heat obtained by airframe cooling.
JP32359787A 1987-12-21 1987-12-21 Airframe cooling cycle Granted JPH01164700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32359787A JPH01164700A (en) 1987-12-21 1987-12-21 Airframe cooling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32359787A JPH01164700A (en) 1987-12-21 1987-12-21 Airframe cooling cycle

Publications (2)

Publication Number Publication Date
JPH01164700A true JPH01164700A (en) 1989-06-28
JPH052559B2 JPH052559B2 (en) 1993-01-12

Family

ID=18156488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32359787A Granted JPH01164700A (en) 1987-12-21 1987-12-21 Airframe cooling cycle

Country Status (1)

Country Link
JP (1) JPH01164700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112934A1 (en) 2019-12-03 2021-06-10 Stoke Space Technologies, Inc. Actively-cooled heat shield system and vehicle including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015461A (en) * 1958-03-07 1962-01-02 North American Aviation Inc High-performance aircraft
US4273304A (en) * 1979-01-31 1981-06-16 Frosch Robert A Cooling system for high speed aircraft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015461A (en) * 1958-03-07 1962-01-02 North American Aviation Inc High-performance aircraft
US4273304A (en) * 1979-01-31 1981-06-16 Frosch Robert A Cooling system for high speed aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112934A1 (en) 2019-12-03 2021-06-10 Stoke Space Technologies, Inc. Actively-cooled heat shield system and vehicle including the same
EP4045869A4 (en) * 2019-12-03 2023-10-18 Stoke Space Technologies, Inc. Actively-cooled heat shield system and vehicle including the same

Also Published As

Publication number Publication date
JPH052559B2 (en) 1993-01-12

Similar Documents

Publication Publication Date Title
US9388740B2 (en) Thermoelectric generator in turbine engine nozzles
RU2669220C2 (en) Engine
RU2674832C2 (en) Engine
Kanda et al. Conceptual study of a rocket-ramjet combined-cycle engine for an aerospace plane
Tomioka et al. System Analysis of a Hydrocarbon-fueled RBCC engine applied to a TSTO Launch Vehicle
CN113404621B (en) Solid-liquid mixed engine and method for Mars ascending aircraft
CN110318878A (en) Sky and space plane Active Cooling System based on Magnetohydrodynamic Power bypass
Ueda et al. R&D on Hydrocarbon-fueled RBCC Engines for a TSTO Launch Vehicle
Kare Laser-powered heat exchanger rocket for ground-to-orbit launch
US6766638B1 (en) Hydrogen peroxide based propulsion system
US3133413A (en) Control and cooling of rocket motors
JPH01164700A (en) Airframe cooling cycle
US3486338A (en) Air breathing missile
Boden Heat transfer in rocket motors and the application of film and sweat cooling
US6973774B1 (en) Hybrid propulsion system
Abramson Investigation of Internal Film Cooling of Exhaust Nozzle of a 1000-pound-thrust Liquid-ammonia Liquid-oxygen Rocket
Kobayashi et al. Optimization of airbreathing propulsion system for the TSTO spaceplane
US20220412709A1 (en) Actively-Cooled Heat Shield System and Vehicle Including the Same
RU154901U1 (en) HYPERSONIC RANGE AIR REACTIVE ENGINE
JPH079222B2 (en) Method and apparatus for cooling high temperature gas film
WO2022237965A1 (en) Propulsion system for a vehicle using heat energy absorbed in an active cooling system
Kanda Study of an airframe-integrated scramjet engine system
Funaki et al. Experiment on Air Intake Performance of Ejector-Jet using Wax-based Fuel Hybrid Rocket.
JP2713664B2 (en) Cold air generator for supersonic vehicles
Isono et al. Arrangement of Rocket Engine Location in a Combined Cycle Engine

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term