JPH01164537A - Detection of tool anomaly by main spindle revolution speed change signal - Google Patents

Detection of tool anomaly by main spindle revolution speed change signal

Info

Publication number
JPH01164537A
JPH01164537A JP62319687A JP31968787A JPH01164537A JP H01164537 A JPH01164537 A JP H01164537A JP 62319687 A JP62319687 A JP 62319687A JP 31968787 A JP31968787 A JP 31968787A JP H01164537 A JPH01164537 A JP H01164537A
Authority
JP
Japan
Prior art keywords
signal
tool
anomaly
main spindle
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62319687A
Other languages
Japanese (ja)
Inventor
Toshio Sada
登志夫 佐田
Shozo Takada
高田 祥三
Tatsu Nakajima
中島 達
Takeshi Yasushige
安重 桓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP62319687A priority Critical patent/JPH01164537A/en
Publication of JPH01164537A publication Critical patent/JPH01164537A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0904Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
    • B23Q17/0919Arrangements for measuring or adjusting cutting-tool geometry in presetting devices
    • B23Q17/0947Monitoring devices for measuring cutting angles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To improve the reliability in the detection of tool anomaly by obtaining the pattern of the change of the cutting force applied onto a cutter from the variation signal of the main spindle revolution speed and judging the change from the normal pattern when an anomaly is generated in the pattern. CONSTITUTION:A pulse generator 1 is used for detecting the change of a main spindle revolving device, and the output pulse signal is changed to a voltage signal in a frequency/voltage converter 2. this signal is allowed to pass through a band-pass filter 3 for strengthening the pertinent frequency (number of revolution X number of cutters), and inputted into a calculator 5 by an analogue/ digital converter 4. In the calculator 5, the cutting state vector is obtained, and the distance from a standard vector is calculated, and anomaly judgement is performed. When an anomaly is detected, an alarm signal 7 is outputted for an NC controller 6. Further, in order to obtain the correspondence with an individual cutter on the tool and the revolution speed variation signal, the revolution pulse signal of a main spindle is obtained by using a photoelectric converter 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工作機械の無人運転等に係わる切削加工分野
において、特に、断続切削が行われる場合の工具の欠損
検出に好適な、工具異常検知技術に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is suitable for detecting tool failure in the field of cutting related to unmanned operation of machine tools, etc., particularly when interrupted cutting is performed. Regarding detection technology.

〔従来の技術〕[Conventional technology]

従来技術としては、主軸モータ電流の変動を検出し、自
己回帰モデル等を用いて信号処理を行い工具の異常を検
知する技術がある。
As a conventional technology, there is a technology that detects fluctuations in the spindle motor current, performs signal processing using an autoregressive model, etc., and detects tool abnormalities.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の主軸モータ電流を検出する方法では、信号が切削
力の変動に起因する以外の雑音成分を多く含むため、複
雑な信号処理が必要となり計算時間がかかるうえ、異常
の兆候を雑音から区別するためのしきい値の設定が容易
でないという問題がある。さらに、信号中に含まれる、
電源に起因するリップルにより、電源周波数以上の変動
成分を観測できず、主軸回転数が高い場合には適用でき
ない。
In the conventional method of detecting spindle motor current, the signal contains many noise components other than those caused by fluctuations in cutting force, so complex signal processing is required and calculation time is required, and it is difficult to distinguish signs of abnormality from noise. There is a problem in that it is not easy to set a threshold for this purpose. Furthermore, included in the signal,
Due to ripples caused by the power supply, fluctuation components higher than the power supply frequency cannot be observed, and this method cannot be applied when the spindle rotation speed is high.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために本発明は、主軸回転速度
の変動信号から、切刃に加わる切削力の変化パターンを
求め、このパターンが異常発生した時に正常パターンか
ら変化するのを判別することによって、工具異常を検知
することを特徴とする。
In order to solve the above-mentioned problems, the present invention obtains a change pattern of the cutting force applied to the cutting edge from a fluctuation signal of the spindle rotation speed, and determines whether this pattern changes from a normal pattern when an abnormality occurs. It is characterized by detecting tool abnormalities.

主軸回転速度の検出は、例えば主軸モータの速度制御の
ために通常主軸モータに取り付けられている速度発電機
あるいはパルスジェネレータを用いて行うことができる
。6枚刃の正面フライス工具を用いた時に得られた信号
の例を第4A図および第4B図に示す。第4A図が正常
工具を用いた場合で、第4B図が切刃の1枚に欠損があ
る場合である。第4A図から明らかなように、信号には
、各切刃が切削を断続的に行うことによって生じる切削
力の変動がよく現れている。また、この変動は、主軸1
回転を周期として同一のパターンが繰り返される。とこ
ろが、第4B図に示される欠損工具の場合は、このパタ
ーンが大きく変化している。
Detection of the spindle rotation speed can be performed, for example, using a speed generator or a pulse generator that is usually attached to the spindle motor to control the speed of the spindle motor. Examples of signals obtained when using a six-blade face milling tool are shown in FIGS. 4A and 4B. Fig. 4A shows the case where a normal tool is used, and Fig. 4B shows the case where one of the cutting edges is damaged. As is clear from FIG. 4A, the signal clearly shows fluctuations in the cutting force caused by the intermittent cutting of each cutting blade. Also, this variation is caused by the spindle 1
The same pattern is repeated with each rotation as a period. However, in the case of the defective tool shown in FIG. 4B, this pattern has changed significantly.

この主軸1回転分の主軸回転速度変動信号の変化パター
ンの特徴をパターンベクトルの形で抽出する。例えば、
第3図に示すように、主軸1回転分の変動の極大、極小
値を求め、パターンベクトルとする。切刃の数をm1主
軸1回転中1番目の極大値、極小値をH(i) 、L(
i)  (i = L・・・、m)とすると、パターン
ベクトルPは、P=(H(1)、・・・、H(m) 、
L(1)、・・・、L(m>)となる。しかし、このま
までは、パターンベクトルは切削条件によって変化をす
る。そこで、規格化を行い、切削条件が変化しても、切
刃の状態が変化しない限りパターンベクトルが一定に保
たれるようにする。すなわち、極大値H(])に対して
、以下の変換を行う。
The characteristics of the change pattern of the spindle rotational speed fluctuation signal for one rotation of the spindle are extracted in the form of a pattern vector. for example,
As shown in FIG. 3, the maximum and minimum values of fluctuation for one rotation of the main shaft are determined and used as a pattern vector. The number of cutting edges is m1, and the first maximum value and minimum value during one rotation of the spindle are H(i) and L(
i) If (i = L..., m), the pattern vector P is P = (H(1),..., H(m),
L(1), . . . , L(m>). However, if left as is, the pattern vector changes depending on the cutting conditions. Therefore, standardization is performed so that even if the cutting conditions change, the pattern vector remains constant as long as the state of the cutting edge does not change. That is, the following conversion is performed on the local maximum value H(]).

同様の規格化をL(1)についても行うと規格化された
ベクトル p’=ct+’cす、 ・・・、 H′ (ホ)、 L
  ’  (1)、 ・・・、L ′ (ホ)〕が求ま
る。これを切削状態ベクトルと呼ぶ。
When similar normalization is performed for L(1), the normalized vector p'=ct+'c, ..., H' (e), L
'(1), ..., L' (e)] is found. This is called a cutting state vector.

工具異常の検知のためには、あらかじめ標準的な切削条
件のもとて切削を行い、工具が正常な状態のときの切削
状態ベクトルを基準ベクトルとして求めておく。実際の
作業中には、観測信号から時々刻々計算される切削状態
ベクトルP′、と基準ベクトルp/、との間の距離を以
下のように求める。
To detect a tool abnormality, cutting is performed in advance under standard cutting conditions, and a cutting state vector when the tool is in a normal state is determined as a reference vector. During actual work, the distance between the cutting state vector P', which is calculated from the observed signals from time to time, and the reference vector p/, is determined as follows.

この距離が一定しきい値を超えた場合に、工具異常が発
生したと判断する。
When this distance exceeds a certain threshold value, it is determined that a tool abnormality has occurred.

なお、ここで示した検知アルゴリズムは一例であり、こ
の他にも、工具異常にともなう主軸回転速度信号のパタ
ーンの変化を識別する方法は、例えば、変動信号の振幅
値のばらつきや振幅分布を利用したものなど、種々考え
られる。
Note that the detection algorithm shown here is just an example, and there are other ways to identify changes in the pattern of the spindle rotational speed signal due to tool abnormalities, such as using variations in the amplitude value or amplitude distribution of the fluctuation signal. There are various things that can be considered.

〔作 用〕[For production]

主軸回転速度の変動信号は切削工具に加わる切削抵抗の
変化をよく反映し、雑音も少ない。したがって、切削工
具の異常によって切削過程に変化を生じ、その結果とし
て切削抵抗の変動パターンが変化するのを主軸回転速度
の変動信号から明瞭に識別できる。このため、微小な工
具欠損のような初期異常に対しても、感度のよい、しき
い値の設定に過敏に影響されない信頼性の高い検知がで
きる。また、雑音が少ないために比較的簡単なパターン
マツチングなどを用いた検知アルゴリズムが適用でき、
計算負荷が軽くてすむ。
The fluctuation signal of the spindle rotation speed reflects changes in the cutting resistance applied to the cutting tool well and has little noise. Therefore, it is possible to clearly identify a change in the cutting process due to an abnormality in the cutting tool, and a resulting change in the cutting resistance variation pattern from the spindle rotational speed variation signal. For this reason, even initial abnormalities such as minute tool defects can be detected with high sensitivity and high reliability without being overly influenced by threshold settings. In addition, since there is little noise, relatively simple detection algorithms such as pattern matching can be applied.
The calculation load is light.

さらに、信号中に電源に起因するリップルが含まれてい
ないために、検出可能な主軸回転数範囲が制限されない
。このため、異常判定のための計算時間が少なくてすむ
こととあいまって、主軸回転数が数千rpmの場合まで
適用可能である。
Furthermore, since the signal does not include ripples caused by the power supply, the detectable spindle rotational speed range is not limited. Therefore, in addition to requiring less calculation time for abnormality determination, this method can be applied to cases where the spindle rotation speed is several thousand rpm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、自動化生産システムに対して工具異常
監視機能を与えることができ、無人運転を特徴とする特
に、予測が不可能で突発的に生じる工具欠損を感度よく
検知できることは、安定した無人運転を実現する上で、
大きな効果がある。
According to the present invention, it is possible to provide a tool abnormality monitoring function to an automated production system, and in particular, in a system characterized by unmanned operation, it is possible to sensitively detect tool breakage that occurs suddenly and cannot be predicted. In realizing unmanned driving,
It has a big effect.

また、主軸回転速度の変動信号は、作業上の邪魔になる
ような、特別な計測装置を必要としないため、安価で簡
便、かつ信頼性の高い工具異常検知システムを実現でき
るという効果がある。
Further, since the fluctuation signal of the spindle rotational speed does not require a special measuring device that would get in the way of work, it has the effect of realizing a tool abnormality detection system that is inexpensive, simple, and highly reliable.

〔実施例〕〔Example〕

本発明を用いた工具異常検知システムの構成例を第1図
に示す。主軸回転装置の変動検出にはパルスジェネレー
タ1を用いている。この場合は、そこから出力されるパ
ルス信号を周波数/電圧変換器2で電圧信号とする。パ
ルスジェネレータ1の代わりに速度発電機を用いてもよ
い。その場合は、直接電圧信号が得られる。信号は、注
目する周波数(回転数X刃数)を強調するためにバンド
パスフィルタ3を通した後、アナログ/ディジタル変換
器4より計算機5に入力する。計算機5では、切削状態
ベクトルを求め、基準ベクトルとの距離を計算し、異常
の判定をする。異常が検知された場合は、数値制御装置
6に対し、アラーム信号7が出力される。
An example of the configuration of a tool abnormality detection system using the present invention is shown in FIG. A pulse generator 1 is used to detect fluctuations in the spindle rotating device. In this case, the pulse signal output therefrom is converted into a voltage signal by the frequency/voltage converter 2. A speed generator may be used instead of the pulse generator 1. In that case, a direct voltage signal is obtained. The signal is passed through a band pass filter 3 to emphasize the frequency of interest (number of rotations x number of blades), and then inputted into a computer 5 from an analog/digital converter 4. The computer 5 obtains the cutting state vector, calculates the distance from the reference vector, and determines whether there is an abnormality. If an abnormality is detected, an alarm signal 7 is output to the numerical control device 6.

なお、工具上の個々の切刃と回転数変動信号との対応を
とるために光電変換器8を用いて主軸の回転バ ス信号
を得ている。
Note that a photoelectric converter 8 is used to obtain the spindle rotation bus signal in order to correspond to the rotational speed fluctuation signal and each cutting edge on the tool.

第2図に本システムによって工具の欠損を検出した例を
示す。使用工具は工具径80mm、4枚刃の正面フライ
ス工具、被削材は構造用炭素鋼545Cである。本図に
は各時点で得られた切削状態ベクトルと基準ベクトルと
の距離が示されている。矢印で示した時点で1枚の切刃
に欠損が生じている。
Figure 2 shows an example of detecting a missing tool using this system. The tool used was a four-blade face milling tool with a tool diameter of 80 mm, and the work material was structural carbon steel 545C. This figure shows the distance between the cutting state vector obtained at each point in time and the reference vector. At the point indicated by the arrow, one cutting edge is damaged.

これに対応して、距離が急激に増加して、工具異常の発
生を明確に示しているのが分る。
Correspondingly, it can be seen that the distance increases rapidly, clearly indicating the occurrence of tool abnormality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す工具異常検出システムの
構成図、第2図は本発明を実施した場合の工具欠損検出
例を示すグラフ、第3図は欠損工具が示す主軸1回転分
の主軸回転数変動パターンベクトルのグラフ、第4A図
および第4B図はそれぞれ正常工具と欠損工具が示す主
軸回転数変動波形のグラフ。 1・・・・パルスジェネレータ、 2・・・・周波数/電圧変換器、 3・・・・バンドパスフィルタ、 4・・・・アナログ/デジタル変換器、5・・・・計算
器、 6・・・・数値制御装置、 7・・・・アラーム信号、 8・・・・光電検出器。 第7区
Fig. 1 is a configuration diagram of a tool abnormality detection system showing an embodiment of the present invention, Fig. 2 is a graph showing an example of tool defect detection when the present invention is implemented, and Fig. 3 is a rotation of one spindle indicated by a defective tool. Figures 4A and 4B are graphs of spindle rotational speed variation waveforms shown by a normal tool and a defective tool, respectively. 1... Pulse generator, 2... Frequency/voltage converter, 3... Band pass filter, 4... Analog/digital converter, 5... Calculator, 6... ...Numerical control device, 7..Alarm signal, 8..Photoelectric detector. District 7

Claims (1)

【特許請求の範囲】[Claims]  工作機械の主軸回転速度の変動パターンより切削工具
の異常を早期に検知する方法。
A method for early detection of abnormalities in cutting tools based on fluctuation patterns in the spindle speed of machine tools.
JP62319687A 1987-12-17 1987-12-17 Detection of tool anomaly by main spindle revolution speed change signal Pending JPH01164537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319687A JPH01164537A (en) 1987-12-17 1987-12-17 Detection of tool anomaly by main spindle revolution speed change signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319687A JPH01164537A (en) 1987-12-17 1987-12-17 Detection of tool anomaly by main spindle revolution speed change signal

Publications (1)

Publication Number Publication Date
JPH01164537A true JPH01164537A (en) 1989-06-28

Family

ID=18113063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319687A Pending JPH01164537A (en) 1987-12-17 1987-12-17 Detection of tool anomaly by main spindle revolution speed change signal

Country Status (1)

Country Link
JP (1) JPH01164537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081487A (en) * 2016-11-16 2018-05-24 東芝機械株式会社 Machine tool and control method thereof
JP2018183824A (en) * 2017-04-25 2018-11-22 西島株式会社 Circular saw cutting machine
JP2020093305A (en) * 2018-12-10 2020-06-18 Dmg森精機株式会社 Machine tool, chipped part detection method, and chipped part detection program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125754A (en) * 1984-07-09 1986-02-04 Osaka Kiko Co Ltd Tool breaking detector
JPS62193748A (en) * 1986-02-19 1987-08-25 Ichiro Inazaki Tool damage detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125754A (en) * 1984-07-09 1986-02-04 Osaka Kiko Co Ltd Tool breaking detector
JPS62193748A (en) * 1986-02-19 1987-08-25 Ichiro Inazaki Tool damage detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081487A (en) * 2016-11-16 2018-05-24 東芝機械株式会社 Machine tool and control method thereof
US11256229B2 (en) 2016-11-16 2022-02-22 Shibaura Machine Co., Ltd. Industrial machinery and control method thereof
JP2018183824A (en) * 2017-04-25 2018-11-22 西島株式会社 Circular saw cutting machine
JP2020093305A (en) * 2018-12-10 2020-06-18 Dmg森精機株式会社 Machine tool, chipped part detection method, and chipped part detection program

Similar Documents

Publication Publication Date Title
US5407265A (en) System and method for detecting cutting tool failure
AU614221B2 (en) Multi-level tool break detection using multi-mode sensing
Tansel et al. Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals
JPS58500605A (en) Method and device for monitoring tool status of a machine tool that performs periodic machining
JPH0257262B2 (en)
CN107866696B (en) Management system and device, main shaft fault detection method, computer readable medium
CN108620950A (en) A kind of turning cutting tool drilling monitoring method and system
Yan et al. A multi-sensor strategy for tool failure detection in milling
KR20190025133A (en) The method and device for optimizing machine tool cutting conditions using vibration acceleration
JPH01164537A (en) Detection of tool anomaly by main spindle revolution speed change signal
Tarng et al. Use of model-based cutting simulation system for tool breakage monitoring in milling
JP3103193B2 (en) Diagnostic equipment for rotating machinery
US6330515B1 (en) Method for protecting against vibrations in rotary machines
JP2575323B2 (en) Cutting load monitoring method by data extraction averaging method
JPH0463662A (en) Tool abnormality detecting device
JPH068106A (en) Adaptive control system and state judgment device
JP2022135472A (en) Chatter vibration detection method and system
JPS59175941A (en) Method and device for detecting abnormality of multiple cutting edge tool
JP2699453B2 (en) Processing control system, processing control device, and method of manufacturing workpiece
JPS59142048A (en) Abnormality detector for tool
KR102719373B1 (en) Iot based intelligent monitoring and diagnosis method and device for machine tool
JPS59175945A (en) Abnormality detecting device for multiple cutting edge tool
JPS6085854A (en) Method of detecting abnormality of multi-edged tool
JP2017169353A (en) Diagnostic system
CN211202379U (en) Cigarette equipment and fan detecting system thereof