JPH01164537A - Detection of tool anomaly by main spindle revolution speed change signal - Google Patents
Detection of tool anomaly by main spindle revolution speed change signalInfo
- Publication number
- JPH01164537A JPH01164537A JP62319687A JP31968787A JPH01164537A JP H01164537 A JPH01164537 A JP H01164537A JP 62319687 A JP62319687 A JP 62319687A JP 31968787 A JP31968787 A JP 31968787A JP H01164537 A JPH01164537 A JP H01164537A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- tool
- anomaly
- main spindle
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 11
- 238000005520 cutting process Methods 0.000 claims abstract description 30
- 230000005856 abnormality Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0904—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool before or after machining
- B23Q17/0919—Arrangements for measuring or adjusting cutting-tool geometry in presetting devices
- B23Q17/0947—Monitoring devices for measuring cutting angles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4065—Monitoring tool breakage, life or condition
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、工作機械の無人運転等に係わる切削加工分野
において、特に、断続切削が行われる場合の工具の欠損
検出に好適な、工具異常検知技術に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is suitable for detecting tool failure in the field of cutting related to unmanned operation of machine tools, etc., particularly when interrupted cutting is performed. Regarding detection technology.
従来技術としては、主軸モータ電流の変動を検出し、自
己回帰モデル等を用いて信号処理を行い工具の異常を検
知する技術がある。As a conventional technology, there is a technology that detects fluctuations in the spindle motor current, performs signal processing using an autoregressive model, etc., and detects tool abnormalities.
従来の主軸モータ電流を検出する方法では、信号が切削
力の変動に起因する以外の雑音成分を多く含むため、複
雑な信号処理が必要となり計算時間がかかるうえ、異常
の兆候を雑音から区別するためのしきい値の設定が容易
でないという問題がある。さらに、信号中に含まれる、
電源に起因するリップルにより、電源周波数以上の変動
成分を観測できず、主軸回転数が高い場合には適用でき
ない。In the conventional method of detecting spindle motor current, the signal contains many noise components other than those caused by fluctuations in cutting force, so complex signal processing is required and calculation time is required, and it is difficult to distinguish signs of abnormality from noise. There is a problem in that it is not easy to set a threshold for this purpose. Furthermore, included in the signal,
Due to ripples caused by the power supply, fluctuation components higher than the power supply frequency cannot be observed, and this method cannot be applied when the spindle rotation speed is high.
上記の問題点を解決するために本発明は、主軸回転速度
の変動信号から、切刃に加わる切削力の変化パターンを
求め、このパターンが異常発生した時に正常パターンか
ら変化するのを判別することによって、工具異常を検知
することを特徴とする。In order to solve the above-mentioned problems, the present invention obtains a change pattern of the cutting force applied to the cutting edge from a fluctuation signal of the spindle rotation speed, and determines whether this pattern changes from a normal pattern when an abnormality occurs. It is characterized by detecting tool abnormalities.
主軸回転速度の検出は、例えば主軸モータの速度制御の
ために通常主軸モータに取り付けられている速度発電機
あるいはパルスジェネレータを用いて行うことができる
。6枚刃の正面フライス工具を用いた時に得られた信号
の例を第4A図および第4B図に示す。第4A図が正常
工具を用いた場合で、第4B図が切刃の1枚に欠損があ
る場合である。第4A図から明らかなように、信号には
、各切刃が切削を断続的に行うことによって生じる切削
力の変動がよく現れている。また、この変動は、主軸1
回転を周期として同一のパターンが繰り返される。とこ
ろが、第4B図に示される欠損工具の場合は、このパタ
ーンが大きく変化している。Detection of the spindle rotation speed can be performed, for example, using a speed generator or a pulse generator that is usually attached to the spindle motor to control the speed of the spindle motor. Examples of signals obtained when using a six-blade face milling tool are shown in FIGS. 4A and 4B. Fig. 4A shows the case where a normal tool is used, and Fig. 4B shows the case where one of the cutting edges is damaged. As is clear from FIG. 4A, the signal clearly shows fluctuations in the cutting force caused by the intermittent cutting of each cutting blade. Also, this variation is caused by the spindle 1
The same pattern is repeated with each rotation as a period. However, in the case of the defective tool shown in FIG. 4B, this pattern has changed significantly.
この主軸1回転分の主軸回転速度変動信号の変化パター
ンの特徴をパターンベクトルの形で抽出する。例えば、
第3図に示すように、主軸1回転分の変動の極大、極小
値を求め、パターンベクトルとする。切刃の数をm1主
軸1回転中1番目の極大値、極小値をH(i) 、L(
i) (i = L・・・、m)とすると、パターン
ベクトルPは、P=(H(1)、・・・、H(m) 、
L(1)、・・・、L(m>)となる。しかし、このま
までは、パターンベクトルは切削条件によって変化をす
る。そこで、規格化を行い、切削条件が変化しても、切
刃の状態が変化しない限りパターンベクトルが一定に保
たれるようにする。すなわち、極大値H(])に対して
、以下の変換を行う。The characteristics of the change pattern of the spindle rotational speed fluctuation signal for one rotation of the spindle are extracted in the form of a pattern vector. for example,
As shown in FIG. 3, the maximum and minimum values of fluctuation for one rotation of the main shaft are determined and used as a pattern vector. The number of cutting edges is m1, and the first maximum value and minimum value during one rotation of the spindle are H(i) and L(
i) If (i = L..., m), the pattern vector P is P = (H(1),..., H(m),
L(1), . . . , L(m>). However, if left as is, the pattern vector changes depending on the cutting conditions. Therefore, standardization is performed so that even if the cutting conditions change, the pattern vector remains constant as long as the state of the cutting edge does not change. That is, the following conversion is performed on the local maximum value H(]).
同様の規格化をL(1)についても行うと規格化された
ベクトル
p’=ct+’cす、 ・・・、 H′ (ホ)、 L
’ (1)、 ・・・、L ′ (ホ)〕が求ま
る。これを切削状態ベクトルと呼ぶ。When similar normalization is performed for L(1), the normalized vector p'=ct+'c, ..., H' (e), L
'(1), ..., L' (e)] is found. This is called a cutting state vector.
工具異常の検知のためには、あらかじめ標準的な切削条
件のもとて切削を行い、工具が正常な状態のときの切削
状態ベクトルを基準ベクトルとして求めておく。実際の
作業中には、観測信号から時々刻々計算される切削状態
ベクトルP′、と基準ベクトルp/、との間の距離を以
下のように求める。To detect a tool abnormality, cutting is performed in advance under standard cutting conditions, and a cutting state vector when the tool is in a normal state is determined as a reference vector. During actual work, the distance between the cutting state vector P', which is calculated from the observed signals from time to time, and the reference vector p/, is determined as follows.
この距離が一定しきい値を超えた場合に、工具異常が発
生したと判断する。When this distance exceeds a certain threshold value, it is determined that a tool abnormality has occurred.
なお、ここで示した検知アルゴリズムは一例であり、こ
の他にも、工具異常にともなう主軸回転速度信号のパタ
ーンの変化を識別する方法は、例えば、変動信号の振幅
値のばらつきや振幅分布を利用したものなど、種々考え
られる。Note that the detection algorithm shown here is just an example, and there are other ways to identify changes in the pattern of the spindle rotational speed signal due to tool abnormalities, such as using variations in the amplitude value or amplitude distribution of the fluctuation signal. There are various things that can be considered.
主軸回転速度の変動信号は切削工具に加わる切削抵抗の
変化をよく反映し、雑音も少ない。したがって、切削工
具の異常によって切削過程に変化を生じ、その結果とし
て切削抵抗の変動パターンが変化するのを主軸回転速度
の変動信号から明瞭に識別できる。このため、微小な工
具欠損のような初期異常に対しても、感度のよい、しき
い値の設定に過敏に影響されない信頼性の高い検知がで
きる。また、雑音が少ないために比較的簡単なパターン
マツチングなどを用いた検知アルゴリズムが適用でき、
計算負荷が軽くてすむ。The fluctuation signal of the spindle rotation speed reflects changes in the cutting resistance applied to the cutting tool well and has little noise. Therefore, it is possible to clearly identify a change in the cutting process due to an abnormality in the cutting tool, and a resulting change in the cutting resistance variation pattern from the spindle rotational speed variation signal. For this reason, even initial abnormalities such as minute tool defects can be detected with high sensitivity and high reliability without being overly influenced by threshold settings. In addition, since there is little noise, relatively simple detection algorithms such as pattern matching can be applied.
The calculation load is light.
さらに、信号中に電源に起因するリップルが含まれてい
ないために、検出可能な主軸回転数範囲が制限されない
。このため、異常判定のための計算時間が少なくてすむ
こととあいまって、主軸回転数が数千rpmの場合まで
適用可能である。Furthermore, since the signal does not include ripples caused by the power supply, the detectable spindle rotational speed range is not limited. Therefore, in addition to requiring less calculation time for abnormality determination, this method can be applied to cases where the spindle rotation speed is several thousand rpm.
本発明によれば、自動化生産システムに対して工具異常
監視機能を与えることができ、無人運転を特徴とする特
に、予測が不可能で突発的に生じる工具欠損を感度よく
検知できることは、安定した無人運転を実現する上で、
大きな効果がある。According to the present invention, it is possible to provide a tool abnormality monitoring function to an automated production system, and in particular, in a system characterized by unmanned operation, it is possible to sensitively detect tool breakage that occurs suddenly and cannot be predicted. In realizing unmanned driving,
It has a big effect.
また、主軸回転速度の変動信号は、作業上の邪魔になる
ような、特別な計測装置を必要としないため、安価で簡
便、かつ信頼性の高い工具異常検知システムを実現でき
るという効果がある。Further, since the fluctuation signal of the spindle rotational speed does not require a special measuring device that would get in the way of work, it has the effect of realizing a tool abnormality detection system that is inexpensive, simple, and highly reliable.
本発明を用いた工具異常検知システムの構成例を第1図
に示す。主軸回転装置の変動検出にはパルスジェネレー
タ1を用いている。この場合は、そこから出力されるパ
ルス信号を周波数/電圧変換器2で電圧信号とする。パ
ルスジェネレータ1の代わりに速度発電機を用いてもよ
い。その場合は、直接電圧信号が得られる。信号は、注
目する周波数(回転数X刃数)を強調するためにバンド
パスフィルタ3を通した後、アナログ/ディジタル変換
器4より計算機5に入力する。計算機5では、切削状態
ベクトルを求め、基準ベクトルとの距離を計算し、異常
の判定をする。異常が検知された場合は、数値制御装置
6に対し、アラーム信号7が出力される。An example of the configuration of a tool abnormality detection system using the present invention is shown in FIG. A pulse generator 1 is used to detect fluctuations in the spindle rotating device. In this case, the pulse signal output therefrom is converted into a voltage signal by the frequency/voltage converter 2. A speed generator may be used instead of the pulse generator 1. In that case, a direct voltage signal is obtained. The signal is passed through a band pass filter 3 to emphasize the frequency of interest (number of rotations x number of blades), and then inputted into a computer 5 from an analog/digital converter 4. The computer 5 obtains the cutting state vector, calculates the distance from the reference vector, and determines whether there is an abnormality. If an abnormality is detected, an alarm signal 7 is output to the numerical control device 6.
なお、工具上の個々の切刃と回転数変動信号との対応を
とるために光電変換器8を用いて主軸の回転バ ス信号
を得ている。Note that a photoelectric converter 8 is used to obtain the spindle rotation bus signal in order to correspond to the rotational speed fluctuation signal and each cutting edge on the tool.
第2図に本システムによって工具の欠損を検出した例を
示す。使用工具は工具径80mm、4枚刃の正面フライ
ス工具、被削材は構造用炭素鋼545Cである。本図に
は各時点で得られた切削状態ベクトルと基準ベクトルと
の距離が示されている。矢印で示した時点で1枚の切刃
に欠損が生じている。Figure 2 shows an example of detecting a missing tool using this system. The tool used was a four-blade face milling tool with a tool diameter of 80 mm, and the work material was structural carbon steel 545C. This figure shows the distance between the cutting state vector obtained at each point in time and the reference vector. At the point indicated by the arrow, one cutting edge is damaged.
これに対応して、距離が急激に増加して、工具異常の発
生を明確に示しているのが分る。Correspondingly, it can be seen that the distance increases rapidly, clearly indicating the occurrence of tool abnormality.
第1図は本発明の実施例を示す工具異常検出システムの
構成図、第2図は本発明を実施した場合の工具欠損検出
例を示すグラフ、第3図は欠損工具が示す主軸1回転分
の主軸回転数変動パターンベクトルのグラフ、第4A図
および第4B図はそれぞれ正常工具と欠損工具が示す主
軸回転数変動波形のグラフ。
1・・・・パルスジェネレータ、
2・・・・周波数/電圧変換器、
3・・・・バンドパスフィルタ、
4・・・・アナログ/デジタル変換器、5・・・・計算
器、
6・・・・数値制御装置、
7・・・・アラーム信号、
8・・・・光電検出器。
第7区Fig. 1 is a configuration diagram of a tool abnormality detection system showing an embodiment of the present invention, Fig. 2 is a graph showing an example of tool defect detection when the present invention is implemented, and Fig. 3 is a rotation of one spindle indicated by a defective tool. Figures 4A and 4B are graphs of spindle rotational speed variation waveforms shown by a normal tool and a defective tool, respectively. 1... Pulse generator, 2... Frequency/voltage converter, 3... Band pass filter, 4... Analog/digital converter, 5... Calculator, 6... ...Numerical control device, 7..Alarm signal, 8..Photoelectric detector. District 7
Claims (1)
の異常を早期に検知する方法。A method for early detection of abnormalities in cutting tools based on fluctuation patterns in the spindle speed of machine tools.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62319687A JPH01164537A (en) | 1987-12-17 | 1987-12-17 | Detection of tool anomaly by main spindle revolution speed change signal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62319687A JPH01164537A (en) | 1987-12-17 | 1987-12-17 | Detection of tool anomaly by main spindle revolution speed change signal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01164537A true JPH01164537A (en) | 1989-06-28 |
Family
ID=18113063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62319687A Pending JPH01164537A (en) | 1987-12-17 | 1987-12-17 | Detection of tool anomaly by main spindle revolution speed change signal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01164537A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018081487A (en) * | 2016-11-16 | 2018-05-24 | 東芝機械株式会社 | Machine tool and control method thereof |
JP2018183824A (en) * | 2017-04-25 | 2018-11-22 | 西島株式会社 | Circular saw cutting machine |
JP2020093305A (en) * | 2018-12-10 | 2020-06-18 | Dmg森精機株式会社 | Machine tool, chipped part detection method, and chipped part detection program |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6125754A (en) * | 1984-07-09 | 1986-02-04 | Osaka Kiko Co Ltd | Tool breaking detector |
JPS62193748A (en) * | 1986-02-19 | 1987-08-25 | Ichiro Inazaki | Tool damage detecting device |
-
1987
- 1987-12-17 JP JP62319687A patent/JPH01164537A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6125754A (en) * | 1984-07-09 | 1986-02-04 | Osaka Kiko Co Ltd | Tool breaking detector |
JPS62193748A (en) * | 1986-02-19 | 1987-08-25 | Ichiro Inazaki | Tool damage detecting device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018081487A (en) * | 2016-11-16 | 2018-05-24 | 東芝機械株式会社 | Machine tool and control method thereof |
US11256229B2 (en) | 2016-11-16 | 2022-02-22 | Shibaura Machine Co., Ltd. | Industrial machinery and control method thereof |
JP2018183824A (en) * | 2017-04-25 | 2018-11-22 | 西島株式会社 | Circular saw cutting machine |
JP2020093305A (en) * | 2018-12-10 | 2020-06-18 | Dmg森精機株式会社 | Machine tool, chipped part detection method, and chipped part detection program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5407265A (en) | System and method for detecting cutting tool failure | |
AU614221B2 (en) | Multi-level tool break detection using multi-mode sensing | |
Tansel et al. | Micro-end-milling—III. Wear estimation and tool breakage detection using acoustic emission signals | |
JPS58500605A (en) | Method and device for monitoring tool status of a machine tool that performs periodic machining | |
JPH0257262B2 (en) | ||
CN107866696B (en) | Management system and device, main shaft fault detection method, computer readable medium | |
CN108620950A (en) | A kind of turning cutting tool drilling monitoring method and system | |
Yan et al. | A multi-sensor strategy for tool failure detection in milling | |
KR20190025133A (en) | The method and device for optimizing machine tool cutting conditions using vibration acceleration | |
JPH01164537A (en) | Detection of tool anomaly by main spindle revolution speed change signal | |
Tarng et al. | Use of model-based cutting simulation system for tool breakage monitoring in milling | |
JP3103193B2 (en) | Diagnostic equipment for rotating machinery | |
US6330515B1 (en) | Method for protecting against vibrations in rotary machines | |
JP2575323B2 (en) | Cutting load monitoring method by data extraction averaging method | |
JPH0463662A (en) | Tool abnormality detecting device | |
JPH068106A (en) | Adaptive control system and state judgment device | |
JP2022135472A (en) | Chatter vibration detection method and system | |
JPS59175941A (en) | Method and device for detecting abnormality of multiple cutting edge tool | |
JP2699453B2 (en) | Processing control system, processing control device, and method of manufacturing workpiece | |
JPS59142048A (en) | Abnormality detector for tool | |
KR102719373B1 (en) | Iot based intelligent monitoring and diagnosis method and device for machine tool | |
JPS59175945A (en) | Abnormality detecting device for multiple cutting edge tool | |
JPS6085854A (en) | Method of detecting abnormality of multi-edged tool | |
JP2017169353A (en) | Diagnostic system | |
CN211202379U (en) | Cigarette equipment and fan detecting system thereof |