JPH01163564A - Controller for refrigerator - Google Patents

Controller for refrigerator

Info

Publication number
JPH01163564A
JPH01163564A JP63254314A JP25431488A JPH01163564A JP H01163564 A JPH01163564 A JP H01163564A JP 63254314 A JP63254314 A JP 63254314A JP 25431488 A JP25431488 A JP 25431488A JP H01163564 A JPH01163564 A JP H01163564A
Authority
JP
Japan
Prior art keywords
compressor
capacity
current
value
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63254314A
Other languages
Japanese (ja)
Other versions
JPH0240946B2 (en
Inventor
Kohei Sato
佐藤 鋼平
Tetsuo Kishimoto
哲郎 岸本
Ichiro Okubo
一郎 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63254314A priority Critical patent/JPH01163564A/en
Publication of JPH01163564A publication Critical patent/JPH01163564A/en
Publication of JPH0240946B2 publication Critical patent/JPH0240946B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE: To quickly protect a compressor from overload operation by reducing the operational capacity of the compressor when the current value of a motor for driving the compressor exceeds a first set value and increasing the capacity when the current value becomes smaller than a second set value which is smaller than the first value. CONSTITUTION: When the operating current of a motor CM for driving a compressor 1 exceeds a first set value 265A while the compressor is operated at a 100% compression capacity, a current comparator 52 outputs a setting command to a timer device 53 and again confirms three seconds later that whether or not the operating current exceeds 265A. When the operating current exceeds 265A, the comparator 52 causes the compressor 1 to be operated at a 75% compression capacity by issuing an output A to a control signal generator 50 and, at the same time, finds a restored current value three seconds later on the basis of the operating current value by resetting the timer device 53. Ten minutes later, another timer device 54 issues a timer-up command and, when the operating current is lower than the restored current, the compressor 1 is returned to the 100% capacity operation. The same control is performed when the operating current exceeds a second set value of 295A while the operational capacity is reduced to the 75% from the 100%.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、運転容量が変わる圧縮機と、熱源側熱交換器
と、減圧装置と、利用側熱交換器とを連結した冷媒回路
を備えた冷凍機の制御装置に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention provides a refrigerant circuit that connects a compressor with variable operating capacity, a heat source side heat exchanger, a pressure reduction device, and a user side heat exchanger. The present invention relates to a control device for a refrigerator equipped with a refrigerator.

(ロ)従来の技術 このような制御装置に関する従来の技術としては、■実
公昭53−16995号公報、■特開昭54−5965
2号公報に記載されているようなものがあった。■の公
報には1冷凍機用駆動電動機にその負荷容量を検出する
検出素子を設け、同検出素子よりの指令によって前記冷
凍容量調節機構の調節範囲を制限するように設けた」点
が記載されており、■の公報には「モータの負荷を電流
で検出する」点が記載されている。これら■の公報と■
の公報とを組み合せた従来技術としては、冷凍機の負荷
容量を圧縮機用電動機に流れる電流から検出し、この電
流値が通常値以内ならばこの電流値に基づいて冷凍能力
の調節を行ない、前記電流値が過電流(過負荷)に達し
た時は冷凍能力の調節範囲に制限を付加する制御方法が
開示されるのみであった。
(b) Prior art As for the conventional technology regarding such a control device, ■ Japanese Utility Model Publication No. 53-16995, ■ Japanese Unexamined Patent Publication No. 54-5965
There was something like the one described in Publication No. 2. Publication No. 1 states that the drive motor for a refrigerator is provided with a detection element for detecting its load capacity, and the adjustment range of the refrigeration capacity adjustment mechanism is limited by a command from the detection element. The bulletin (■) states that ``the motor load is detected by current.'' These ■publications and ■
As a conventional technique that combines the above publication, the load capacity of the refrigerator is detected from the current flowing through the compressor motor, and if this current value is within the normal value, the refrigeration capacity is adjusted based on this current value, Only a control method has been disclosed that adds a limit to the adjustment range of the refrigerating capacity when the current value reaches an overcurrent (overload).

(ハ〉発明が解決しようとする課題 基」二のような従来の技術では、電流値に基づいて冷凍
能力の調節を行なうことになるので、負荷の温度変動を
熱交換器における冷媒の蒸発量と電流値の変化とを介し
て知ることになる。すなわち負荷の温度変動に対する冷
凍能力の調節が遅れ負荷の温度変動幅が大きくなる問題
点を有していた。また、負荷の温度変化と電流値の増減
との間には固定した相関関係がなくかならずしも負荷の
温度変化に電流が追従するとは限らず負荷の温度変動幅
が大きくなる場合があった。斯かる問題点に鑑み、本発
明は負荷の温度変動に合せて最適に冷凍能力を変えると
同時に過負荷時には速やかにこの過負荷状態を回避でき
る制御装置を提供するものである。
(C) Problems to be Solved by the Invention In the conventional technology such as 2, the refrigerating capacity is adjusted based on the current value, so temperature fluctuations in the load can be calculated based on the amount of evaporation of the refrigerant in the heat exchanger. In other words, there is a problem in that the adjustment of the refrigeration capacity in response to load temperature changes is delayed and the load temperature fluctuation range becomes large. There is no fixed correlation between the increase and decrease of the value, and the current does not always follow the temperature change of the load, and the range of temperature fluctuation of the load may become large.In view of this problem, the present invention has been developed. It is an object of the present invention to provide a control device that can optimally change the refrigerating capacity in accordance with temperature fluctuations of the load, and at the same time, can quickly avoid an overload state in the event of an overload.

(ニ)課題を解決するための手段 本発明の制御装置は、運転能力が変更可能な電動圧縮機
と、熱源側熱交換器と、減圧装置と、負荷側に設けられ
る利用側熱交換器とを連結した冷媒回路を備えた冷凍機
に於いて、負荷の温度に基づいて前記圧縮機の運転能力
を変更する能力制御部を備えると共に、前記駆動用モー
タに流れる電流の値が第1の設定値を一旦越えた時に前
記圧縮機の運転能力を減らず信号を前記能力制御部へ出
力する能力減少制御部と、前記信号の出力後に前記電流
の値が第1の設定値より低い第2の設定値を一旦下回っ
た時に前記圧縮機の運転能力を増加させる信号を前記能
力制御部へ出力する能力増加制御部とを備えたものであ
る。
(d) Means for Solving the Problems The control device of the present invention includes an electric compressor whose operating capacity can be changed, a heat source side heat exchanger, a pressure reducing device, and a user side heat exchanger provided on the load side. The refrigerator includes a capacity control unit that changes the operating capacity of the compressor based on the temperature of the load, and the value of the current flowing through the drive motor is set to a first setting. a capacity reduction control section that outputs a signal to the capacity control section without reducing the operating capacity of the compressor when the current value once exceeds the first setting value; and a capacity increase control unit that outputs a signal to the capacity control unit to increase the operating capacity of the compressor when the operating capacity of the compressor is once lower than a set value.

(ホ)作用 このように構成された制御装置では、圧縮機の運転能力
を負荷の温度に基づいて適切に設定すると共に、圧縮機
の過負荷を電流の増加から検出して圧縮機の運転能力を
減らし、この後電流の値が第2の設定値まで下がった時
には再び圧縮機の運転能力を増加させるものである。
(E) Function The control device configured in this manner not only appropriately sets the operating capacity of the compressor based on the temperature of the load, but also detects compressor overload from an increase in current and adjusts the operating capacity of the compressor. After that, when the current value decreases to the second set value, the operating capacity of the compressor is increased again.

(へ)実施例 以下本発明の実施例を図面に基づいて説明する。(f) Example Embodiments of the present invention will be described below based on the drawings.

まず本発明を適用しようとする冷凍機は第1図に示ずよ
うに圧縮機(1)と、四方弁(2)と、熱源側熱交換器
<3)と、受液器<4〉と、減圧装置(5〉と、利用側
熱交換器(6)と、アキュームレータ(7)とが連結さ
れて冷媒回路(8)が構成されている。尚、(9) 、
 (10)は冷房用逆止弁、(11) 、 (12)は
暖房用逆止弁である。
First, as shown in FIG. 1, a refrigerator to which the present invention is applied includes a compressor (1), a four-way valve (2), a heat source side heat exchanger <3), and a liquid receiver <4>. , a pressure reducing device (5>), a user-side heat exchanger (6), and an accumulator (7) are connected to form a refrigerant circuit (8).In addition, (9),
(10) is a check valve for cooling, and (11) and (12) are check valves for heating.

この圧縮機(1)は運転容量(圧縮容量)が可変できる
ものである。運転容量を変える機構としては圧縮機に複
数のアンローダ弁を設げ、この弁を制御して行なうもの
や、レシプロ型圧縮機の駆動シリンダー数を変えて行な
うものや、スクリュー型圧縮機の容量制御弁を制御して
行なうものや、圧縮機の駆動用モータの回転数を変えて
行なうものなど種々の機構が考えられるが、本実施例で
はこの圧縮機が単に複数段(無段階でもよい)に圧縮容
量が制御できるものとして以下の説明を行なう。圧縮機
(1)から吐出された冷媒は吐出ライン(13)から四
方弁(2)を介して冷房時は実線矢印の向きに流れ、又
暖房時は破線矢印の向きに流れ、四方弁(2)及びアキ
ュームレータ(7)を介して吸入ライン(14)から圧
縮機(1)に戻る。この時熱源側熱交換器(3)は冷房
時には凝縮器、暖房時には蒸発器として作用し、送風機
(15)にて外気との熱交換が促進される。又、利用側
熱交換器(6)は冷房時には蒸発器、暖房時には凝縮器
として作用して二次冷媒回路(16)の二次冷媒(たと
えば水)を冷却又は加熱する。そしてこの冷温水がポン
プ(17)にて二次冷媒回路(16)内を循環きれ、フ
ァンコイル(18)に供給されて、冷温水と室内空気と
の熱交換が行なわれることにより、室内の冷房又は暖房
が行なわれる。尚、圧縮機(1)は利用側熱交換器(6
)の二次冷媒流入温度に応して圧縮容量が調整され、二
次冷媒流出温度が適温になるようにしている。
This compressor (1) has a variable operating capacity (compression capacity). Mechanisms for changing the operating capacity include those that control the compressor with multiple unloader valves, those that change the number of drive cylinders of a reciprocating compressor, and those that control the capacity of a screw compressor. Various mechanisms are conceivable, such as one that controls a valve or one that changes the rotation speed of the compressor drive motor, but in this example, the compressor simply has multiple stages (it may be stepless). The following explanation will be given assuming that the compression capacity can be controlled. The refrigerant discharged from the compressor (1) flows from the discharge line (13) through the four-way valve (2) in the direction of the solid arrow during cooling, and in the direction of the dashed arrow during heating. ) and return to the compressor (1) from the suction line (14) via the accumulator (7). At this time, the heat source side heat exchanger (3) acts as a condenser during cooling and as an evaporator during heating, and heat exchange with outside air is promoted by the blower (15). Further, the user-side heat exchanger (6) acts as an evaporator during cooling and as a condenser during heating to cool or heat the secondary refrigerant (for example, water) in the secondary refrigerant circuit (16). This cold and hot water is then circulated through the secondary refrigerant circuit (16) by the pump (17) and supplied to the fan coil (18), where heat exchange between the cold and hot water and the indoor air takes place. Cooling or heating is performed. In addition, the compressor (1) is connected to the user side heat exchanger (6
) The compression capacity is adjusted according to the secondary refrigerant inflow temperature, so that the secondary refrigerant outflow temperature is at an appropriate temperature.

第2図に於いて、(ρ)は運転スイッチ(19)を介し
て直流定電圧が供給詐れる母線である。(20〉はマイ
クロコンピュータであり、電源端子(BI)が母線(り
に接続きれ、クロック端子(CLI) 、 (CL2)
間にはマイクロコンピュータ(20)(本発明の能力制
御部、能力増減制御部の機能を有している)の自走時間
を決める発振器(21)が接続されている。く22)は
冷暖選択スイッチであり、一端が母線(I2)に、他端
がマイクロコンピュータ(20)の入カポ−,1−(I
I)に接続されている。(23)は母線(ρ〉から直流
定電圧が供給され、利用側熱交換器(6)の二次冷媒流
入温度を検出する温度センサ(24)のアナログ信号を
2進のデジタル信号に変換する二次冷媒温度測定回路で
あり、出力端が入力ボート(I2)に接続されている。
In FIG. 2, (ρ) is a bus bar to which constant DC voltage is not supplied through the operation switch (19). (20> is a microcomputer, the power supply terminal (BI) is connected to the bus bar (20), the clock terminal (CLI), (CL2)
An oscillator (21) that determines the free running time of the microcomputer (20) (having the functions of the capacity control unit and capacity increase/decrease control unit of the present invention) is connected between them. 22) is a cooling/heating selection switch, one end of which is connected to the bus (I2), and the other end of which is connected to the input capo of the microcomputer (20), 1-(I
I). (23) is supplied with a constant DC voltage from the bus bar (ρ), and converts the analog signal of the temperature sensor (24) that detects the inflow temperature of the secondary refrigerant into the heat exchanger (6) on the user side into a binary digital signal. This is a secondary refrigerant temperature measuring circuit, and the output end is connected to the input port (I2).

(25)は母線(f2)から直流定電圧が供給され、第
3図に示す圧縮機(1)の駆動用モータ(CM)の運転
電流を2進のデジタル値として測定する運転電流測定回
路であり、出力端が入力ボート(13)に接続されてい
る。該回路(25)は−次巻線(261)が駆動用モー
タ(CM)に直列接続された変流器(26)の二次巻線
(262)に流れる電流を電圧変換し、更に整流平滑し
たのち、基準電圧との差電圧を求め、該差電圧をA−D
(アナログ−デジタル)変換して、駆動用モータ(CM
)の運転電流を測定するようにしている。 (27)は
母線(りから供給される直流定電圧を利用して所定周波
数の基準パルスを発生する基準パルス発生器であり、出
力端が入カポ−1−(I4>に接続されている。
(25) is an operating current measuring circuit that is supplied with a constant DC voltage from the bus (f2) and measures the operating current of the drive motor (CM) of the compressor (1) shown in Fig. 3 as a binary digital value. The output end is connected to the input port (13). The circuit (25) converts the current flowing through the secondary winding (262) of the current transformer (26) whose negative winding (261) is connected in series to the drive motor (CM) into a voltage, and further rectifies and smoothes the current. After that, calculate the voltage difference between the reference voltage and the voltage difference between A and D.
(analog-digital) conversion and drive motor (CM
) to measure the operating current. (27) is a reference pulse generator that generates a reference pulse of a predetermined frequency using the DC constant voltage supplied from the bus, and its output end is connected to the input capo-1-(I4>).

(28)は制御リレー(29)ないしく34)からなる
制御リレー回路であり、各リレーの一端は母線(p、)
に接続きれ、他端はそれぞれ反転機構を有するドライバ
ー(35)を介して出力ポート(円)ないしくP6)に
接続されている。(36)は警報ランプであり、一端が
母線(I2)に接続され、他端が反転機構を有するドラ
イバー(37)を介して出力ポート(P7)に接続され
ている。
(28) is a control relay circuit consisting of control relays (29) to 34), and one end of each relay is connected to the bus line (p,
The other end is connected to the output port (circle) or P6) via a driver (35) each having a reversing mechanism. (36) is a warning lamp, one end of which is connected to the bus bar (I2), and the other end of which is connected to the output port (P7) via a driver (37) having a reversing mechanism.

第3図に於いて、(38)は交流電源であり、四方弁(
2〉の励磁リレー(39)と、送風機(15)の駆動用
モータ(FM)の電源リレー(40)と、圧縮機(1)
の駆動用モータ(CM>の電源リレー(41)と、圧縮
機り1)の容量調整リレー(42) 、 (43>及び
(44)とがそれぞれ制御リレー(29〉ないしく34
)の常開スイッチ(291)ないしく341)を介して
交流電源(38)に接続されている。又、駆動用モータ
(FM)は電源リレー(40)の常開スイッチ(401
)を介して、駆動用モータ(CM)は電源リレー(41
)の常開スイッチ(411)を介してそれぞれ交流電源
(38)に接続きれている。
In Figure 3, (38) is an AC power supply, and a four-way valve (
2> excitation relay (39), power supply relay (40) for the drive motor (FM) of the blower (15), and compressor (1)
The power supply relay (41) of the drive motor (CM>) and the capacity adjustment relay (42), (43> and (44) of the compressor 1) are connected to the control relay (29> or 34), respectively.
) is connected to an AC power source (38) via a normally open switch (291) to 341). In addition, the drive motor (FM) is connected to the normally open switch (401) of the power relay (40).
), the drive motor (CM) is connected to the power relay (41
) are each connected to an AC power source (38) via a normally open switch (411).

第4図はマイクロコンピュータ(20)の内部システム
を示すものであり、マイクロコンピュータ(20〉は入
力ボート(11)にローレベルの“0”信号又はハイレ
ベルの″1″信号の何れの信号があるかによって冷房或
いは暖房指令を発する冷暖指令装置(45)と、入力ボ
ート(I2)を介して送られてくる最新の温度データを
記憶する温度記憶装置(46)と、記憶装置(46)の
温度データと比較される設定値が記憶される設定値記憶
装置(47)と、入カポ−1−(I3>を介して送られ
てくる最新の電流データを記憶する電流記憶装置(48
)と、記憶装置(48)の電流データと比較される設定
値を記憶する設定値記憶装置(49)と、両記憶装置(
46) 、 (47)の記憶内容を比較して第5図及び
第6図の特性になるように次段の制御信号発生装置り5
0)に第1表に示す制御信号を発するよう指令する温度
比較装置(51)と、両記憶装置(48) 、 (49
)の記憶値を比較して出力A、Bを制御信号発生装置(
50)に発する電流比較装置(52)と、両比較装置(
51) 、 <52)からの出力をプログラム処理して
出力ポート(Pl)ないしくP7)から“1″又は“0
”の制御信号を発する制御信号発生装置(50)と、電
流比較装置(52〉からの指令により入力ボート(I4
)からの基準パルスを利用してそれぞれ3秒間並びに1
0分間の時間計数を行なうタイマー装置(53)並びに
(54)とから構成されている。
Figure 4 shows the internal system of the microcomputer (20), and the microcomputer (20) receives either a low-level "0" signal or a high-level "1" signal at the input port (11). A heating and cooling command device (45) that issues cooling or heating commands depending on the situation, a temperature storage device (46) that stores the latest temperature data sent via the input boat (I2), and a storage device (46). A set value storage device (47) that stores the set value to be compared with the temperature data, and a current storage device (48) that stores the latest current data sent through the input capo-1-(I3>).
), a setting value storage device (49) that stores a setting value to be compared with the current data in the storage device (48), and both storage devices (
46) and (47), and adjust the control signal generator of the next stage so that the characteristics shown in FIGS. 5 and 6 are obtained.
0) to issue the control signals shown in Table 1, and both storage devices (48) and (49).
) are compared and the outputs A and B are sent to the control signal generator (
50) and a current comparator (52) that emits to both comparators (
51), <52) is programmed to process the output from the output port (Pl) or P7) to "1" or "0".
” control signal generator (50) that issues a control signal, and the input port (I4
) for 3 seconds and 1, respectively, using the reference pulse from
It is composed of a timer device (53) and (54) that count the time of 0 minutes.

第  1  表 今冷房期で冷暖選択スイッチ(22)が開路されている
ものとする。運転スイッチ(19)が閉路されると、マ
イクロコンピュータ(20)は入カポ−1−(II)の
“0″信号により冷暖指令装置(45)が制御信号発生
装置(50)に冷房指令を出すとともに入カポ−1−(
I2)から入ってくる利用側熱交換器(6)の二次冷媒
流入温度データを記憶装置(46)に記憶する。−そし
て二次冷媒流入温度が14°Cであると、第5図の特性
から明らかなように、温度比較装置(51)は制御信号
発生装置(50)に出カポ−1−(P3)ないしくP6
)から(1,1,1,1)の制御信号を発するよう指令
するのでドライバー(35〉を介し、制御リレー(31
)ないしく34)が全て通電きれる。このため、電源リ
レー(41)が通電されて、駆動用モータ(CM)が運
転するとともに容量調整リレー(42)ないしく44)
が励磁されて圧縮機(1)は100%の圧縮容量にて運
転を行ない、利用側熱交換器(6)にて冷却きれた二次
冷媒がファンコイル(18)に供給されて室内の冷房運
転が行なわれる。尚、出カポ−1−(P2)からも“1
′′信号が供給され、制御リレー(P2)が通電されて
電源リレー(40)が励磁されるので、駆動用モータ(
FM)が運転して送風機(15)が運転を行ない、出力
ポート(円)は“0”信号が供給されて制御リレー(2
9)は通電されず、四方弁励磁リレー(39)も通電さ
れないので四方弁<2)は実線状態にある。
Table 1 It is assumed that the cooling/heating selection switch (22) is open during the current cooling season. When the operation switch (19) is closed, the microcomputer (20) uses the "0" signal from the input capo-1-(II) to cause the cooling/heating command device (45) to issue a cooling command to the control signal generator (50). With Kapo-1-(
The secondary refrigerant inflow temperature data of the user-side heat exchanger (6) entering from I2) is stored in the storage device (46). -And when the secondary refrigerant inflow temperature is 14°C, as is clear from the characteristics shown in Fig. 5, the temperature comparator (51) does not output capo-1-(P3) to the control signal generator (50). Shikuku P6
) to issue a control signal (1, 1, 1, 1), the control relay (31
) to 34) are all energized. Therefore, the power relay (41) is energized, the drive motor (CM) operates, and the capacity adjustment relay (42) or 44)
is excited, the compressor (1) operates at 100% compression capacity, and the secondary refrigerant completely cooled by the user-side heat exchanger (6) is supplied to the fan coil (18) to cool the room. Driving takes place. In addition, “1” is also output from output capo-1-(P2).
'' signal is supplied, the control relay (P2) is energized and the power relay (40) is energized, so the drive motor (
FM) is operated, the blower (15) is operated, and the output port (circle) is supplied with a “0” signal and the control relay (2
9) is not energized and the four-way valve excitation relay (39) is also not energized, so the four-way valve <2) is in the solid line state.

この運転中に利用側熱交換器(6)の二次冷媒流入温度
が10°Cを下回ると、温度比較装置(51)の指令に
より、制御信号発生装置(50)は[1,1゜1.0]
の制御信号を発するようになり、制御リレー(34)及
び容量調整リレー(44)の通電を切って圧縮機(1)
に75%の容量運転をさせ、この結果、二次冷媒流入温
度が上昇に転じ、12°Cを上回ると、再び圧縮機を1
00%運転に戻す。又、逆に二次冷媒流入温度が更に下
がり、9°Cを下回ると、制御信号発生装置(50)は
[:1,1,0゜0〕の制御信号を発して更に制御リレ
ー(33)及び容量調整リレー(43)の通電を切り、
圧縮機(1)を50%容量運転にする。このようにして
制御信号発生装置(50)は第5図特性に従って二次冷
媒流入温度と設定値との比較を行なう温度比較装置(5
1)の指令を受けて圧縮機(1)が負荷に見合った圧縮
容量となるように0(停止)〜100%の5段階に自動
制御する。尚、電流比較装置(52)は記憶装置(48
)に記憶された駆動用モータ(CM)の運転電流と記憶
装置(49)の第1設定値265A並びに第2設定値2
95Aとの比較を行なっている。該第2設定値は圧縮機
(1)の駆動用モータ(CM)の最大許容電流近くに設
定され、第1設定値は第2設定値の約90%に設定され
(いる。
During this operation, when the secondary refrigerant inflow temperature of the user-side heat exchanger (6) falls below 10°C, the control signal generator (50) is activated by a command from the temperature comparator (51). .0]
The control relay (34) and capacity adjustment relay (44) are de-energized and the compressor (1) starts emitting a control signal.
As a result, when the secondary refrigerant inflow temperature started to rise and exceeded 12°C, the compressor was turned off again to 12°C.
Return to 00% operation. Conversely, when the secondary refrigerant inflow temperature further decreases and becomes less than 9°C, the control signal generator (50) issues a control signal of [:1,1,0°0], and then the control relay (33) and turn off the power to the capacity adjustment relay (43),
The compressor (1) is operated at 50% capacity. In this way, the control signal generating device (50) is configured as a temperature comparing device (50) that compares the secondary refrigerant inflow temperature and the set value according to the characteristics shown in FIG.
In response to the command 1), the compressor (1) is automatically controlled in five stages from 0 (stop) to 100% so that the compression capacity matches the load. Note that the current comparator (52) is connected to the storage device (48).
), the operating current of the drive motor (CM), the first setting value 265A and the second setting value 2 of the storage device (49).
A comparison is made with 95A. The second set value is set close to the maximum allowable current of the drive motor (CM) of the compressor (1), and the first set value is set to approximately 90% of the second set value.

圧縮機(1)が100%の圧縮容量にて運転している際
に外気温が上昇して冷媒回路(8)の高圧側冷媒圧力が
上昇し、圧縮機(1)に過負荷が掛かったり、交流電源
〈38)に電圧変動があり、電源電圧が10%程度低下
したりすると、駆動用モータ(CM)の運転電流が増大
していく。そして第7図に示すように圧縮機(1)の駆
動用モータ(CM)の運転電流が265Aを越えると、
電流比較装置(52)はまずタイマー装置(53)にセ
ット指令を出す。タイマー装置(53)が3秒間の時間
計数を終了してタイムアツプすると、電流比較装置(5
2)は再度運転型流が265Aを越えているかどうかを
確認する。
When the compressor (1) is operating at 100% compression capacity, the outside temperature rises and the refrigerant pressure on the high pressure side of the refrigerant circuit (8) increases, causing an overload on the compressor (1). When there is a voltage fluctuation in the AC power supply (38) and the power supply voltage drops by about 10%, the operating current of the drive motor (CM) increases. As shown in Fig. 7, when the operating current of the drive motor (CM) of the compressor (1) exceeds 265A,
The current comparison device (52) first issues a set command to the timer device (53). When the timer device (53) finishes counting for 3 seconds and times up, the current comparator (53)
2) Check again whether the operating type flow exceeds 265A.

このように3秒間の時間を置いて再認識するのは圧縮機
(1)の圧縮容量切換時のように瞬時的に駆動用モータ
(CM)の運転電流が増大した場合を除外するためであ
る。この場合、運転電流が引続いて265Aを越えてい
るので、電流比較装置(52)は制御信号発生装置(5
0)に出力Aを発して制御信号発生装置(50)が温度
比較装置(51)の出力と無関係に出力ポート(P3〉
ないしくP6)から[:1,1,1゜0〕の制御信号を
発するようにし、圧縮機(1)に75%の圧縮容量運転
をさせるとともにタイマー装置(53)に再セツト指令
を出し、且つタイマー装置(54)にセット指令を出す
The reason for reconfirming after 3 seconds is to exclude cases where the operating current of the drive motor (CM) increases instantaneously, such as when switching the compression capacity of compressor (1). . In this case, since the operating current continues to exceed 265A, the current comparator (52)
The control signal generator (50) outputs an output A to the output port (P3) regardless of the output of the temperature comparator (51).
or P6) to issue a control signal [:1,1,1°0] to cause the compressor (1) to operate at 75% compression capacity and issue a reset command to the timer device (53). It also issues a set command to the timer device (54).

圧縮機(1)が100%運転から75%運転に切換わる
ことにより、圧縮機(1)並びに駆動モータ(CM)の
負担が軽減され、駆動用モータ(CM)の運転電流は図
示のように急激に低下する。そして3秒後にタイマー装
置(53)がタイムアツプすると、電流比較装置(52
)はこの時点の運転電流値を基準にして復帰電流値を求
める。すなわち運転電流値が212Aであると復帰電流
値は5A減した207Aとなる。この結果、電流比較装
置(52)はタイマー装置<54)が10分間の時間計
数を終えてタイムアツプ指令を発し、且つ運転電流が復
帰電流を下回る時まで出力Aを制御信号発生装置(50
〉に供給し、圧縮機(1)の75%圧縮容量運転を継続
させる。従って駆動用モータ(CM)の運転電流増大の
原因力釈−時的な冷媒回路(8)の高圧圧力の上昇や電
源電圧の変動にある場合、タイマー装置(54)の時間
計数中に運転電流が復帰電流を下回ってもタイマー装置
(54)がタイムアツプするまでは75%運転が続く。
By switching the compressor (1) from 100% operation to 75% operation, the load on the compressor (1) and drive motor (CM) is reduced, and the operating current of the drive motor (CM) is reduced as shown in the figure. Declines rapidly. When the timer device (53) times up after 3 seconds, the current comparator (52)
) calculates the return current value based on the operating current value at this point. That is, if the operating current value is 212A, the return current value will be 207A, which is 5A less. As a result, the current comparator (52) issues a time-up command after the timer device <54) finishes counting for 10 minutes, and outputs A until the operating current falls below the return current.
), and the compressor (1) continues to operate at 75% compression capacity. Therefore, if the cause of the increase in the operating current of the drive motor (CM) is a temporary increase in high pressure in the refrigerant circuit (8) or a fluctuation in the power supply voltage, the operating current may increase during time counting by the timer device (54). Even if the current falls below the return current, 75% operation continues until the timer device (54) times out.

又、運転電流が増大した原因が長時間なくならない場合
にはタイマー装置(54)がタイムアツプした後も75
%運転が続き、外気温が低下して冷媒回路(8)の高圧
圧力が低下したり、電源電圧が定常値に戻ったりして運
転電流増大原因がなくなり、運転電流が復帰電流を下回
ると、75%運転が終了し、100%運転に戻る。
In addition, if the cause of the increase in operating current does not go away for a long time, the timer device (54)
% operation continues, and the outside temperature drops and the high pressure in the refrigerant circuit (8) decreases, or the power supply voltage returns to a steady value, the cause of the increase in the operating current disappears, and the operating current falls below the recovery current. 75% operation is completed and returns to 100% operation.

圧縮機(1)が75%以下の小容量運転を行なっている
場合は運転電流が265Aを越えても上述の容量変更制
御は行なわれない。このように圧縮機(1)の小容量運
転中に駆動用モータ(CM)の運転電流が265Aを越
えるのは送風機(15)の故障や駆動用モータ(CM)
の拘束など極めて異常な状態が考えられるからである。
When the compressor (1) is operating at a small capacity of 75% or less, the above-mentioned capacity change control is not performed even if the operating current exceeds 265A. If the operating current of the drive motor (CM) exceeds 265A while the compressor (1) is operating at a small capacity, it may be due to a failure of the blower (15) or a failure of the drive motor (CM).
This is because extremely abnormal conditions such as being restrained are possible.

そこで、電流比較装置(52)は運転電流が295Aを
越える時点で出力Bを制御信号発生装置(50)に発し
、制御信号発生装置(50)は出力ポート(P2)から
“0”信号を発して送風機(15)を停止させるととも
に出力ポート(P3)ないしくP6)から[0,0,0
,0)の制御信号を発して圧縮機(1)を停止許せ、更
に出力ポート(P7〉から41″信号を発して警報ラン
プ(36)を点灯許せ異常状態を表示する。又、前述の
100%から75%への小容量運転切換中に運転電流が
295Aを越える時にも同様に制御する。そしてこの状
態は異常箇所を修理してリセットキー(図示せず)を押
した時に解除される。
Therefore, the current comparator (52) issues an output B to the control signal generator (50) when the operating current exceeds 295A, and the control signal generator (50) issues a "0" signal from the output port (P2). to stop the blower (15) and to output [0,0,0
, 0) is issued to stop the compressor (1), and a 41'' signal is issued from the output port (P7>) to enable the alarm lamp (36) to light up to indicate an abnormal condition. The same control is performed when the operating current exceeds 295 A during the small capacity operation changeover from % to 75%.This state is canceled when the abnormality is repaired and a reset key (not shown) is pressed.

冷暖切換スイッチ(22)が閉路される暖房期では冷暖
指令装置(45)の暖房指令により、制御信号発生装置
(50〉は出力ポート(Pl〉から“1″信号を発して
制御リレー(29〉を励磁させ、四方弁励磁リレー(3
9)が通電されるようにして四方弁(2)が破線状態に
切換えられる。そして温度比較装置(51)は記憶装置
(46)に記憶される二次冷媒温度と記憶装置り47)
の暖房時の設定値とを比較して第6図で示される特性と
なるように制御信号発生装置く50)に指令を出し、圧
縮機(1)の圧縮容量を制御するので、利用側熱交換器
(6)における二次冷媒の加熱度合が調整きれてファン
コイル(18)にて適度な暖房運転が行なわれる。この
場合も圧縮機(1)が100%の圧縮容量運転中に駆動
用モータ(CM)の運転電流が第1設定値(265A)
を越えると、冷房時と同様の圧縮機制御が行なわれ、圧
縮機(1)並びに駆動用モータ<CM)の負担を軽減し
て運転が継続できるようにする。又、75%以下の小容
量運転中に運転電流が第2設定値(295A)を越えた
場合も冷房時と同様である。
During the heating period when the cooling/heating changeover switch (22) is closed, the control signal generator (50) emits a "1" signal from the output port (Pl) in response to the heating command from the cooling/heating command device (45), and the control relay (29) energize the four-way valve excitation relay (3
9) is energized, and the four-way valve (2) is switched to the broken line state. The temperature comparison device (51) compares the secondary refrigerant temperature stored in the storage device (46) with the storage device 47).
A command is issued to the control signal generator (50) to control the compression capacity of the compressor (1) so that the characteristics shown in FIG. The degree of heating of the secondary refrigerant in the exchanger (6) is fully adjusted, and the fan coil (18) performs an appropriate heating operation. In this case as well, while the compressor (1) is operating at 100% compression capacity, the operating current of the drive motor (CM) is set to the first set value (265A).
When the temperature exceeds 1, the compressor is controlled in the same manner as during cooling, and the load on the compressor (1) and drive motor <CM) is reduced to allow continued operation. Furthermore, the same applies when the operating current exceeds the second set value (295A) during small capacity operation of 75% or less.

尚、上述の各設定値は使用機種によって適宜選定される
ものであり、図の数値に限定されるものでない。
Note that each of the above-mentioned setting values is appropriately selected depending on the model used, and is not limited to the numerical values shown in the figure.

(ト)発明の効果 本発明の制御装置は運転能力が変更可能な圧縮機の運転
能力を負荷の温度に基づいて行なうことによって、負荷
の温度変動に合わせた運転能力が直接設定されるので負
荷の温度変動幅を小さく保つことができると共に、余分
な運転能力を使わなくなりエネルギーの節約ができる。
(G) Effects of the Invention The control device of the present invention adjusts the operating capacity of the compressor whose operating capacity can be changed based on the load temperature. It is possible to keep the range of temperature fluctuations small, and it is possible to save energy by not using excess operating capacity.

また、圧縮機の駆動用モータに流れる電流を検出するの
で、過負荷時に電流が急増しこの電流値が第1の設定値
を越えると圧縮機の運転能力を減らし、電流がこれ以上
増加するのを抑制し駆動用モータの焼損を防止する。
In addition, since the current flowing through the compressor drive motor is detected, if the current increases rapidly during overload and this current value exceeds the first set value, the operating capacity of the compressor is reduced and the current does not increase any further. This prevents burnout of the drive motor.

また、電流値が第2の設定値を下回れば圧縮機の運転能
力を再び増加させるようにし、過負荷の原因が解消され
ていれば、再び負荷の温度に基づいて運転能力の変更を
行ない負荷の温度変動幅を小さくし、負荷の温度を安定
させる。
In addition, if the current value falls below the second set value, the operating capacity of the compressor is increased again, and if the cause of the overload has been resolved, the operating capacity is changed again based on the load temperature and the load is increased. Reduce the temperature fluctuation range of the load and stabilize the load temperature.

従って、本発明の制御装置を用いることによって、圧縮
機の運転能力を負荷の温度と圧縮機の駆動モータに流れ
る電流との2方から制御することができ、通常運転時と
過負荷時との両方においても常に負荷の温度変動幅を最
少に抑制することができるものです。すなわち、負荷の
安定した温度制御と過負荷運転に対する敏速な保護動と
が確実に行なえるものである。
Therefore, by using the control device of the present invention, the operating capacity of the compressor can be controlled from two sides: the temperature of the load and the current flowing to the drive motor of the compressor. In both cases, it is possible to always suppress the load temperature fluctuation range to the minimum. That is, stable temperature control of the load and prompt protection against overload operation can be performed reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用可能な冷凍機の一例を示す冷媒回
路図、第2図及び第3図は本発明の方法を用いた一実施
例を示す電気回路図、第4図は第2図のマイクロコンピ
ュータの内部システム例を示すブロック線図、第5図な
いし第7図は本発明を用いた装置の動作説明用の説明図
である。 (1)・・・圧縮機、 (3)・・・熱源側熱交換器、
 (5)・・・減圧装置、 (6)・・・利用側熱交換
器、 (8)・・・冷媒回路、(20)・・・マイクロ
コンピュータ、(25)・・・運転電流測定回路、 (
50)・・・制御信号発生装置、 (52)・・・電流
比較装置、 (CM)・・・圧縮機駆動用モータ。
FIG. 1 is a refrigerant circuit diagram showing an example of a refrigerator to which the present invention can be applied, FIGS. 2 and 3 are electric circuit diagrams showing an example of using the method of the present invention, and FIG. A block diagram showing an example of the internal system of the microcomputer shown in the figure, and FIGS. 5 to 7 are explanatory diagrams for explaining the operation of the apparatus using the present invention. (1)...Compressor, (3)...Heat source side heat exchanger,
(5)...Pressure reduction device, (6)...Using side heat exchanger, (8)...Refrigerant circuit, (20)...Microcomputer, (25)...Operating current measurement circuit, (
50)...Control signal generator, (52)...Current comparator, (CM)...Compressor drive motor.

Claims (1)

【特許請求の範囲】[Claims] (1)運転能力が変更可能な電動圧縮機と、熱源側熱交
換器と、減圧装置と、負荷側に設けられる利用側熱交換
器とを連結した冷媒回路を備えた冷凍機に於いて、負荷
の温度に基づいて前記圧縮機の運転能力を変更する能力
制御部を備えると共に、前記駆動用モータに流れる電流
の値が第1の設定値を一旦越えた時に前記圧縮機の運転
能力を減らす信号を前記能力制御部へ出力する能力減少
制御部と、前記信号の出力後に前記電流の値が第1の設
定値より低い第2の設定値を一旦下回った時に前記圧縮
機の運転能力を増加させる信号を前記能力制御部へ出力
する能力増加制御部とを備えたことを特徴とする冷凍機
の制御装置。
(1) In a refrigerator equipped with a refrigerant circuit that connects an electric compressor whose operating capacity can be changed, a heat source side heat exchanger, a pressure reducing device, and a user side heat exchanger provided on the load side, A capacity control unit that changes the operating capacity of the compressor based on the temperature of the load, and reduces the operating capacity of the compressor when the value of the current flowing through the drive motor once exceeds a first set value. a capacity reduction control unit that outputs a signal to the capacity control unit, and increases the operating capacity of the compressor when the value of the current once falls below a second set value that is lower than the first set value after outputting the signal; and a capacity increase control unit that outputs a signal to the capacity control unit to increase the capacity.
JP63254314A 1988-10-07 1988-10-07 Controller for refrigerator Granted JPH01163564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63254314A JPH01163564A (en) 1988-10-07 1988-10-07 Controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63254314A JPH01163564A (en) 1988-10-07 1988-10-07 Controller for refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8563779A Division JPS5610666A (en) 1979-07-05 1979-07-05 Controller for refrigerating machine

Publications (2)

Publication Number Publication Date
JPH01163564A true JPH01163564A (en) 1989-06-27
JPH0240946B2 JPH0240946B2 (en) 1990-09-13

Family

ID=17263277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63254314A Granted JPH01163564A (en) 1988-10-07 1988-10-07 Controller for refrigerator

Country Status (1)

Country Link
JP (1) JPH01163564A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721979U (en) * 1971-03-15 1972-11-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721979U (en) * 1971-03-15 1972-11-11

Also Published As

Publication number Publication date
JPH0240946B2 (en) 1990-09-13

Similar Documents

Publication Publication Date Title
JP3476899B2 (en) Air conditioner
US4535607A (en) Method and control system for limiting the load placed on a refrigeration system upon a recycle start
KR20040050478A (en) A compressor driving method of air-conditioner having 4 compressor
JP3445861B2 (en) Air conditioner
JPS58193055A (en) Heat pump type air conditioner
JP2943685B2 (en) Operation control device for air conditioner
JP2007212023A (en) Air conditioning system
JP2689599B2 (en) Operation control device for air conditioner
JPH08166174A (en) Air conditioner
JP3481076B2 (en) Operation control device for air conditioner
JPH01163564A (en) Controller for refrigerator
JPH0137669B2 (en)
JPH0618103A (en) Air conditioner
JPH05322324A (en) Inverter air conditioner
JPH0151749B2 (en)
JP3420652B2 (en) Air conditioner
JP2000097479A (en) Air conditioner
KR20000037566A (en) Method for controlling inverter compressor of air conditioner
JP2943684B2 (en) Operation control device for air conditioner
JPH0243011Y2 (en)
JP3353929B2 (en) Air conditioner
JPH0442665Y2 (en)
JPH05240493A (en) Air conditioner
JP2600815B2 (en) Heat pump system
JPH0460360A (en) Apparatus for air conditioning