JPH01163475A - Control method for variable speed pumped storage power plant - Google Patents

Control method for variable speed pumped storage power plant

Info

Publication number
JPH01163475A
JPH01163475A JP62318850A JP31885087A JPH01163475A JP H01163475 A JPH01163475 A JP H01163475A JP 62318850 A JP62318850 A JP 62318850A JP 31885087 A JP31885087 A JP 31885087A JP H01163475 A JPH01163475 A JP H01163475A
Authority
JP
Japan
Prior art keywords
pumped storage
variable speed
storage power
machine
speed pumped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62318850A
Other languages
Japanese (ja)
Other versions
JP2796298B2 (en
Inventor
Hisao Kuwabara
尚夫 桑原
Eizo Kita
北 英三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP62318850A priority Critical patent/JP2796298B2/en
Priority to KR1019880015485A priority patent/KR920008189B1/en
Priority to DE8888120159T priority patent/DE3861719D1/en
Priority to EP88120159A priority patent/EP0320718B1/en
Priority to US07/285,753 priority patent/US5026256A/en
Publication of JPH01163475A publication Critical patent/JPH01163475A/en
Application granted granted Critical
Publication of JP2796298B2 publication Critical patent/JP2796298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To avoid a water-hammer interference in a common pipe line by temporarily correctingly controlling the rotating speed of a variable speed pumped storage power plant at the time of rapidly changing the operating condition of the other hydraulic machine which commonly use an upper-course or a lower-course pipe line. CONSTITUTION:At the time of starting the other machine which commonly use an upper-course or a lower-course pipe line in a pumping mode or carrying out the input rapid increasing operation thereof, a correction signal for increasingly correcting the rotating speed N of the corresponding variable speed pumped storage power plant 4 by a defined value DELTANa is previously applied to an adder 18. This defined value DELTANa can be varied in accordance with the operating quantity of the guide vane of the other machine. Also, the correcting control by the correction value DELTANa may be simultaneously performed at the time of carrying out the rapid change operation of the operating condition of the other machine, when the rapid changing operation of the other machine is finished and as the water hammer in the common pipe line subsides, the correction signal of this defined value DELTANa is returned to zero.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は変速速揚水(発電)プラントに係り、特に上又
は下流側管路を他の水力機械と共有し、かつポンプ運転
領域でハンプ特性(逆流特性)を有するポンプ又゛はポ
ンプ水車を備えた可変速揚水(発電)プラントに好適な
制御方法を提供する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a variable speed pumping (power generation) plant, in particular, in which an upstream or downstream pipe is shared with other hydraulic machines, and the pump operation area has hump characteristics. Pumps with reverse flow characteristics (reverse flow characteristics) provide a suitable control method for variable speed pumping (power generation) plants equipped with pump turbines.

〔従来の技術〕[Conventional technology]

ポンプ水車では一般に高揚程側で第5図の点線部の如き
ハンプ特性(部分的にdH/dQ>Oとなる特性)が出
ることは避けられないと考えられている。この部分での
運転は不安定で振動騒音が伴うばかりではなく、同じ揚
程の下で流量Qが3価関数で現れるため、流量Qが突然
急変し飛ぶ現象も現れ、異常水撃現象を伴うことがある
。このハンプ特性の凹み程度は第6図の如く案内羽根開
度によって異るが明確な凹み特性が発生しなくともラン
ナ内の流れが不安定になることによって大なり小なり同
様の問題が発生する。この原因は流量が少い時には水流
が第3図、第4図のように半径方向に偏り、逆流が発生
するためであるとされている。またこの様な状態では流
れは羽根面から剥離し、いわゆる失速状態になるからで
ある。
It is generally considered that in a pump-turbine, it is unavoidable that a hump characteristic (partially dH/dQ>O) as shown by the dotted line in FIG. 5 occurs on the high-head side. Operation in this area is not only unstable and accompanied by vibration and noise, but also because the flow rate Q appears as a trivalent function under the same head, the flow rate Q suddenly changes and the phenomenon of flying occurs, which is accompanied by an abnormal water hammer phenomenon. There is. The degree of depression in this hump characteristic varies depending on the opening degree of the guide vane, as shown in Figure 6, but even if a clear depression characteristic does not occur, the same problem occurs to a greater or lesser extent due to unstable flow within the runner. . The reason for this is said to be that when the flow rate is low, the water flow is biased in the radial direction as shown in FIGS. 3 and 4, causing a backflow. Further, in such a state, the flow separates from the blade surface, resulting in a so-called stall state.

ところで、特願昭61−26694では可変速揚水装置
の負荷を増加させる時、ポンプ水車の運転点が過渡的に
上述のハンプ特性に落ち込まないようにまず駆動装置の
出力を上げ回転速度を上げ、その後に案内羽根を上げる
べきであるとしている。
By the way, in Japanese Patent Application No. 61-26694, when increasing the load on the variable speed pumping device, first the output of the drive device is increased and the rotation speed is increased so that the operating point of the pump turbine does not fall into the above-mentioned hump characteristic transiently. After that, the guide vane should be raised.

尚負荷を減少させる時については案内羽根の閉の動作と
回転速度の下げ動作を同時に行うものの案内羽根閉めの
方が回転速度の下げより早く終る案を開示している。但
し乍らポンプ水車の上又は下流管路を他の水力機械と共
有している場合には(即ち複数の水力機械が同一管路か
ら分岐して設置されている場合には)他のいずれかの水
力機械がその運転状態を変え、流量を変えた場合、この
水力機械に水撃が発生しこれが該共有管路を介して今考
えているポンプ水車にも伝わるので必ずやその影響がで
る。
When reducing the load, the patent discloses a plan in which closing of the guide vanes and lowering of the rotational speed are performed simultaneously, but the closing of the guide vanes is completed sooner than the lowering of the rotational speed. However, if the upper or downstream pipeline of the pump-turbine is shared with other hydraulic machines (i.e., if multiple hydraulic machines are installed branching from the same pipeline), one of the other If a hydraulic machine changes its operating state and changes its flow rate, water hammer will occur in this hydraulic machine, and this will be transmitted to the pump-turbine we are currently considering via the shared pipe, so it will definitely have an effect.

特に揚程Hを上側に振られた場合は該可変速揚水装置単
独ではいかに完璧に制御できるようになっていたとして
もハンプ特性落ち込みが起りうる可能性が生ずる。
In particular, when the lift height H is shifted upward, there is a possibility that the hump characteristics may deteriorate, no matter how perfectly the variable speed pumping device alone can control the pump.

更に特開昭61−149583号ではポンプ起動時即ち
ポンプ水車(ポンプ)を締切状態から所望の負荷での本
格的可変速揚水運転に移行させる時1次第に開放する案
内羽根の開度に見合って階段状に回転速度指令を上げて
いき最終的に該所望負荷での適正回転速度と適正案内羽
根開度を達成するポンプ起動方法が開示されている。
Furthermore, in Japanese Patent Application Laid-Open No. 61-149583, when starting the pump, that is, when moving the pump water turbine (pump) from the shut-off state to full-scale variable speed pumping operation at a desired load, a staircase is opened in accordance with the opening of the guide vanes, which are gradually opened. A pump starting method is disclosed in which the rotational speed command is gradually increased to finally achieve an appropriate rotational speed and an appropriate guide vane opening at the desired load.

但しこの公知例では本格的可変速揚水運転に入ってから
の制御方法については一切触れていない。
However, this known example does not mention at all the control method after starting full-scale variable speed pumping operation.

更に特願昭60−14918号では上池水位と下池水位
の水位差が所定値以上になったら、このオーバーシュー
ト分に応じて回転速度を上げ補正するという方法が開示
されている。但し本発明が対象としているような共有管
路内の水撃による当のポンプ水車の全揚程の一時的上昇
によるハンプ特性(逆流特性)落ち込みには全く無防備
である。
Furthermore, Japanese Patent Application No. 60-14918 discloses a method in which when the water level difference between the upper and lower pond water levels exceeds a predetermined value, the rotational speed is increased and corrected in accordance with this overshoot. However, it is completely immune to a drop in hump characteristics (backflow characteristics) due to a temporary increase in the total head of the pump-turbine due to water hammer in the shared pipeline, which is the object of the present invention.

上述の如〈従来のハンプ特性回避制御方法はあくまでも
単独の可変速揚水システム内でのあるべき制御ルールに
ついて一部を開示しているに過ぎない。
As mentioned above, the conventional hump characteristic avoidance control method only partially discloses the control rules that should exist within a single variable speed pumping system.

即ち本発明が対象とするような共有管路内の水撃による
ハンプ特性落ち込み、対策は全く開示されていない。
That is, there is no disclosure of countermeasures against the drop in hump characteristics due to water hammer in a shared pipeline, which is the object of the present invention.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述の従来技術の欠点を排除゛し、管路を共有
する他の水力機械から水撃の影響を受けても、運転点が
ハンプ特性に異常接近しないようにする簡単で確実な可
変速揚水発電プラントの制御方法を提供することである
The present invention eliminates the disadvantages of the prior art described above and provides a simple and reliable solution to prevent the operating point from approaching the hump characteristic abnormally even when subjected to water hammer effects from other hydraulic machines sharing the pipeline. An object of the present invention is to provide a control method for a variable speed pumped storage power plant.

〔問題点を解決するための手段〕[Means for solving problems]

管路を共有する他の水力機械の運転状態の変化、特にポ
ンプモードでの起動や入力急増操作時、該共有管路内の
水撃により当の可変速揚水プラントの全揚程(ポンプ出
口水圧と入口水圧の差)が−時上昇することに注目し、
該水力機械の起動や入力急増操作に先立って、又は同時
に当の可変速揚水発電プラントのポンプ水車の回転速度
Nを一時的に上げ補正する。
Changes in the operating status of other hydraulic machines that share a pipe, especially when starting up in pump mode or during sudden input operations, can cause water hammer in the shared pipe to cause a change in the total head (pump outlet water pressure) of the variable speed pumping plant. Note that the difference in inlet water pressure) increases with - hours,
Prior to or at the same time as starting up the hydraulic machine or input sudden increase operation, the rotational speed N of the pump turbine of the variable speed pumped storage power generation plant is temporarily increased and corrected.

そして該水力機械による共有管路内の水撃干渉の危険が
去った後該N補正制御を除外し、Nを元の適正値制御に
戻す。
Then, after the danger of water hammer interference in the shared pipeline by the hydraulic machine has passed, the N correction control is removed and N is returned to its original proper value control.

〔作用〕 共有管路からの水撃によって全揚程が上がり、運転点が
ハンプ特性に近すこうとしても、これに先立ってか、又
は同時にNの上げ補正を行い、ハンプ特性自身を遠ざけ
るので、運転点がハンプ特性に落ち込むことを確実に回
避できる。
[Effect] Even if the total head increases due to water hammer from the shared pipeline and the operating point approaches the hump characteristic, the N is increased and corrected before or at the same time to move the hump characteristic itself away. It is possible to reliably avoid the operating point from falling into the hump characteristic.

もう少く詳しく説明すると下記となる。A more detailed explanation is as follows.

第6図はある一定の回転速度の下で測った各案内羽根開
度におけるQ対H関係グラフを一緒に書いたもので、こ
の回転速度の下では最適調整は点線の包絡線である。
FIG. 6 is a graph showing the relationship between Q and H at each guide vane opening measured under a certain rotational speed, and under this rotational speed, the optimal adjustment is the dotted envelope.

第7図の2本の線は第6図の包絡線と同様に求めた回転
速度N1及びNzの下での最適設定曲線を示す。尚N 
1> N z。
The two lines in FIG. 7 indicate optimal setting curves under the rotational speeds N1 and Nz, which were obtained in the same way as the envelope curve in FIG. 6. Nao N
1>Nz.

即ちこの最適設定曲線は回転速度を上げると右上方に移
動すると考えてよい。
That is, it can be considered that this optimum setting curve moves upward and to the right as the rotation speed increases.

上池と下池の水位差が同一の時、流量Qの増加と共に全
揚程Hは上昇するがこれをこの水位差における負荷曲線
と呼ぶ(第7図参照)。
When the water level difference between the upper and lower ponds is the same, the total head H increases as the flow rate Q increases, and this is called the load curve at this water level difference (see Figure 7).

第7図から明らかな如く回転速度を上げると同じガイド
ベーン開度の下でもハンプ特性開始点HXが上昇するの
で共有管路内の水撃の影響を受け全揚程Hが一時上昇し
てもハンプ特性落ち込みを回避できる。
As is clear from Figure 7, when the rotation speed is increased, the hump characteristic starting point HX increases even under the same guide vane opening, so even if the total head H increases temporarily due to the influence of water hammer in the shared pipeline, the hump Characteristic deterioration can be avoided.

〔実施例〕〔Example〕

以下本発明の一実施例である第1図につき説明する。 An explanation will be given below with reference to FIG. 1, which is an embodiment of the present invention.

第1図は本発明による制御回路図で(尚、電力制御の為
の交流励磁回路についての詳細は本発明に直接関係しな
いので図示していない。)外部からの電力指令Poとそ
の時のポンプの上下貯水槽の単純な水位差即ち総落差H
Gを入力としてその時の適正回転速度Naを演算する回
転速度関数発生器12からの出力信号Naと実際の回転
速度Nを比較する加算器18と16電力制御補正信号発
生器、7電力制御器、3電力変換器、2電動機。
FIG. 1 is a control circuit diagram according to the present invention (the details of the AC excitation circuit for power control are not shown as they are not directly related to the present invention). Simple water level difference between upper and lower water tanks, that is, total head H
an adder 18 that compares the output signal Na from the rotation speed function generator 12 which uses G as input to calculate the appropriate rotation speed Na at that time and the actual rotation speed N; 16 a power control correction signal generator; 7 a power controller; 3 power converters, 2 electric motors.

慣性モーメントGD2よりなる制御ループを負帰還回路
に構成する。尚GD2は電動機とポンプが有する慣性モ
ーメントの作用を示すためのブロックで特別の装置があ
る訳ではない。又NaとNの偏差をゼロにするために電
力制御補正信号発生器16には積分要素が含まれる。電
力制御補正信号発生器16の出力である補正信号εは電
力指令Poと加算されこの合成信号PO+Eと実際の電
動機出力PMが比較される。
A control loop consisting of the moment of inertia GD2 is configured as a negative feedback circuit. Note that GD2 is a block for showing the effect of the moment of inertia of the electric motor and pump, and does not include any special device. Further, in order to make the deviation between Na and N zero, the power control correction signal generator 16 includes an integral element. The correction signal ε, which is the output of the power control correction signal generator 16, is added to the power command Po, and this composite signal PO+E is compared with the actual motor output PM.

電力制御器7.電力変換器32発電電動機2及び実際の
電動機出力PMの復元回路よりなる電力制御ループは負
帰還回路に構成され電力制御器7には(Po+t)とP
Mの偏差をゼロにするため積分要素が含まれる。負゛荷
指令Po とHaを入力としてその時の適正案内羽根開
度Y OPTを演算する案内羽根開度関数発生器13と
その出力信号Yaと実際の案内羽根開度Yを比較する比
較器21と9案内羽根制御器、実際の案内羽根開度Yの
復元より成る制御ループを負帰還回路に構成し、案内羽
根制御器9に含まれる積分要素によりYaとYの偏差が
ゼロとなるように案内羽根が制御される。
Power controller7. The power control loop consisting of the power converter 32, the generator motor 2, and the restoration circuit for the actual motor output PM is configured as a negative feedback circuit, and the power controller 7 has (Po+t) and P.
An integral element is included to make the deviation of M zero. A guide vane opening function generator 13 receives the load commands Po and Ha and calculates the appropriate guide vane opening YOPT at that time, and a comparator 21 compares the output signal Ya with the actual guide vane opening Y. A control loop consisting of the 9 guide vane controller and the restoration of the actual guide vane opening Y is configured as a negative feedback circuit, and the integral element included in the guide vane controller 9 guides the guide vane so that the deviation between Ya and Y becomes zero. The vanes are controlled.

かくして前記回転速度制御回路によりN =N a。Thus, N=Na by the rotational speed control circuit.

前記電力制御回路によりPM:PO+ε、前記案内羽根
制御回路によりY ” Y aとすることができる。
PM:PO+ε can be set by the power control circuit, and Y '' Y a can be set by the guide vane control circuit.

ここでポンプが要求する入力ppと実際の電動機への入
力PMの偏差は電動機及びポンプの慣性モーメント(G
D”)に入力される。ところで慣性モーメントは一種の
積分要素と見なせる。
Here, the deviation between the input pp required by the pump and the actual input PM to the motor is the moment of inertia (G
By the way, the moment of inertia can be considered as a kind of integral element.

又前述(7)通!J16,7,3,2.GD” と実際
のNの復元より成る回転速度制御回路は負帰還回路に構
成されているのでPMとppの偏差がゼロとなるように
制御される。即ちPM =Pp 、また前記関数発生器
の誤差を無視すればY a =P o相当であるのでP
pは元々Pa相当に、即ちpp=POに制御されている
筈である。以上綿めるとPo =Pp =PM=Po+
iとなり、電力補正信号Eは最終的にはゼロにされる。
Also, the above (7) letter! J16, 7, 3, 2. The rotational speed control circuit, which consists of restoring GD" and actual N, is configured as a negative feedback circuit, so it is controlled so that the deviation between PM and pp becomes zero. That is, PM = Pp, and the function generator's If we ignore the error, Y a = P o, so P
Originally, p should be controlled to be equivalent to Pa, that is, pp=PO. If you remove the above, Po = Pp = PM = Po +
i, and the power correction signal E is finally set to zero.

以上より外部からの電力指令Poに応じて実際の入力P
Mを制御することができる。
From the above, the actual input P according to the external power command Po
M can be controlled.

第1図の実施例に対する上記説明をグラフに示したのが
第9図である。
FIG. 9 is a graph showing the above explanation for the embodiment of FIG. 1.

時点t。で駆動出力指令POがステップ状に立上げられ
た場合の応答を示す。
Time t. shows the response when the drive output command PO is raised in a stepwise manner.

まず電動機出力PMは僅かの遅れをもってグラフgの如
く立上がる。
First, the motor output PM rises as shown in graph g with a slight delay.

又案内羽根開度関数発生器の出力Yaや回転速度関数発
生器の出力Naは関数発生器が個有に持っている時定数
や、特別に与えた追加時定数によって各々グラフb、c
の如く応答する。
In addition, the output Ya of the guide vane opening function generator and the output Na of the rotation speed function generator are determined by graphs b and c, respectively, depending on the time constant that the function generator has and a specially given additional time constant.
Respond as follows.

グラフbのYaに対する実際の案内羽根開度Yの応答は
dの様になる。尚Yの応答に直線部分があるのは案内羽
根が案内羽根サーボモーターの開速度制限(これは案内
羽根用配圧弁のストローク制限等で与える)によって制
限を受けている場合を示す。
The response of the actual guide vane opening Y to Ya in graph b is as shown in d. Note that the linear portion in the response of Y indicates that the guide vane is limited by the opening speed limit of the guide vane servo motor (this is given by the stroke limit of the guide vane pressure distribution valve, etc.).

ポンプの回転速度Nはグラフgの電動機出力PMとグラ
フeのポンプ入力Ppの差によって加速されグラフfの
様に上昇し最終的にN ” N aに達した時点で上昇
が止む。
The rotational speed N of the pump is accelerated by the difference between the motor output PM shown in graph g and the pump input Pp shown in graph e, increases as shown in graph f, and finally stops increasing when it reaches N''Na.

尚そのポンプ人力Ppは案内羽根開度Yの上昇と回転速
度Nの上昇の両方による増分が加算されグラフeの如く
増大する。
Incidentally, the pump human power Pp increases as shown in graph e by adding the increment due to both the increase in the guide vane opening degree Y and the increase in the rotational speed N.

グラフfでは回転速度Nの動きはゆっくり乍ら安定であ
るがこれは16の電力補正信号発信器に充分なダンピン
グ作用を与えたためである。
In graph f, the movement of the rotational speed N is slow but stable, and this is because a sufficient damping effect is given to the 16 power correction signal generators.

これは例えば16電力補正信号発信器を比例要素と積分
要素の並列回路で構成し、それらのゲインを適切に選ぶ
ことによって達成できる。
This can be achieved, for example, by configuring the 16 power correction signal generator with a parallel circuit of a proportional element and an integral element, and appropriately selecting their gains.

尚以上は管路を共有する他号機から急激な水撃が伝わっ
てこない通常の場合の説明であるが本発明のポイントと
なるこういう場合の運転点の修正機能は次の様に与えら
れる。
The above explanation is for a normal case in which sudden water hammer is not transmitted from other units sharing the pipeline, but the operating point correction function in such a case, which is the key point of the present invention, is provided as follows.

上又は下流側管路を共有する他号機が揚水モードで起動
したり、入力急増操作される場合は、予め当の可変速揚
水発電プラントの回転速度を所定値ΔNaだけ上げ補正
する補正信号を加算器18に印加する。
When another unit that shares the upstream or downstream pipeline starts up in pumped storage mode or undergoes sudden input operation, a correction signal is added in advance to increase the rotation speed of the variable speed pumped storage power plant by a predetermined value ΔNa. 18.

このΔNaはもちろん該他号機のガイドベーン操作量に
応じて変化させることもできる。又、該他号機の運転状
態を急変操作している時に同時にΔNa補正制御を生か
すようにしてもよい。
Of course, this ΔNa can also be changed depending on the guide vane operation amount of the other machine. Further, the ΔNa correction control may be utilized at the same time when the operating state of the other machine is suddenly changed.

そして、該他号機の急操作が終了し共有管路内の水撃も
静まれば、該ΔNa補正信号はゼロに戻す。
Then, when the sudden operation of the other machine is finished and the water hammer in the shared pipeline has subsided, the ΔNa correction signal is returned to zero.

上述のΔNa補正制御を行った時の該可変速揚水発電プ
ラントの応答の様子を纏めて示したのが第10図である
FIG. 10 summarizes the response of the variable speed pumped storage power plant when the above-mentioned ΔNa correction control is performed.

この場合は第8図とは異り、電動機出力指令Paは動い
ていないのでYopt + Y共に不変である。
In this case, unlike in FIG. 8, the motor output command Pa is not moving, so both Yopt + Y remain unchanged.

第2図は上記第1図の制御回路により巻線形誘導機2を
可変速電動機として用いた場合の装置構成を示す一例で
ある。図中同一番号は同一品を示す。巻線形誘導機2の
1次側が電力系統1に接続されて2次側が電力変換器3
に接続され誘導機2の入力は、電力変換器3による交流
励磁電流の位相や電圧制御により制御される。実際の入
力PMは電力検出器6により検出され比較器20へ又実
際の回転速度Nは回転速度検出器5により検出され比較
器18へ各々入力される。
FIG. 2 shows an example of a device configuration in which the wound induction machine 2 is used as a variable speed motor using the control circuit shown in FIG. 1. The same numbers in the figures indicate the same products. The primary side of the wound induction machine 2 is connected to the power system 1, and the secondary side is connected to the power converter 3.
The input of the induction machine 2 is controlled by the phase and voltage control of the AC excitation current by the power converter 3. The actual input PM is detected by the power detector 6 and input to the comparator 20, and the actual rotation speed N is detected by the rotation speed detector 5 and input to the comparator 18, respectively.

第9図は、第1図の制御回路による別の実施例を示す装
置構成図で可変速電動機として同期機10を用い、系統
1と同期機10との間に電力変換器17を用いた場合で
ある。この電力変換器への位相指令との突合せのため位
相検出器11を設けている。
FIG. 9 is a device configuration diagram showing another embodiment using the control circuit shown in FIG. 1, in which a synchronous machine 10 is used as the variable speed motor and a power converter 17 is used between the system 1 and the synchronous machine 10. It is. A phase detector 11 is provided to match the phase command to the power converter.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は前述より明らかな如く、管路を共有する
他号機からの水撃を受けてもハンプ特性落ち込みを確実
に回避し、可変速揚水発電システムの安定で確実な運転
を保証する。
As is clear from the foregoing, the effect of the present invention is to reliably avoid a drop in hump characteristics even when receiving water hammer from other units sharing the pipeline, and to ensure stable and reliable operation of the variable speed pumped storage power generation system.

ポンプ水車プラントにあっては上又は下流管路を複数台
のポンプ水車が共有する設計は経済性追求上むしろ普通
で、この種プラントに安心して適用できる可変速揚水発
電システムを提供できる効果は小さくない。
In pump-turbine plants, a design in which multiple pump-turbines share the upstream or downstream pipeline is rather common in pursuit of economic efficiency, and the effect of providing a variable speed pumped storage power generation system that can be safely applied to this type of plant is small. do not have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明可変速揚水システムの一実施例を示す制
御回路図、第2図は本発明を巻線形誘導電動機を使った
可変速揚水システムに適用した場合の例、第3図、第4
図はハンプ特性の説明図、第5図はハンプ特性を示すH
−Qグラフ、第6図は案内羽根開度とハンプ特性の関係
グラフ、第7図は回転速度とハンプ特性の関係を示すグ
ラフ、第8図は第1図の本発明の詳細な説明するための
グラフ、第9図は本発明を使った別のタイプの可変速揚
水システムの倒閣、第10図は第8図と同様第1図の本
発明の詳細な説明するためのグラフである。 第5rXJ ケ 櫓7ki 第6図 i鴻程H 第3昭
Fig. 1 is a control circuit diagram showing one embodiment of the variable speed pumping system of the present invention, Fig. 2 is an example of the case where the present invention is applied to a variable speed pumping system using a wound induction motor, Figs. 4
The figure is an explanatory diagram of the hump characteristic, and Figure 5 shows the hump characteristic.
-Q graph, FIG. 6 is a graph showing the relationship between guide vane opening and hump characteristics, FIG. 7 is a graph showing the relationship between rotational speed and hump characteristics, and FIG. 8 is for detailed explanation of the present invention shown in FIG. FIG. 9 is a graph of another type of variable speed pumping system using the present invention, and FIG. 10 is a graph for explaining in detail the present invention of FIG. 1, similar to FIG. 8. 5th r

Claims (1)

【特許請求の範囲】 1、上流又は下流側管路を他の水力機械と共有し、ポン
プ運転領域においてハンプ特性(逆流特性)を有するポ
ンプ水車と、電力系統からは同一周波数の交流電源の供
給を受け乍ら該ポンプ水車はその時その時の運転状態に
適合した回転速度で駆動するように構成された周波数変
換器付揚水駆動装置を有する可変速揚水発電プラントの
揚水モード運転に関し、上流又は下流側管路を共有する
他の水力機械の運転状態を急変させる場合は該可変速揚
水発電プラントの回転速度を一時的に補正制御し、他の
水力機械の運転状態急変に伴う共有管路内の水撃が静ま
つてから該一時補正制御を解除するようにした可変速揚
水発電プラントの制御方法。 2、上流又は下流側管路を共有する他の水力機械が揚水
モードで起動又は入力急増する時、これに先立つて該可
変速揚水発電プラントの回転速度を上げる補正制御を行
うようにした第1項の可変速揚水発電プラントの制御方
法。 3、上流又は下流側管路を共有する他の水力機械が揚水
モードで起動又は入力急増する時、同時に該可変速揚水
発電プラントの回転速度を上げる補正制御を行うように
した第1項の可変速揚水発電プラントの制御方法。
[Claims] 1. A pump-turbine that shares an upstream or downstream pipeline with another hydraulic machine and has hump characteristics (reverse flow characteristics) in the pump operation area, and a supply of AC power of the same frequency from the power system. Regarding the pumped storage mode operation of a variable speed pumped storage power generation plant having a pumped storage drive device with a frequency converter configured to drive the pump turbine at a rotational speed suitable for the operating conditions at that time, When the operating conditions of other hydraulic machines that share the pipeline suddenly change, the rotation speed of the variable speed pumped storage power generation plant is temporarily corrected and the water in the shared pipeline due to the sudden change in the operating status of the other hydraulic machines is adjusted. A control method for a variable speed pumped storage power generation plant, in which the temporary correction control is canceled after the shock has subsided. 2. When other hydraulic machines that share the upstream or downstream pipeline start up in pumping mode or input increases suddenly, correction control is performed to increase the rotational speed of the variable speed pumped storage power generation plant prior to this. Control method for variable speed pumped storage power plant. 3. When another hydraulic machine that shares the upstream or downstream pipeline starts up in pumping mode or increases its input rapidly, correction control is simultaneously performed to increase the rotation speed of the variable speed pumped storage power plant. Control method for variable speed pumped storage power plant.
JP62318850A 1987-12-18 1987-12-18 Variable speed pumping plant Expired - Lifetime JP2796298B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62318850A JP2796298B2 (en) 1987-12-18 1987-12-18 Variable speed pumping plant
KR1019880015485A KR920008189B1 (en) 1987-12-18 1988-11-24 Variable speed pumping-up system
DE8888120159T DE3861719D1 (en) 1987-12-18 1988-12-02 PUMP TURBINE WITH VARIABLE SPEED.
EP88120159A EP0320718B1 (en) 1987-12-18 1988-12-02 Variable speed pumping-up system
US07/285,753 US5026256A (en) 1987-12-18 1988-12-16 Variable speed pumping-up system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62318850A JP2796298B2 (en) 1987-12-18 1987-12-18 Variable speed pumping plant

Publications (2)

Publication Number Publication Date
JPH01163475A true JPH01163475A (en) 1989-06-27
JP2796298B2 JP2796298B2 (en) 1998-09-10

Family

ID=18103653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62318850A Expired - Lifetime JP2796298B2 (en) 1987-12-18 1987-12-18 Variable speed pumping plant

Country Status (1)

Country Link
JP (1) JP2796298B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035545A (en) * 1973-07-27 1975-04-04
JPS5131345A (en) * 1974-09-11 1976-03-17 Hitachi Ltd
JPS5419031A (en) * 1977-07-12 1979-02-13 Toshiba Corp Controller of hydraulic power plant
JPS61175271A (en) * 1985-01-29 1986-08-06 Toshiba Corp Method for controlling running of pump water wheel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035545A (en) * 1973-07-27 1975-04-04
JPS5131345A (en) * 1974-09-11 1976-03-17 Hitachi Ltd
JPS5419031A (en) * 1977-07-12 1979-02-13 Toshiba Corp Controller of hydraulic power plant
JPS61175271A (en) * 1985-01-29 1986-08-06 Toshiba Corp Method for controlling running of pump water wheel

Also Published As

Publication number Publication date
JP2796298B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
KR920007517B1 (en) Control system for a variable speed hydro-power plant apparatus
EP0243937B1 (en) Variable-speed pumped-storage power generating system
JP2585233B2 (en) Variable speed turbine generator
KR920008189B1 (en) Variable speed pumping-up system
US6336322B1 (en) Method of controlling a pump turbine
EP3580448B1 (en) Improvements to the stabilization of hydraulic machines with s-zone characteristics
US6602044B1 (en) Pump turbine, method of controlling thereof, and method of stopping thereof
JPH01163475A (en) Control method for variable speed pumped storage power plant
JP5797513B2 (en) Hydroelectric power generation control system and governor control device thereof
JP2644787B2 (en) Variable speed pumping system
JP4006149B2 (en) Pump turbine
JP4223645B2 (en) Pump turbine
JP2695813B2 (en) Operation control device of variable speed hydraulic machine
JP2647116B2 (en) How to operate a variable speed hydraulic machine
JPH01163476A (en) Control method for variable speed pumped storage power plant
JP2002034296A (en) Variable speed pumped-storage generation-controlling device
JP2865670B2 (en) Variable speed pumping equipment
JPS62282171A (en) Variable speed pumping system
JPH01130070A (en) Driving method for variable speed hydraulic machine
JPH04358768A (en) Operation control device for variable speed hydraulic machinery
JP2001342939A (en) Pump turbine
JPH0454285A (en) Controller of movable vane water wheel
JPH01300070A (en) Output control method of variable speed controlled hydraulic machine
JPH0533756A (en) Input control method during pumping operation of generator motor
JPH0393498A (en) Control of speed of water wheel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10