JPH01162166A - Q measuring apparatus - Google Patents

Q measuring apparatus

Info

Publication number
JPH01162166A
JPH01162166A JP32084787A JP32084787A JPH01162166A JP H01162166 A JPH01162166 A JP H01162166A JP 32084787 A JP32084787 A JP 32084787A JP 32084787 A JP32084787 A JP 32084787A JP H01162166 A JPH01162166 A JP H01162166A
Authority
JP
Japan
Prior art keywords
measured
coil
value
capacitance
ammeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32084787A
Other languages
Japanese (ja)
Inventor
Tomio Wakasugi
若杉 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Japan Inc
Original Assignee
Yokogawa Hewlett Packard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hewlett Packard Ltd filed Critical Yokogawa Hewlett Packard Ltd
Priority to JP32084787A priority Critical patent/JPH01162166A/en
Publication of JPH01162166A publication Critical patent/JPH01162166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a Q value simply without removing a capacitance, by determining Q of a coil to be measured from a ratio during the resonance between a current passing through the coil being measured connected in parallel to a second capacitance and an output voltage of an AC power source. CONSTITUTION:An LCR meter determines a complex admittance of an element to be measured by a known vector ratio calculation from a measuring voltage V of a voltmeter 3 and a measuring current I of an ammeter 8. A coil to be measured shown equivalently with a resistance 7 (resistance value (r) thereof) and an inductance 6 (inductance value l thereof) is connected to the side of the ammeter 8 through a fixed capacitance 4 between a signal source resistance 2 and the ammeter 8. A variable capacitance 5 is connected between a connection point of the fixed capacitance 4 and the coil being measured and the ground. In measurement, a short-circuiting is caused at both ends of the coil being measured to measure a capacitance value C1. Then, an actual admittance Ytr is measured to determine Q=Ytr/(omegaC1).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はコイルのQ値を求めるQ測定器に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a Q measuring device for determining the Q value of a coil.

〔従来技術とその問題点〕[Prior art and its problems]

近年被測定素子に交流電圧を印加し、該交流電圧と被測
定素子に流れる電流とのベクトル比から被測定素子のイ
ンミタンスを測定する測定器が貰用されている。このよ
うな測定器には、横河・ヒ二一レフト・バッカード株式
会社より市販されているモデル4274Aやモデル42
75AマルチフリケンシLCRメータがある。以下この
ような機能を有する測定器をLCRメータと呼称する。
In recent years, measuring instruments have come into use that apply an alternating current voltage to an element to be measured and measure the immittance of the element to be measured from the vector ratio of the alternating voltage to the current flowing through the element. Such measuring instruments include Model 4274A and Model 42 commercially available from Yokogawa Left Backard Corporation.
I have a 75A multi-frequency LCR meter. Hereinafter, a measuring device having such a function will be referred to as an LCR meter.

従来LCRメータでコイルのQを測定する場合、特にQ
値が大きいときは、誤差が大きかった。Q値は被測定素
子のインミタンスの虚数分と実数成分の比で与えられ、
その各々の測定精度は、そのうちの大きい方(虚数成分
の値)が必要とするダイナミックレンジで定るため誤差
が太き(なるわけである。例えば測定確度0.5%、Q
値100の場合を考えると、 虚数成分=1±0.005゜ 実数成分= 1 /100±0.005=0.01±0
.005から測定されるQ値をQmとすると Qm!= 1 / (0,01±0.005)−100
/(1±0.5) となり50%の誤差が発生する。このような大きな誤差
は大きな虚数成分によるから、次のような解決法が用い
られていた。
When measuring the Q of a coil with a conventional LCR meter, especially the Q
When the value was large, the error was large. The Q value is given by the ratio of the imaginary component and the real component of the immittance of the device under test,
The measurement accuracy of each of them is determined by the required dynamic range, which is the larger one (the value of the imaginary component), so the error becomes larger (for example, the measurement accuracy is 0.5%, the Q
Considering the case of a value of 100, Imaginary component = 1 ± 0.005° Real component = 1 /100 ± 0.005 = 0.01 ± 0
.. If the Q value measured from 005 is Qm, then Qm! = 1 / (0,01±0.005)-100
/(1±0.5), resulting in an error of 50%. Since such a large error is due to a large imaginary component, the following solution was used.

(1)  並列共振法 被測定コイルと並列に低損失可変容量を接続し、該低損
失可変容量を可変して共振させ、被測定コイルアドミタ
ンスの虚数成分を消去し、実数成分を正確に測定する。
(1) Parallel resonance method Connect a low-loss variable capacitor in parallel with the coil under test, vary the low-loss variable capacitor to resonate, eliminate the imaginary component of the coil admittance under test, and accurately measure the real component. .

虚数成分を測定する場合には低損失可変容量を除去して
(かつ虚数成分が実数成分より十分大きな絶対値を持つ
、と仮定して)測定する。このようにして測定した値か
らQが計算される。
When measuring the imaginary component, the low-loss variable capacitor is removed (and the imaginary component is assumed to have a sufficiently larger absolute value than the real component). Q is calculated from the values measured in this manner.

(2)直列共振法 直列共振法は、(1)の並列共振法の双対であり、被測
定コイルと低損失可変容量は直列接続して測定される。
(2) Series Resonance Method The series resonance method is the dual of the parallel resonance method (1), in which the coil to be measured and the low-loss variable capacitor are connected in series and measured.

低損失可変容量を短絡除去して被測定コイルのインピー
ダンスの虚数成分を求め、虚数成分を消去して実数成分
を求め、その後Q値を計算する。上記のいずれの方法に
おいても、可変容量の除去と追加の計算が必要であり自
動化ができない。
The imaginary component of the impedance of the coil to be measured is determined by short-circuiting the low-loss variable capacitor, the imaginary component is eliminated to determine the real component, and then the Q value is calculated. Both of the above methods require the removal of variable capacitors and additional calculations and cannot be automated.

〔発明の目的〕[Purpose of the invention]

従って本発明の目的は、可変容量を用いて共振を生じさ
せるのみで、簡単にQ値が測定できるQ測定器により上
記の問題を解消することである。
Therefore, an object of the present invention is to solve the above-mentioned problems with a Q measuring device that can easily measure the Q value by simply generating resonance using a variable capacitor.

〔発明の概要〕[Summary of the invention]

本発明の一実施例によれば、LCRメータの印加電圧は
固定容量と可変容量から成る容量分圧器により分圧して
被測定コイルに印加される。被測定コイルと並列である
可変容量を可変して、被測定コイルに流れる電流と印加
電圧が同相となる点(あるいは最大アドミタンスとなる
点)を求める。
According to one embodiment of the present invention, the voltage applied by the LCR meter is divided by a capacitive voltage divider consisting of a fixed capacitor and a variable capacitor, and then applied to the coil to be measured. A variable capacitor connected in parallel with the coil to be measured is varied to find the point where the current flowing through the coil to be measured and the applied voltage are in phase (or the point at which the maximum admittance is reached).

このときの固定容量の値と角周波数とアドミタンス値か
ら測定コイルのQが求まる。
The Q of the measuring coil is determined from the fixed capacitance value, angular frequency, and admittance value at this time.

従って、固定容量値と角波数を適宜に選べば、QがLC
Rメータの指示値から直読できる。あるいは、LCRメ
ータに内蔵された容量計算機能を用いることにより、単
に固定容量値を適宜に選ぶのみで、Q値がLCRメータ
指示値から直読できる。
Therefore, if the fixed capacitance value and angular wave number are selected appropriately, Q will be LC
It can be read directly from the R meter reading. Alternatively, by using the capacitance calculation function built into the LCR meter, the Q value can be directly read from the LCR meter reading simply by appropriately selecting a fixed capacitance value.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例のQ測定器を示す。 FIG. 1 shows a Q measuring device according to an embodiment of the present invention.

交流信号源1、信号源抵抗2、電圧計3、電流計8は、
前述のLCRメータの内部を機能的に表したものである
。電流計8の内部抵抗は零である。
AC signal source 1, signal source resistance 2, voltmeter 3, and ammeter 8 are as follows:
This is a functional representation of the inside of the aforementioned LCR meter. The internal resistance of ammeter 8 is zero.

LCRメータは、電圧計3の測定電圧Vと電流計8の測
定電流Iから、周知のベクトル比計算により被測定素子
の複素インタミンスと求める。
The LCR meter determines the complex interference of the device to be measured from the voltage V measured by the voltmeter 3 and the current I measured by the ammeter 8 through well-known vector ratio calculation.

本発明の一実施例では、抵抗7(抵抗値r)とインダク
タンス6(インダクタンス値2)で等価的に示された被
測定コイルが、信号源抵抗2と電流計8の間に固定容量
4を介して電流計側に接続される。可変容量5は、固定
容量4と被測定コイルの接続点とグランド間に接続され
る。
In one embodiment of the present invention, a coil to be measured equivalently represented by a resistance 7 (resistance value r) and an inductance 6 (inductance value 2) has a fixed capacitance 4 between a signal source resistance 2 and an ammeter 8. Connected to the ammeter side via. The variable capacitor 5 is connected between the connection point between the fixed capacitor 4 and the coil to be measured and the ground.

信号角周波数をωとし、第1図におけるアドミタンスY
tを求めると、 ここに、C,、C,は固定容量4.可変容量5の容量値
、jt =  lである。Czを可変してY。
Let the signal angular frequency be ω, and the admittance Y in Fig. 1
Calculating t, where C,, C, is the fixed capacitance 4. The capacitance value of the variable capacitor 5, jt = l. Vary Cz and Y.

を実数とすれば、 ω”(C1+Cg) jt = 1 となる。If is a real number, then ω”(C1+Cg) jt=1 becomes.

このときのY、の値Ysrは次式である。The value Ysr of Y at this time is given by the following equation.

ytr−ωC+Q ここに、Q=1−ωIl/r:供試コイルのQ、Qが十
分大きいときは、Y、の絶対値が最大となるように02
を調整しても同様の結果を得ることが出来る。
ytr-ωC+Q Here, Q=1-ωIl/r: When Q of the test coil and Q are sufficiently large, set 02 so that the absolute value of Y is maximum.
Similar results can be obtained by adjusting .

測定はまず、被測定コイルの両端を短絡し容量値C1を
測定する。このとき可変容I5は原理的にはC3の測定
に誤差を与えない。次に前述したようにしてYtrを測
定すれば、 Q=Yt、/ (ωC+) としてQが求められる。
In the measurement, first, both ends of the coil to be measured are short-circuited and the capacitance value C1 is measured. At this time, the variable capacitor I5 does not, in principle, cause an error in the measurement of C3. Next, if Ytr is measured as described above, Q can be obtained as Q=Yt,/(ωC+).

ωC3が10の整数べきとなるように選べばQの計算は
容易になる。
If ωC3 is selected to be an integer power of 10, the calculation of Q becomes easy.

本発明のQ測定器は4端子対しCRメータや2端子対し
CRメータ等のいずれのLCRメータを用いても容易に
実行できることは明白である。
It is clear that the Q measuring device of the present invention can be easily implemented using any LCR meter, such as a four-terminal CR meter or a two-terminal CR meter.

なお、LCRメータの内部計算を容量測定のときと同一
にし、前記Ytrを表示すれば、CIQが表示されるか
ら、周波数に関係せずに01を知るのみで表示値からQ
値が求められる。
If you make the internal calculation of the LCR meter the same as when measuring capacity and display the Ytr mentioned above, the CIQ will be displayed, so you can calculate the Q from the displayed value by simply knowing 01 regardless of the frequency.
A value is required.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の実施例によれば、付加容
1i(4,5)を取りはずすことなく校正でき、かつ高
Qはど正確なQ値測定ができるQ測定器が従来技術のL
CRメータを用いて簡単に構成できる。
As described in detail above, according to the embodiment of the present invention, a Q measuring instrument capable of calibrating without removing the additional capacitor 1i (4, 5) and capable of accurately measuring a Q value with a high Q is provided. L
It can be easily configured using a CR meter.

又、実アドミタンスを容量として表示できるLCRメー
タでは、C1を10の整数べきに選ぶことによりQ値の
直読ができる。
Furthermore, in an LCR meter that can display the actual admittance as a capacitance, the Q value can be directly read by selecting C1 as an integer power of 10.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のQ測定器である。 1、交流信号源 2、信号源抵抗 3、電圧計 4、 固定容量 5、 可変容量 6、被測定コイルのインダクタンス 7、被測定コイルの抵抗 8、電流計 IG  1 FIG. 1 shows a Q measuring device according to an embodiment of the present invention. 1. AC signal source 2. Signal source resistance 3. Voltmeter 4. Fixed capacity 5. Variable capacity 6. Inductance of the coil to be measured 7. Resistance of the coil to be measured 8. Ammeter IG 1

Claims (1)

【特許請求の範囲】[Claims] 交流電源と該交流電源の出力電圧を分圧する分圧器を構
成する第1、第2の容量とから成り、前記第2の容量に
並列接続された被測定コイルを流れる電流と前記出力電
圧の共振時の比から前記被測定コイルのQを求めること
を特徴とするQ測定器。
It consists of an AC power source and first and second capacitors forming a voltage divider that divides the output voltage of the AC power source, and resonance between the current flowing through the coil under test connected in parallel to the second capacitor and the output voltage. A Q measuring device characterized in that the Q of the coil to be measured is determined from a ratio of times.
JP32084787A 1987-12-18 1987-12-18 Q measuring apparatus Pending JPH01162166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32084787A JPH01162166A (en) 1987-12-18 1987-12-18 Q measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32084787A JPH01162166A (en) 1987-12-18 1987-12-18 Q measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01162166A true JPH01162166A (en) 1989-06-26

Family

ID=18125910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32084787A Pending JPH01162166A (en) 1987-12-18 1987-12-18 Q measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01162166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102150A1 (en) * 2004-04-23 2005-11-03 Waseda University Pressure measuring method, pressure measuring device, and tonometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102150A1 (en) * 2004-04-23 2005-11-03 Waseda University Pressure measuring method, pressure measuring device, and tonometer
US7713197B2 (en) 2004-04-23 2010-05-11 Waseda University Pressure measuring method, pressure measuring device, and tonometer

Similar Documents

Publication Publication Date Title
US7383140B2 (en) Capacitance, inductance and impedance measurements using multi-tone stimulation and DSP algorithms
CN100582808C (en) Measurement method of ferroelectric materials electric hysteresis loop wire
CN104101785A (en) Four-terminal-method high-value capacitor impedance measuring device and measuring method thereof
US4777430A (en) Circuit for determining the effective series resistance and Q-factor of capacitors
JPH01162166A (en) Q measuring apparatus
CN106199285B (en) Capacitance characteristic measuring equipment and method under any alternating current carrier
CN205920176U (en) Exchange electric capacity characteristics measurement equipment under carrier wave wantonly
JPS62102148A (en) Method for diagnosing deterioration of coating film
ZHANG et al. Accurate measurement of key parameters of film capacitors for EV power control unit
JP6957168B2 (en) Impedance measuring device and measuring method
Marais et al. Reduction of static electricity meter errors by broadband compensation of voltage and current channel differences
GB642735A (en) Improvements in and relating to radio frequency testing apparatus
CN220323429U (en) LCR measuring circuit based on codec chip
JP2908816B2 (en) Tuning method and Q meter
SU828121A1 (en) Device for measuring capacitor capacitance
RU2797152C1 (en) Method for measuring inductance and self-resistance
CN117849550A (en) Dielectric loss factor tan delta measuring device for group capacitance type current transformer
JPS6273101A (en) Eddy-current type high temperature displacement gage
US3523242A (en) Method and apparatus for measuring "q" of a reactive element in a bridge circuit
Huntley Some Applications for Series Impedance Elements Radio Frequency Immittance Measurements
SU834537A1 (en) Device for measuring coll inductivity
JP2751285B2 (en) Reactance measurement method
SU1534413A1 (en) Method of determining complex impedance
Benson et al. Measurements
JPH032573A (en) Measuring instrument for q of coil and measuring method thereof