JPH01161897A - Element for magnetic shielding - Google Patents

Element for magnetic shielding

Info

Publication number
JPH01161897A
JPH01161897A JP62320442A JP32044287A JPH01161897A JP H01161897 A JPH01161897 A JP H01161897A JP 62320442 A JP62320442 A JP 62320442A JP 32044287 A JP32044287 A JP 32044287A JP H01161897 A JPH01161897 A JP H01161897A
Authority
JP
Japan
Prior art keywords
oxide
retaining body
superconducting material
magnetic shielding
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320442A
Other languages
Japanese (ja)
Inventor
Misao Koizumi
小泉 操
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320442A priority Critical patent/JPH01161897A/en
Publication of JPH01161897A publication Critical patent/JPH01161897A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an element for magnetic shielding which is capable of preventing the generation of cracks due to thermal stress, exhibits excellent function for magnetic shielding, and is superior to mechanical strength, by constituting the element, of a retaining body and oxide superconducting material, the former being formed in a lattice type by using alumina, and the latter being buried in one surface of the retaining body, along a lattice frame of the retaining body. CONSTITUTION:The title element is constituted of a retaining body 1 made of alumina, and oxide superconducting material 2 buried in one surface of the retaining body 1. One surface of the retaining body 1 is formed in a lattice-plate type, on which trenches 4 are arranged along a lattice frame 3 so as to have a whole relation. The superconducting material 2 is buried in the above trenches 4. For the superconducting material 2, the following mixture is used: for example, yttrium oxide powder, barium carbonate powder and copper oxide powder are mixed with a mole ratio of 0.5:1.0:3.0. The trenches 4 are filled with solution obtained by dissolving the mixture in an organic solvent, and the solution is dried to evaporate the organic solvent. Then the retaining body 1 is put in an atmosphere of oxygen, and subjected to heat treatment, thereby synthesizing an oxide superconducting layer.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、磁気シールド用エレメントに係り。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a magnetic shielding element.

特に、酸化物系超電導材を用いたエレメントに関する。In particular, it relates to elements using oxide-based superconducting materials.

(従来の技術) 最近1組成がY−Ba−Cu−0などで表わされる酸化
物系化合物超電導体が注目されている。これら。
(Prior Art) Recently, oxide-based compound superconductors whose composition is represented by Y--Ba--Cu-0, etc., have been attracting attention. these.

酸化物系化合物超電導体の多くは、臨界温度が液体窒素
温度以上である。このため、冷媒として高価で扱い難い
液体ヘリウムを使用する必要がないので、超電導技術を
飛躍的に発展させるものと期待されている。
Many of the oxide-based compound superconductors have a critical temperature equal to or higher than the liquid nitrogen temperature. This eliminates the need to use liquid helium, which is expensive and difficult to handle, as a refrigerant, and is expected to dramatically advance superconducting technology.

ところで、超電導体はマイスナー効果によって磁界を完
全に遮蔽する特性を有している。勿論。
By the way, superconductors have the property of completely shielding magnetic fields due to the Meissner effect. Of course.

酸化物系超電導材も例外ではない。したがって。Oxide-based superconducting materials are no exception. therefore.

酸化物系超電導材で磁気シールド装置を構成すると2合
金系や金属間化合物系の超電導材で磁気シールド装置を
構成した場合に比べて、製作費を軽減でき、しかも安価
で扱い易い液体窒素を使用できるので維持費も軽減でき
る。このようなことから、最近では高磁界磁気共鳴イメ
ージング装置などに組み込まれる磁気シールド装置を酸
化物系超電導材で構成する提案もなされている。酸化物
系超電導材は1通常、粉末原料に酸素中で熱処理を施し
て作られる。したがって、磁気シールド用のエレメント
を作るときには、粉末原料をたとえば板状に展開し、圧
縮して緻密化した後、酸素雰囲気中で熱処理を行なえば
よい。
When a magnetic shield device is constructed using oxide-based superconducting materials, manufacturing costs can be reduced compared to when a magnetic shield device is constructed using two-alloy or intermetallic compound-based superconducting materials, and liquid nitrogen, which is inexpensive and easy to handle, is used. This allows maintenance costs to be reduced. For this reason, there have recently been proposals to construct magnetic shielding devices incorporated into high-field magnetic resonance imaging devices and the like using oxide-based superconducting materials. Oxide-based superconducting materials are usually made by subjecting powder raw materials to heat treatment in oxygen. Therefore, when making a magnetic shielding element, the powder raw material may be expanded into a plate shape, compressed to become dense, and then heat treated in an oxygen atmosphere.

しかしながら、上記のようにして形成された従来の磁気
シールド用エレメントにあっては次のような問題があっ
た。すなわち、酸化物系超電導材は、いわゆる焼き物で
あり、非常に脆い。このため、酸化物系超電導材で磁気
シールド用エレメントを構成するときには、エレメント
の厚みをある程度厚くして機械的強度性を確保する必要
がある。
However, the conventional magnetic shielding element formed as described above has the following problems. That is, the oxide-based superconducting material is a so-called ceramic material and is extremely brittle. Therefore, when constructing a magnetic shielding element using an oxide-based superconducting material, it is necessary to increase the thickness of the element to some extent to ensure mechanical strength.

しかし、このようにエレメントの厚みを厚くすると、熱
処理時に熱応力によってクラックが発生したり、また液
体窒素で冷却したときにも熱応力でエレメントにクラッ
クが発生したりし、これが原因して良好な磁気シールド
機能を発揮させることができない問題があった。
However, if the thickness of the element is increased in this way, cracks may occur due to thermal stress during heat treatment, and cracks may occur in the element due to thermal stress when cooled with liquid nitrogen. There was a problem that the magnetic shielding function could not be demonstrated.

(発明が解決しようとする問題点) 上述の如く、酸化物系超電導材で形成された従来の磁気
シールド用エレメントにあっては、構造的に熱応力に弱
く、これが原因して良好なシールド機能を発揮させるこ
とができない問題があった。
(Problems to be Solved by the Invention) As mentioned above, conventional magnetic shielding elements made of oxide-based superconducting materials are structurally susceptible to thermal stress, and due to this, good shielding function cannot be achieved. There was a problem that it was not possible to make the most of the performance.

そこで本発明は、熱応力に弱い点および機械的強度が低
い点を解消でき、もって酸化物系超電導材の特徴を最大
限に発揮させ得る磁気シールド用エレメントを提供する
ことを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magnetic shielding element that can eliminate the weaknesses in thermal stress and low mechanical strength, thereby maximizing the characteristics of oxide-based superconducting materials.

[発明の構成] (問題点を解決するための手段) 本発明に係る磁気シールド用エレメントは。[Structure of the invention] (Means for solving problems) A magnetic shielding element according to the present invention.

アルミナで格子状に形成された支持体と、この支持体の
一方の表面に上記支持体の格子枠に沿って埋め込まれた
酸化物系超電導材とで構成されている。
It is composed of a support formed of alumina in a lattice shape, and an oxide-based superconducting material embedded in one surface of the support along the lattice frame of the support.

(作 用) 酸化物系超電導材を格子枠に沿って埋設しているので、
酸化物系超電導材を板状に展開してエレメントを構成し
た場合に比べて酸化物系超電導材の体積を小さくできる
。加えて、支持体も格子状に形成されているので体積が
小さい。しかも。
(Function) Since the oxide-based superconducting material is buried along the lattice frame,
The volume of the oxide superconducting material can be made smaller compared to the case where the element is formed by expanding the oxide superconducting material into a plate shape. In addition, since the support is also formed in a lattice shape, the volume is small. Moreover.

アルミナは熱収縮率が酸化物系超電導材のそれに近い。The thermal shrinkage rate of alumina is close to that of oxide-based superconducting materials.

したがって、熱処理時および冷却時の熱応力が緩和され
、クラックの発生が抑制される。この結果、良好な磁気
シールド機能を発揮させることが可能となり、また支持
体の存在によって機械的強度の向上も図ることが可能と
なる。
Therefore, thermal stress during heat treatment and cooling is relaxed, and the occurrence of cracks is suppressed. As a result, it becomes possible to exhibit a good magnetic shielding function, and the presence of the support also makes it possible to improve mechanical strength.

(実施例) 以下1図面を参照しながら実施例を説明する。(Example) An embodiment will be described below with reference to one drawing.

第1図は本発明の一実施例に係る磁気シールド用エレメ
ントを示すものである。このエレメントは、アルミナで
形成された支持体1と、この支持体1の一方の表面に埋
め込まれた酸化物系超電導材2とで構成されている。
FIG. 1 shows a magnetic shielding element according to an embodiment of the present invention. This element is composed of a support 1 made of alumina and an oxide superconducting material 2 embedded in one surface of the support 1.

支持体1は、格子板状に形成されている。そして、支持
体1の一方の面には第2図に示すように格子枠3に沿い
、かつ全体が通じる関係に溝4が設けられている。そし
て、上記溝4内に前記酸化物系超電導材2が充填されて
いる。酸化物系超電導材2は、この実施例では酸化イツ
トリウム粉末と、炭酸バリウム粉末と、酸化銅粉末とを
モル比で0.5 : 1.0 : 3.0の割合に混合
した混合物を有機溶剤で溶解して得られた溶液(スラリ
ー)を溝4内に充填し、この状態で乾燥させて有機溶剤
を蒸発させた後、支持体1ごと酸素雰囲気中に入れて熱
処理を施し、酸化物系超電導体層を合成させたものとな
っている。
The support body 1 is formed in the shape of a grid plate. As shown in FIG. 2, a groove 4 is provided on one surface of the support 1 along the lattice frame 3 and in a relationship that communicates with the entire surface. The groove 4 is filled with the oxide superconducting material 2. In this example, the oxide-based superconducting material 2 is made by mixing a mixture of yttrium oxide powder, barium carbonate powder, and copper oxide powder in a molar ratio of 0.5:1.0:3.0 with an organic solvent. The solution (slurry) obtained by dissolving with It is a composite of superconductor layers.

このような構成であると、酸化物系超電導材2が格子枠
3に沿って埋設されているので、酸化物系超電導材を板
状に展開してエレメントを構成した場合に比べて酸化物
系超電導材の体積を小さくできる。また、支持体1も格
子状に形成されているので体積が小さい。しかも、アル
ミナは熱収縮率が酸化物系超電導材2のそれに近い。し
たがって、熱処理時および冷却時に酸化物系超電導材2
に発生する熱応力を緩和でき、クラックの発生を抑制す
ることができる。この結果、良好な磁気シールド機能を
発揮させることができる。また、支特休1の存在によっ
てエレメントの機械的強度も向上させることができる。
With this configuration, since the oxide-based superconducting material 2 is buried along the lattice frame 3, the oxide-based superconducting material 2 is buried along the lattice frame 3. The volume of superconducting material can be reduced. Further, since the support body 1 is also formed in a lattice shape, its volume is small. Moreover, alumina has a thermal shrinkage rate close to that of the oxide-based superconducting material 2. Therefore, during heat treatment and cooling, the oxide-based superconducting material 2
The thermal stress generated in the process can be alleviated, and the occurrence of cracks can be suppressed. As a result, a good magnetic shielding function can be exhibited. Moreover, the mechanical strength of the element can also be improved due to the existence of the special holiday 1.

第3図は本発明の別の実施例に係るエレメントを一部切
欠して示すものである。
FIG. 3 shows a partially cutaway view of an element according to another embodiment of the invention.

この実施例に係るエレメントは、支持体1aが格子を持
つとともに円筒状に形成されている。そして、支持体1
aの外面に格子枠3に沿い、かつ全体が通じる関係に溝
4が設けてあり、この溝4に酸化物系超電導材2が充填
されている。
In the element according to this embodiment, the support 1a has a grid and is formed in a cylindrical shape. And support 1
A groove 4 is provided on the outer surface of the lattice frame 3 along the lattice frame 3 so as to communicate with the entire lattice frame 3, and this groove 4 is filled with an oxide-based superconducting material 2.

このように構成しても前記実施例と同様の効果を発揮さ
せることができる。
Even with this configuration, the same effects as in the embodiment described above can be achieved.

なお1本発明は上記各実施例に限定されるものではない
。すなわち、酸化物系超電導材を構成する原料は酸化物
系超電導体を合成できるものであればよく、イツトリウ
ム系の原料に限定されるものではない。また、支持体を
構成するアルミナは。
Note that the present invention is not limited to the above embodiments. That is, the raw material constituting the oxide-based superconducting material may be any material that can synthesize an oxide-based superconductor, and is not limited to yttrium-based materials. Also, the alumina that makes up the support.

酸化物系超電導材の熱収縮率に限りなく近い程好ましい
It is preferable that the thermal contraction rate is as close as possible to that of the oxide-based superconducting material.

[発明の効果] 以上述べたように1本発明によれば、熱応力でクラック
が発生するのを防止でき、もって良好な磁気シールド機
能を発揮するとともに機械的強度性に富んだ磁気シール
ド用エレメントを提供できる。
[Effects of the Invention] As described above, according to the present invention, there is provided a magnetic shielding element that can prevent cracks from occurring due to thermal stress, exhibits a good magnetic shielding function, and has high mechanical strength. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る磁気シールド用エレメ
ントの斜視図、第2図は同エレメントの局部的断面図、
第3図は本発明の別の実施例に係る磁気シールド用エレ
メントを一部切欠して示す側面図である。 1.1a・・・アルミナ製の支持体、2・・・酸化物系
L:電導材、3・・・格子枠、4・・・溝。 出願人代理人 弁理士 鈴江武彦 第2図 第3図
FIG. 1 is a perspective view of a magnetic shielding element according to an embodiment of the present invention, and FIG. 2 is a local sectional view of the element.
FIG. 3 is a partially cutaway side view of a magnetic shielding element according to another embodiment of the present invention. 1.1a... Support made of alumina, 2... Oxide-based L: conductive material, 3... Grid frame, 4... Groove. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)アルミナで格子状に形成された支持体と,この支
持体の一方の表面に上記支持体の格子枠に沿って埋め込
まれた酸化物系超電導材とを具備してなることを特徴と
する磁気シールド用エレメント。
(1) A support body formed of alumina in a lattice shape, and an oxide-based superconducting material embedded in one surface of the support body along the lattice frame of the support body. Magnetic shielding element.
(2)前記酸化物系超電導材は,組成がY−Ba−Cu
−Oで表わされる化合物超電導体層を備えたものである
ことを特徴とする特許請求の範囲第1項記載の磁気シー
ルド用エレメント。
(2) The oxide-based superconducting material has a composition of Y-Ba-Cu.
2. A magnetic shielding element according to claim 1, characterized in that it is provided with a compound superconductor layer represented by -O.
(3)前記支持体は,前記酸化物系超電導材と同程度の
熱収縮率を有するアルミナで形成されていることを特徴
とする特許請求の範囲第1項記載の磁気シールド用エレ
メント。
(3) The magnetic shielding element according to claim 1, wherein the support is made of alumina having a thermal shrinkage rate comparable to that of the oxide superconducting material.
JP62320442A 1987-12-18 1987-12-18 Element for magnetic shielding Pending JPH01161897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320442A JPH01161897A (en) 1987-12-18 1987-12-18 Element for magnetic shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320442A JPH01161897A (en) 1987-12-18 1987-12-18 Element for magnetic shielding

Publications (1)

Publication Number Publication Date
JPH01161897A true JPH01161897A (en) 1989-06-26

Family

ID=18121495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320442A Pending JPH01161897A (en) 1987-12-18 1987-12-18 Element for magnetic shielding

Country Status (1)

Country Link
JP (1) JPH01161897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160027A (en) * 2006-12-26 2008-07-10 Takenaka Komuten Co Ltd Magnetic shielding body and magnetic shielding room
WO2009066422A1 (en) * 2007-11-19 2009-05-28 Takenaka Corporation Magnetic shield body and magnetic shield room

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160027A (en) * 2006-12-26 2008-07-10 Takenaka Komuten Co Ltd Magnetic shielding body and magnetic shielding room
WO2009066422A1 (en) * 2007-11-19 2009-05-28 Takenaka Corporation Magnetic shield body and magnetic shield room
US8531185B2 (en) 2007-11-19 2013-09-10 Takenaka Corporation Magnetic shield body and magnetic shielded room

Similar Documents

Publication Publication Date Title
Müller et al. The discovery of a class of high-temperature superconductors
EP0292436B1 (en) High current conductors and high field magnets using anisotropic superconductors
JPH01161897A (en) Element for magnetic shielding
US5110793A (en) Ultra high energy capacitors using intense magnetic field insulation produced by high-Tc superconducting elements for electrical energy storage and pulsed power applications
JPH01161899A (en) Element for magnetic shielding
US5795849A (en) Bulk ceramic superconductor structures
JPH0881221A (en) Oxide superconductor and its production
Ikram et al. High Temperature Superconductors
Rao Structural commonalities and the nature of oxygen holes in high-temperature oxide superconductors
JPH1125771A (en) Oxide superconducting tape material and its manufacture
JPH01161896A (en) Element for magnetic shielding
JPH01161900A (en) Element for magnetic shielding
Ray Hybridization-induced wide-band bipolaron model for high-Tc superconductors
JPH01161898A (en) Element for magnetic shielding
Silver et al. 9 Developments in high temperature superconductivity
Pavese et al. Development of Low-J c Applications of High-T c Superconductors Based on Extended Thick Films Sprayed on Metallic Substrates with the HVOF Technique
Jing et al. A model for the high-T c superconductivity based on electron hopping
Klemm Some Thoughts on the New High TC Superconductors
JPS63270349A (en) Superconductive substance
JPH0195409A (en) Superconducting wire
Wang et al. 14.1 Some parameters for superconductors
Shilna et al. Cuprate-Based High-Temperature Superconductor
KR940011363A (en) Improved Manufacturing Method of YBa₂Cu₃O_7-X Superconductor
Okram et al. Possible competitive electron-and hole-like conduction in the revived Nd1. 82Ce0. 18CuOy superconductors
JPS63280469A (en) Composite superconducting shield plate and manufacture thereof