JPH01161370A - Electrostatic latent image forming method - Google Patents

Electrostatic latent image forming method

Info

Publication number
JPH01161370A
JPH01161370A JP62320740A JP32074087A JPH01161370A JP H01161370 A JPH01161370 A JP H01161370A JP 62320740 A JP62320740 A JP 62320740A JP 32074087 A JP32074087 A JP 32074087A JP H01161370 A JPH01161370 A JP H01161370A
Authority
JP
Japan
Prior art keywords
electrostatic latent
latent image
layer
electrode
semiconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62320740A
Other languages
Japanese (ja)
Other versions
JP2618945B2 (en
Inventor
Tetsuo Okuyama
哲生 奥山
Yasuko Kono
河野 泰子
Sakae Tamura
栄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320740A priority Critical patent/JP2618945B2/en
Publication of JPH01161370A publication Critical patent/JPH01161370A/en
Application granted granted Critical
Publication of JP2618945B2 publication Critical patent/JP2618945B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To require no high voltage for forming an electrostatic latent image and to accomplish miniaturization, weight-saving and cost reduction by closely contacting a multi-stylus electrode on the side of a semiconductive supporting body and selectively energizing the electrode stylus of said electrode. CONSTITUTION:The multi-stylus electrode is brought tightly into contact with the side of the semiconductive supporting body 1a for an electrostatic latent image carrier equipped with a conductive layer 1b and a pyroelectric layer 1c in that order on the sheet like said body 1a. By selectively energizing the electrode stylus of the multi-stylus electrode, a current path is formed from the semiconductive layer to the conductive layer 1b. A pyroelectric layer 1c on the multi-stylus electrode is partially heated to form an electrostatic latent image on the pyroelectric layer 1c. Thus an image of halftone can be reproduced in an extremely simple process, and its density or contrast can be adjusted by a simple operation. In addition, an electrostatic image with stable density, stable contrast and satisfactory reproducibility can be formed.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、シート状の半導、電性支持体上に導電体層と
焦電体層とを順に設けてなる静電m像担持体の焦電体層
上に静電潜像を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention 1 (Industrial Field of Application) The present invention is directed to an electrostatic material comprising a conductor layer and a pyroelectric layer sequentially provided on a sheet-like semiconductor or conductive support. The present invention relates to a method of forming an electrostatic latent image on a pyroelectric layer of an electrom image carrier.

(従来の技術) 電子写真方式の複写機・プリンターおける静電潜像担持
体としては、従来から、導電性基板と光導電体層とから
なる電子写真用感光体、あるいはvJ導電性基板誘電体
層とからなる誘電体ドラムが用いられている。
(Prior Art) As electrostatic latent image carriers in electrophotographic copying machines and printers, electrophotographic photoreceptors consisting of a conductive substrate and a photoconductor layer, or vJ conductive substrate dielectrics have conventionally been used. A dielectric drum consisting of layers is used.

通常の電子写真用感光体上に原稿の濃淡に応じた静電潜
像を形成する方法は、まず、感光体上に暗中でコロナ放
電により均一帯電を行い、しかるのらに光像照射を行う
のが一般的ぐある。
The method of forming an electrostatic latent image on a normal electrophotographic photoreceptor according to the density of the original is to first uniformly charge the photoreceptor by corona discharge in the dark, and then irradiate the photoreceptor with a light image. This is common.

第5図は、この方法で得られる静電潜@電位の原lff
1度に対する関係を典型的に示したものである。
Figure 5 shows the source of electrostatic latent @potential obtained by this method.
This is a typical example of the relationship to 1 degree.

こうして感光体」−に形成された静電潜像を通常良く知
られている二成分磁性現像剤を用いて現像し、そのトノ
ーー像を普通紙に転写・定着して得られる複写画像の濃
度は、原稿21度に対して一般的に第6図に示すような
関係となり、極めて白・黒の鮮明な複写が39られる。
The electrostatic latent image thus formed on the photoconductor is developed using a well-known two-component magnetic developer, and the resulting tonneau image is transferred and fixed onto plain paper.The density of the copy image obtained is , the relationship is generally as shown in FIG. 6 for the original at 21 degrees, and extremely clear black and white copies can be made.

したがって、この方法は文字画像を中心とする事務用複
写機・プリンターにはりr適である。
Therefore, this method is suitable for office copying machines and printers that mainly handle character images.

また、誘電体ドラム上にWp電tPj’IQを形成づる
方法は、マルチスタイラスを用いて誘電体ドラム上に高
電圧を印加し、所望のfi?’電Wi像を形成するもの
で、高電圧印加時間を変調することが困難であることか
ら静電潜像は二値的なものとなり、文字画像を中心とす
る出力装置に用いられる。
In addition, the method of forming Wp voltage tPj'IQ on the dielectric drum is to apply a high voltage on the dielectric drum using a multi-stylus to obtain the desired fi? Since it forms an electric Wi image, and it is difficult to modulate the high voltage application time, the electrostatic latent image becomes a binary image, and is used in output devices mainly for character images.

しかしながら、昨今の複写機・プリンターに対する要求
は拡大しており、特に中間調を忠実に再現できる複写機
・プリンターの提供が強く求められている。特に、忠実
な色再現を必要とするカラー画像を表現する場合には、
中間調の再現は非常に重要である。このような中間調の
再現を可能とするいくつかの方法が従来から提案されて
いる。
However, the demands on copying machines and printers have been increasing in recent years, and in particular, there is a strong demand for copying machines and printers that can faithfully reproduce halftones. Especially when expressing color images that require faithful color reproduction,
Reproduction of halftones is very important. Several methods have been proposed in the past that enable reproduction of such halftones.

たとえば、Lloid F、BeanとInan Ch
en ハ、感光体の構造や材料を工夫することで露光ひ
に対する潜@電位の関係が調整でき中間調の再現が可能
であると報告している(IEEL I^S 1977 
Annual Heeting)。この方法は、考え方
としては優れた方法であるが、実用的な面から考えると
感光体の信頼性の向上など、未だ改良すべき点がある。
For example, Lloyd F., Bean and Inan Ch.
It has been reported that by devising the structure and materials of the photoreceptor, the relationship between the latent potential and the exposure value can be adjusted, making it possible to reproduce halftones (IEEL I^S 1977
Annual Heating). This method is an excellent method from a conceptual perspective, but from a practical standpoint, there are still points that need to be improved, such as improving the reliability of the photoreceptor.

また、別な方法としてハーフトーンスクリーニング法が
ある。この方法は、たとえば、スクリーンを原稿面と密
着させるとか、光像の焦点が結ばれる感光体面に近接し
てスクリーンを置くがして、原稿の濃淡を網点の大小に
変換する方法である( R,N、Goran “lli
gh−Quality  Pictorial Xer
ographic  Reproduction  b
y  Halftone  Screening  ”
J、Appl、Photoora、Ena、  823
3−238[1982T他)。この方法は、印刷物にお
ける網点画像と同じで、中nl調再現の方法としては優
れた方法であるが、複写すべき原稿が網点画像で形成さ
れている場合には、いわゆるモアレ現象が発生する恐れ
があり、あらゆる原稿に対応可能というわけrtよない
Another method is a halftone screening method. This method converts the density of the original into the size of halftone dots by, for example, placing the screen in close contact with the surface of the original or placing the screen close to the surface of the photoreceptor where the light image is focused ( R, N, Goran “lli
gh-Quality Pictorial Xer
graphic reproduction b
y Halftone Screening”
J, Appl, Photoora, Ena, 823
3-238 [1982T et al.). This method is the same as the halftone image on printed matter, and is an excellent method for reproducing medium-nl tones, but if the original to be copied is formed with a halftone image, a so-called moiré phenomenon will occur. It is not possible to handle all types of manuscripts.

また、別の方法としては導電性基板と光導電体層および
透明絶縁体層とからなる三層構造の感光体の場合に限定
されるが、均一第一次?1)if、光像照射と同時に第
二次?!i!(第一次帯電と逆極性)および均一光照射
の一連の工程を基本プロセスとする静電潜像の形成方法
が、たとえば特開昭59−30560号公報に開示され
ている。この方法は中間調の再現を可能とする静電潜像
の形成方法として優れた方法の1つであると考えられて
いるが、■・程が極めて複雑であり、装置の大型化、高
価格化が避けられないという問題がある。
Another method is limited to the case of a photoreceptor with a three-layer structure consisting of a conductive substrate, a photoconductor layer, and a transparent insulator layer, but is a uniform primary method? 1) If the second light is emitted at the same time as the light image irradiation? ! i! A method for forming an electrostatic latent image whose basic process is a series of steps of (polarity opposite to the primary charging) and uniform light irradiation is disclosed in, for example, Japanese Patent Laid-Open No. 59-30560. This method is considered to be one of the best methods for forming electrostatic latent images that can reproduce halftones, but it is extremely complicated, requires large equipment, and is expensive. The problem is that it cannot be avoided.

さらに中間調を表現できる電子写真法として、持分[1
57−56070号公報に記載されているように、光導
電体層を有する電子写真用感光体上に光像照射とコロナ
帯111i&3よびバイアス光照射を同時に行い、バイ
アス光の量を調整することで中間調画像のコントラスト
や濃度を調整する方法も提案されている。しかしながら
、この方法では光源の安定性などの問題からバイアス光
の光eを安定にイ1持することが難しく、このことが画
像のコント、ラストや濃度の再現性を悪くする原因とな
っている。
Furthermore, as an electrophotographic method that can express halftones, equity [1
As described in Japanese Patent No. 57-56070, by simultaneously irradiating a light image and irradiating corona zones 111i & 3 and bias light onto an electrophotographic photoreceptor having a photoconductor layer, and adjusting the amount of bias light. A method of adjusting the contrast and density of a halftone image has also been proposed. However, with this method, it is difficult to maintain the light e of the bias light stably due to problems such as the stability of the light source, which causes poor reproducibility of image contrast, last, and density. .

しかも、この方法では感光体上における光像照DJ位置
とバイアス光照a4位置とが完全に一致していることが
コントラストや濃度のムラのない良好な画像を(7る上
で重要であり、その位置調整が難しいという欠点がある
Moreover, in this method, it is important that the light image illumination DJ position and the bias light illumination A4 position on the photoreceptor completely match in order to produce a good image without unevenness in contrast or density. The disadvantage is that position adjustment is difficult.

(発明が解決しようとする問題点) 本発明は以上のような問題点を解決するためになされた
もので、極めて簡単な工程で中間調の再現が可能であっ
て、また筒中な操作により画像の濃度やコントラストの
調整が可能であり、しかもその濃度やコントラストの安
定性、再現性の良好な静電潜像の形成方法を提供するこ
とを[1的とするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems, and it is possible to reproduce halftones with an extremely simple process, and to reproduce images by in-process operations. One object of the present invention is to provide a method for forming an electrostatic latent image in which the density and contrast of the electrostatic latent image can be adjusted and the density and contrast are stable and reproducible.

[発明の構成〕 (問題点を解決するための手段) 本発明の静電潜像の形成方法によれば上記目的は、シー
ト状の半導電性支持体上に導電体層ど焦電体層とを順に
設けてなる静電潜像用+141a。前記半導電性支持体
側に、多針電極を密接し、。(1)多!1電極の電極S
1に選択的に通電することにより半導電性層から導電体
層に電流路を形成して多針電極上の焦電体層を部分的に
加熱し、前記焦電体層上に静電潜像を形成することによ
って達成サレる。
[Structures of the Invention] (Means for Solving the Problems) According to the method for forming an electrostatic latent image of the present invention, the above object is achieved by forming a conductive layer and a pyroelectric layer on a sheet-like semiconductive support. +141a for electrostatic latent images provided in this order. A multi-needle electrode is brought into close contact with the semiconductive support. (1) Many! 1 electrode electrode S
1 is selectively energized to form a current path from the semiconductive layer to the conductive layer, partially heating the pyroelectric layer on the multi-needle electrode, and creating an electrostatic latent on the pyroelectric layer. Achieved by forming an image.

以下、本発明の静電潜像の形成方法を図面を参照しなが
ら詳述する。
Hereinafter, the method for forming an electrostatic latent image of the present invention will be described in detail with reference to the drawings.

第1図は本発明の静電潜像の形成方法を適用した装置の
基本構成の一例を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of the basic configuration of an apparatus to which the electrostatic latent image forming method of the present invention is applied.

この装置は、無端テープ状の静電潜像担持体1とこの静
電潜像担持体に潜像を書込む多針電極2とから成る静電
潜像記録部、および多針電極2から静電潜像担持体1に
流れ込む電流を受ける共通電極3とから成る。
This device includes an electrostatic latent image recording section consisting of an electrostatic latent image carrier 1 in the form of an endless tape, a multi-needle electrode 2 for writing a latent image on the electrostatic latent image carrier, and A common electrode 3 receives a current flowing into the latent image carrier 1.

前記静電潜像担持体は、たとえば第2図に示すように、
無端の半導電性支持体1aの外側に導電体層1bを設け
、その上に、焦電体層1Cを設けて構成されている。な
お、必要に応じて、焦電体、層1C上に、さらに、電気
1@縁性、対摩耗性の良好なシリコーンの薄層を形成し
てもよい。
The electrostatic latent image carrier is, for example, as shown in FIG.
A conductive layer 1b is provided on the outside of an endless semiconductive support 1a, and a pyroelectric layer 1C is provided thereon. Note that, if necessary, a thin layer of silicone having good electrical resistance and wear resistance may be further formed on the pyroelectric layer 1C.

静電潜像担持体の半導電性支持体層としては、熱可塑性
樹脂または熱硬化性樹脂からなる群から選ばれた樹脂と
カーボンブラックおよびグラフフィトからなる群から選
ばれたIJ電性微粉末よりなる表面抵抗が室温で10’
〜108Ωである通電時に放電破壊されず発熱する半導
電竹材料を用いることができる。
The semiconductive support layer of the electrostatic latent image carrier is a resin selected from the group consisting of thermoplastic resins or thermosetting resins, and IJ conductive fine powder selected from the group consisting of carbon black and graphite. The surface resistance becomes 10' at room temperature.
It is possible to use a semi-conductive bamboo material which is 108Ω and generates heat without being destroyed by discharge when energized.

また、静電潜像担持体の導電体層1bには金属M股ある
いは金属酸化物簿、膜よりなる室温での表面抵抗が10
−2〜10’Ωである導電体材料を用いることができる
Further, the conductor layer 1b of the electrostatic latent image carrier is made of a metal layer or a metal oxide film, and has a surface resistance of 10 at room temperature.
A conductive material having a resistance of -2 to 10'Ω can be used.

さらに、r#電電2M担持体の焦電体層1cとしては、
ポリ弗化ビニリデン、弗化ビニリデンと3弗化エチレン
との共重合体、弗化ビニリデンと4弗化エチレンとの共
重合体、シアン化ビニリデンと他の七ツマ−との共重合
体等の焦電性を示す樹脂、あるいはPZT  (Pb2
Zr03、PbTi01 )セラミックス、PLZT 
(PI)2 zro 3 、PbTi03 、La20
3 )セラミラス等の焦電性セラミックスやBaTi0
3、LiTa03 、LiNb03 、水晶等の無機焦
電性結晶微粉末、ロッシェル塩、トリグリシンサルフエ
イト等の有機焦電性結晶微粉末からなる群から選ばれた
焦電性結晶微粉末を熱可塑性樹脂または熱硬化性樹脂か
らなる群から選ばれた樹脂の中に分散した材料を使用で
きる。これ等の材料からなる静電潜像担持体はポーリン
グ等の分極操作により焦電体層をエレクトレット化ある
いは自発分極の向きを揃えて使用する。
Furthermore, as the pyroelectric layer 1c of the r# electroelectric 2M carrier,
Polyvinylidene fluoride, copolymers of vinylidene fluoride and ethylene trifluoride, copolymers of vinylidene fluoride and ethylene tetrafluoride, copolymers of vinylidene cyanide and other heptamers, etc. Electrically conductive resin or PZT (Pb2
Zr03, PbTi01) Ceramics, PLZT
(PI)2 zro 3 , PbTi03 , La20
3) Pyroelectric ceramics such as Ceramilas and BaTi0
3. Pyroelectric crystal fine powder selected from the group consisting of inorganic pyroelectric crystal fine powder such as LiTa03, LiNb03, quartz, organic pyroelectric crystal fine powder such as Rochelle salt, triglycine sulfate, etc., is added to thermoplastic resin. Alternatively, a material dispersed in a resin selected from the group consisting of thermosetting resins can be used. An electrostatic latent image carrier made of these materials is used by converting the pyroelectric layer into an electret or aligning the direction of spontaneous polarization by a polarization operation such as poling.

第1図に示すように、この実施例では、多針電極2と共
通電極3の外側に、静電潜像担持体1が半導電性支持体
1aを内側にしてかけ渡され、静電潜像担持体1は、多
!l電極2から共通電極3へ、ざらに再び多針電極2へ
と連続的に移動する。この時、共通電極3は静電潜像担
持体のヒートシンクとしての作用も有する。
As shown in FIG. 1, in this embodiment, an electrostatic latent image carrier 1 is stretched over the outside of a multi-needle electrode 2 and a common electrode 3 with a semiconductive support 1a inside, The image carrier 1 has many! It moves continuously from the l electrode 2 to the common electrode 3 and then roughly back to the multi-needle electrode 2. At this time, the common electrode 3 also functions as a heat sink for the electrostatic latent image carrier.

すなわち、まず多針電極2を静電潜像担持体1の半導電
性支持体1a側に密着させ、外部からの記録信号に応じ
て多針電極2と導電体層1bとの間に半導電性支持体1
aを通じて選択的に電流を流し、半導電性支持体1aの
電気抵抗により半導電性支持体1aが発熱するように構
成する。このため半導電性支持体1a上の焦電体層1C
は外部からの記録イコ号に応じて加熱され、この熱によ
り焦電体層1C上に静電潜像が形成される。この時、静
電潜像担持体1の導電体層1b中に流れ込んだ電流は、
静電潜像担持体1に密着した共通電極3に再び半導電性
支持体1aを通じて流れ込む。しかし、共通電極3は多
針電極2よりも遥かに大面積であるために、この共通電
極3部分での発熱は生じない。
That is, first, the multi-needle electrode 2 is brought into close contact with the semiconductive support 1a side of the electrostatic latent image carrier 1, and a semi-conductor is formed between the multi-needle electrode 2 and the conductive layer 1b in response to an external recording signal. sexual support 1
A current is selectively passed through the semi-conductive support 1a, and the semi-conductive support 1a generates heat due to the electrical resistance of the semi-conductive support 1a. Therefore, the pyroelectric layer 1C on the semiconductive support 1a
is heated in response to a recording icon from the outside, and an electrostatic latent image is formed on the pyroelectric layer 1C by this heat. At this time, the current flowing into the conductor layer 1b of the electrostatic latent image carrier 1 is
The liquid flows again into the common electrode 3 in close contact with the electrostatic latent image carrier 1 through the semiconductive support 1a. However, since the common electrode 3 has a much larger area than the multi-needle electrode 2, no heat is generated in this common electrode 3 portion.

このように形成された静電il像は現像・転写・定着・
クリーニング等の工程を経て可視化されて記録が行われ
る。そして、静電溝@担持体1は共通電143の部分を
経て冷11され、再び静電潜像記録部へ連続的に移送さ
れ上記の工程が繰返される。
The electrostatic il image formed in this way is developed, transferred, fixed, and
After a process such as cleaning, it is visualized and recorded. Then, the electrostatic groove@carrier 1 is cooled 11 through the common electrode 143, and is continuously transferred to the electrostatic latent image recording section again, and the above steps are repeated.

本発明の別の構成としては、静電潜像担持体の半導電性
支持体部と導電体層部を焦電体層部より幅広く構成する
ことにより、導電体層部を露出させ多針電極より静電潜
像担持体に流れ込んだ電流。
Another configuration of the present invention is to configure the semiconductive support portion and the conductive layer portion of the electrostatic latent image carrier to be wider than the pyroelectric layer portion, thereby exposing the conductive layer portion and forming a multi-needle electrode. Current flowing into the electrostatic latent image carrier.

を導電体層部より共通電極へ直接流すことも可能である
。また、逆に焦電体層部と導電体層部とを半導電性支持
体部よりも幅広く構成することにより、同様に導電体層
を露出させ多針電極より静電潜像担持体に流れ込んだ電
流を5ttt体層部から共通電極へ直接流すことも可能
である。
It is also possible to flow directly from the conductor layer to the common electrode. Conversely, by configuring the pyroelectric layer portion and the conductive layer portion to be wider than the semiconductive support portion, the conductive layer can be similarly exposed and flowed into the electrostatic latent image carrier from the multi-needle electrode. It is also possible to flow the current directly from the 5ttt body layer to the common electrode.

本発明の静電潜像の形成方法は、シート状の半導電性支
持体上に等電体層を設け、さらに前記導電体層上に焦電
体層を設けてなる静電潜像担持体を用いて、前記半導電
性支持体に多針電極を密接し、多針電極に通電すること
により半導電性層から導電体層に電流路を形成して多針
電極近傍の焦点体層を加熱し、焦電体上に静電潜像を形
成する工程を必須工程とすれば足りるので、その具体的
な構成は現像・転写・定着・クリーニング等の■稈およ
び上記第1図に示したものにより何等制限を受けること
はない。
The method for forming an electrostatic latent image of the present invention provides an electrostatic latent image carrier comprising an isoelectric layer provided on a sheet-like semiconductive support, and a pyroelectric layer further provided on the conductive layer. Using a multi-needle electrode, the multi-needle electrode is brought into close contact with the semi-conductive support, and a current path is formed from the semi-conductive layer to the conductor layer by applying electricity to the multi-needle electrode, thereby forming a focal layer near the multi-needle electrode. It is sufficient that the process of heating and forming an electrostatic latent image on the pyroelectric body is an essential process, so the specific structure of the process is as shown in Figure 1 above. There are no restrictions whatsoever.

(作 用) 本発明においては、多!llt極を静電S像担持体の半
導電性支持体側に密着させ、外部からの記録信号に応じ
て多針電極と導電体層との間に半導電性支持体を通じて
選択的に電流を流し、半導電性支持体の電気抵抗により
半導電性支持体が発熱するように構成する。このため半
導電性支持体、トの焦電体層は外部からの記録信号に応
じて加熱され、この熱により焦電体層上に静電潜像が形
成される。
(Function) In the present invention, many! The llt electrode is brought into close contact with the semiconductive support side of the electrostatic S image carrier, and a current is selectively applied between the multi-needle electrode and the conductive layer through the semiconductive support in response to an external recording signal. , the semiconductive support is configured to generate heat due to the electrical resistance of the semiconductive support. Therefore, the pyroelectric layer of the semiconductive support is heated in response to an external recording signal, and this heat forms an electrostatic latent image on the pyroelectric layer.

このように形成された静電潜像は現像・転写・定性・ク
リーニング等の工程を経て可視化されて記録が行われる
。そして、静電潜像担持体は共通電極の部分を経て冷却
され、再び静′、f5潜像記録部へ連続的に移送され上
記の工程が繰返される。
The electrostatic latent image thus formed is visualized and recorded through processes such as development, transfer, qualitative, and cleaning. Then, the electrostatic latent image bearing member is cooled through the common electrode portion, and is continuously transferred again to the static and f5 latent image recording sections, and the above steps are repeated.

(実施例) 実施例1 第3図は、この実施例を適用した記録装置の構成を概念
的に示す図である。同図において、第1図と同一のもの
には、第1図と同一の符号を付した。この装置において
、多21電極には線径60μmのワイヤを直線状に8本
/+U配列した電極を使用する。そして外部信号に応じ
て制御回路10より電源11からの+20Vの電圧をパ
ルス状の記録信号として多針゛電極2に印加する。共通
電極3は直径3011のステンレス棒を用いグラウンド
に接地してあり、静電潜像担持体1を通じて多針電極か
らの電流を受ける。この時、加熱された焦電体層上に形
成された静電潜像は二成分磁性現像剤を用い。
(Example) Example 1 FIG. 3 is a diagram conceptually showing the configuration of a recording apparatus to which this example is applied. In this figure, the same parts as in FIG. 1 are given the same reference numerals as in FIG. 1. In this device, an electrode in which 8/+U wires each having a wire diameter of 60 μm are arranged in a straight line is used as the multi-21 electrode. Then, in response to an external signal, the control circuit 10 applies a voltage of +20 V from the power source 11 to the multineedle electrode 2 as a pulsed recording signal. The common electrode 3 is grounded using a stainless steel rod having a diameter of 3011 mm, and receives current from the multi-needle electrode through the electrostatic latent image carrier 1. At this time, the electrostatic latent image formed on the heated pyroelectric layer uses a two-component magnetic developer.

た現像装置4で現像される。転写装置5は静[1像担持
体1上の現像トナーを転写紙上に転写する。
The image is developed by a developing device 4. The transfer device 5 statically transfers the developed toner on the image carrier 1 onto a transfer paper.

定着装置は6で転写した現像トナーを転写紙上に定着す
る。一方、クリーニング部7で静電潜像担持体はクリー
ニングされ、共通電極3の部分で静電潜像担持体の温度
が均一化され、再び上記のプロセスが繰返される。
The fixing device fixes the developed toner transferred in step 6 onto the transfer paper. On the other hand, the electrostatic latent image carrier is cleaned in the cleaning section 7, the temperature of the electrostatic latent image carrier is equalized at the common electrode 3, and the above process is repeated again.

静電S像担持体1はカーボンブラックをパラ系全芳香族
ポリアミド樹脂に分散した半導電性支持体(東し株式会
社、導電性TX−1フィルム、厚さ50μm1表面抵抗
率800Ω)の上にアルミニウムを平均1000人の厚
さに蒸着し、その上に焦電体層としてPl■セラミック
ス微粒子を10体積パーセント含有するポリ弗化ビニリ
デン層を膜厚10μ−の厚さに塗布し108V/−の電
界下で100℃、1時間分極し静電潜像担持体として用
いたちのCある。
The electrostatic S image carrier 1 is formed on a semiconductive support (Toshi Co., Ltd., conductive TX-1 film, thickness 50 μm, surface resistivity 800 Ω) in which carbon black is dispersed in a para-based wholly aromatic polyamide resin. Aluminum was deposited to an average thickness of 1,000 mm, and a polyvinylidene fluoride layer containing 10 volume percent of Pl ceramic particles was applied thereon as a pyroelectric layer to a thickness of 10 μ-. C is used as an electrostatic latent image carrier by polarizing it under an electric field at 100°C for 1 hour.

上記の条件で、静電潜像担持体1に多!l電極2より通
電し外部からの記録信号に応じて焦電体層を加熱した。
Under the above conditions, the electrostatic latent image carrier 1 has a large amount of ! Electricity was applied from the electrode 2 to heat the pyroelectric layer in response to an external recording signal.

この時、制御装置10により多針電極2に印加する記録
信号の電圧パルス幅を制御することで、静電潜像担持体
1の温度を常温と常温から50℃の間となるように温度
制御し、静電潜像担持体上に中間調の静電潜像を形成し
た。この静電潜像を現像し転写紙上に転写・定着するこ
とにより中間調の再現性の良い画像を1!することがで
きた。
At this time, by controlling the voltage pulse width of the recording signal applied to the multi-needle electrode 2 by the control device 10, the temperature of the electrostatic latent image carrier 1 is controlled to be between room temperature and 50°C. Then, a halftone electrostatic latent image was formed on the electrostatic latent image carrier. By developing this electrostatic latent image and transferring and fixing it onto transfer paper, an image with good halftone reproducibility is created! We were able to.

実施例2 第4図は、この実施例を適用した記録装置の構成を概念
的に示す図である。図において、第1図および実施例1
について示した第3図と同一の815分には、同一の符
号を付した。この装置において、多針電極2は線径30
μ膿のワイヤを千鳥状に16本/an+配列したアレイ
型電極を使用した。そして外部信号に応じて制御回路1
0より電源11からの+30vの電圧をパルス状の記録
信号として多【1電極2に印加する。共通電極3は直径
3oIIlllノステンレス棒を用い、静電潜像担持体
の両端部、露出している導電体層と密着し、導電体層を
グラウンドに接地している。この時、加熱された焦電体
層上に形成された静電潜像は液体現像剤を用いた現像装
置8により現像される。転写装置5は静電潜像担持体1
上の液体現像剤を転写紙上に転写する。
Embodiment 2 FIG. 4 is a diagram conceptually showing the configuration of a recording apparatus to which this embodiment is applied. In the figure, FIG. 1 and Example 1
815 minutes, which is the same as in FIG. 3, are given the same reference numerals. In this device, the multi-needle electrode 2 has a wire diameter of 30
An array type electrode in which 16 μpus wires were arranged in a staggered manner was used. and control circuit 1 according to external signals.
0, a voltage of +30 V from the power source 11 is applied to the multiple electrodes 2 as a pulsed recording signal. The common electrode 3 is made of a stainless steel rod with a diameter of 3 mm, and is in close contact with the exposed conductor layer at both ends of the electrostatic latent image carrier, and the conductor layer is grounded. At this time, the electrostatic latent image formed on the heated pyroelectric layer is developed by a developing device 8 using a liquid developer. The transfer device 5 is an electrostatic latent image carrier 1
Transfer the upper liquid developer onto the transfer paper.

定着装置6で転写した現像剤を転写紙上に定着する。一
方、クリーニング装置7で静電潜像担持体はクリーニン
グされ、共通電極3の部分で静電潜像担持体の温度が均
一化され、再び上記のプロセスが繰返される。
The developer transferred by the fixing device 6 is fixed onto the transfer paper. On the other hand, the electrostatic latent image carrier is cleaned by the cleaning device 7, the temperature of the electrostatic latent image carrier is equalized at the common electrode 3, and the above process is repeated again.

静電潜像担持体1は実施例1と同様な半導電性支持体と
導電体層の上に弗化ビニリデンと3弗化エチレンとの共
重合体(80:2G)のβ型結晶を厚さ10μmに形成
した材料を100℃、308V/mで1時間、分極した
ものを用いた。
The electrostatic latent image carrier 1 is made by depositing a thick β-type crystal of a copolymer of vinylidene fluoride and ethylene trifluoride (80:2G) on a semiconductive support and a conductive layer similar to those in Example 1. A material formed to a thickness of 10 μm and polarized at 100° C. and 308 V/m for 1 hour was used.

実施例1と同様にして上記の条件で、静電潜像担持体1
に多針電極2より通電し外部からの記録信号に応じて焦
電体層を加熱した。この時、制御装置10によ−り多針
電極2に印加する記録信号の電圧パルス幅を制御するこ
とで、静電WI@担持体1の温度を常温と常温から50
℃の間となるように温度制御し、静電潜像担持体上に中
間調の静電潜株を形成した。この静電潜像を現像し転写
紙上に転写・定着することにより中間調の再現性の良い
ti[1fIAを得ることができた。
The electrostatic latent image carrier 1 was prepared in the same manner as in Example 1 under the above conditions.
Electricity was applied through the multi-needle electrode 2 to heat the pyroelectric layer in response to external recording signals. At this time, by controlling the voltage pulse width of the recording signal applied to the multi-needle electrode 2 by the control device 10, the temperature of the electrostatic WI@carrier 1 is adjusted to 50°C from room temperature to room temperature.
The temperature was controlled to be between 0.degree. By developing this electrostatic latent image and transferring and fixing it onto transfer paper, it was possible to obtain ti[1fIA with good halftone reproducibility.

[発明の効果] 以、Fの説明から明らかなように、本発明の静電潜像の
形成方法は、従来の電子写真方式、静電記録方式と異な
り、静電潜像の形成に高電圧を必要としないため、安全
で小型、軽量化および低価格化が容易であるだけでなく
、中間調を有する静電潜像を現像装置の現像特性に合せ
て形成することができ、いかなる現像方法(−成分磁性
現像方法、二成分磁性現像方法、−成分非磁性現像方法
、および液体現像剤を用いた現像方法)にも適用できる
。その結果、得られる装置の信頼性は非常に高く、その
工業的価値は極めて大である。
[Effects of the Invention] As is clear from the explanation of F, the method for forming an electrostatic latent image of the present invention differs from conventional electrophotographic methods and electrostatic recording methods in that a high voltage is used to form an electrostatic latent image. Not only is it safe, easy to reduce size, weight, and cost, but it is also possible to form an electrostatic latent image with halftones that matches the development characteristics of the developing device, and can be used with any developing method. (-component magnetic development method, two-component magnetic development method, -component non-magnetic development method, and development method using a liquid developer). As a result, the reliability of the obtained device is extremely high, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の基本構成を示す概念的構成図、第
2図は静電潜像担持体の一例を承ス所面図、第3図、第
4図はそれぞれ本発明の実施例ヲ示す図、第5図は従来
方法にJ3ける画@濃度と静電潜像電位との関係を示す
図、第6図は同じく画像濃度と複写画像潤度との関係を
示す図である。 1・・・・・・・・・静電潜像相持体 1a・・・・・・半導電性支持体 1b・・・・・・導電体層 1C・・・・・・焦電体層 2・・・・・・・・・多針電極 3・・・・・・・・・共通電極 4・・・・・・・・・二成分磁性用s装置5・・・・・
・・・・転写装置 6・・・・・・・・・定着装置 7・・・・・・・・・クリーニング装置8・・・・・・
・・・液体現像剤現像装置10・・・・・・・・・制御
回路 11・・・・・・・・・電源 第1ワ 第2図
Fig. 1 is a conceptual block diagram showing the basic structure of the method of the present invention, Fig. 2 is a front view of an example of an electrostatic latent image carrier, and Figs. 3 and 4 are examples of the present invention. FIG. 5 is a diagram showing the relationship between image density and electrostatic latent image potential in J3 according to the conventional method, and FIG. 6 is a diagram showing the relationship between image density and copy image wetness. 1... Electrostatic latent image carrier 1a... Semiconductive support 1b... Conductor layer 1C... Pyroelectric layer 2 ......Multi-needle electrode 3...Common electrode 4...S device for two-component magnetism 5...
...Transfer device 6...Fixing device 7...Cleaning device 8...
. . . Liquid developer developing device 10 . . . Control circuit 11 . . . Power source No. 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)シート状の半導電性支持体上に導電体層と焦電体
層とを順に設けてなる静電潜像担持体の前記半導電性支
持体側に、多針電極を密接し、この多針電極の電極針に
選択的に通電することにより半導電性層から導電体層に
電流路を形成して多針電極上の焦電体層を部分的に加熱
し、前記焦電体層上に静電潜像を形成することを特徴と
する静電潜像の形成方法。
(1) A multi-needle electrode is brought into close contact with the semiconductive support side of an electrostatic latent image carrier comprising a conductive layer and a pyroelectric layer provided in this order on a sheet-like semiconductive support. By selectively applying electricity to the electrode needles of the multi-needle electrode, a current path is formed from the semiconductive layer to the conductive layer to partially heat the pyroelectric layer on the multi-needle electrode. 1. A method for forming an electrostatic latent image, the method comprising forming an electrostatic latent image thereon.
(2)前記多針電極に通電する電気エネルギーを変調す
ることによつて、前記焦電体層の温度を制御し、この焦
電体層上に生じる電荷量を変調することを特徴とする特
許請求の範囲第1項記載の静電潜像の形成方法。
(2) A patent characterized in that the temperature of the pyroelectric layer is controlled by modulating the electrical energy applied to the multi-needle electrode, and the amount of charge generated on the pyroelectric layer is modulated. A method for forming an electrostatic latent image according to claim 1.
(3)前記シート状の半導電性支持体が無端であつてそ
の内側に導電体層が形成されていることを特徴とする特
許請求の範囲第1項または第2項記載の静電潜像の形成
方法。
(3) An electrostatic latent image according to claim 1 or 2, wherein the sheet-like semiconductive support is endless and has a conductive layer formed inside thereof. How to form.
JP62320740A 1987-12-18 1987-12-18 Method of forming electrostatic latent image Expired - Lifetime JP2618945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320740A JP2618945B2 (en) 1987-12-18 1987-12-18 Method of forming electrostatic latent image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320740A JP2618945B2 (en) 1987-12-18 1987-12-18 Method of forming electrostatic latent image

Publications (2)

Publication Number Publication Date
JPH01161370A true JPH01161370A (en) 1989-06-26
JP2618945B2 JP2618945B2 (en) 1997-06-11

Family

ID=18124767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320740A Expired - Lifetime JP2618945B2 (en) 1987-12-18 1987-12-18 Method of forming electrostatic latent image

Country Status (1)

Country Link
JP (1) JP2618945B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510963A2 (en) * 1991-04-26 1992-10-28 Xerox Corporation Printing method and apparatus
EP0709750A1 (en) 1994-10-31 1996-05-01 NEC Corporation Cleaning device for removing non-transferred toner
JP2014067826A (en) * 2012-09-25 2014-04-17 Toho Kasei Kk Manufacturing method of micro electret pattern, and inspection method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510963A2 (en) * 1991-04-26 1992-10-28 Xerox Corporation Printing method and apparatus
EP0709750A1 (en) 1994-10-31 1996-05-01 NEC Corporation Cleaning device for removing non-transferred toner
US5710966A (en) * 1994-10-31 1998-01-20 Nec Corporation Cleaning device for removing non-transferred toner
JP2014067826A (en) * 2012-09-25 2014-04-17 Toho Kasei Kk Manufacturing method of micro electret pattern, and inspection method thereof

Also Published As

Publication number Publication date
JP2618945B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
US4611901A (en) Electrophotographic method and apparatus
GB2145942A (en) Developing latent eletrostatic images
US5153615A (en) Pyroelectric direct marking method and apparatus
US4334772A (en) Electrophotographic apparatus of retentive type
EP0193069B1 (en) Developing apparatus
US4701042A (en) Duplicating apparatus
JPH01161370A (en) Electrostatic latent image forming method
US4311778A (en) Electrophotographic method
JPH02157864A (en) Recorder
JPS6024465B2 (en) Toner density control method and device
US4430661A (en) Method and apparatus for image reproduction
GB2031611A (en) Electrophotographic copier
US3519818A (en) Method of preparing a negative xerographic reproduction from a positive line copy image
JPH1055113A (en) Image forming device
JPS6363063A (en) Two-color electrophotographic device
US4701043A (en) Image forming apparatus
JPS61264358A (en) Control method for picture quality of image forming device
JPS60138568A (en) Electrophotographic image forming device
JPH11219003A (en) Electrifying device
JPH09230646A (en) Image forming device and image forming method
JPS61198170A (en) Adjusting method for image density of electrophotographic image forming device
JPH05278258A (en) Ion generator
JPH086406A (en) Image recorder
JPH04258973A (en) Electrifying device for electrophotography
JPS6346480A (en) Developing method for electrostatic latent image