JPH01159967A - Fuel battery - Google Patents

Fuel battery

Info

Publication number
JPH01159967A
JPH01159967A JP62316232A JP31623287A JPH01159967A JP H01159967 A JPH01159967 A JP H01159967A JP 62316232 A JP62316232 A JP 62316232A JP 31623287 A JP31623287 A JP 31623287A JP H01159967 A JPH01159967 A JP H01159967A
Authority
JP
Japan
Prior art keywords
fuel cell
air
temperature
heating device
anolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62316232A
Other languages
Japanese (ja)
Inventor
Katsumoto Otake
大嶽 克基
Yoshio Sumiya
住谷 吉男
Yasuo Fujitani
藤谷 康男
Sankichi Takahashi
燦吉 高橋
Katsuya Ebara
江原 勝也
Shigeo Oda
繁夫 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62316232A priority Critical patent/JPH01159967A/en
Publication of JPH01159967A publication Critical patent/JPH01159967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To have highly reliable heating with less electric power consumption by adjusting the amount of air passing through a heater when the sensed value from the electrolyte temp. is below the set temp., allowing this air to make direct reaction with the electrolyte used in power generation of the fuel battery, and thereby generating heat. CONSTITUTION:An anolite supply piping 18 is equipped with a temp. sensor 5 to sense the temp. of the anolite. The detection signal from this temp. sensor 5 is fed into a controller 6. Comparison is made with the set temp. range (40-60 deg.C) previously set by a setting device 25 as the temp. enough to start the body 1 of fuel battery. In case the sensed value is below the lower limit of the set temp. range, the controller 6 transmits signal to open an air supply valve 7. At a heater 3 fed with air the anolite to be supplied to the battery body 1 is reacted with the influx air by a hydrophobic porous film 4. Thereby the anolite supplied to the battery body 1 is heated directly to raise the temp. of the anolite. Thus the temp. of the electrolyte used for power generation of the fuel battery can be held over a certain level at all times.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノールを直接燃料とする燃料電池に係り、
環境温度の極めて低い寒冷地方で燃料電池を使用する場
合に、燃料電池の始動特性を向」ニさせるために、電解
液を加熱し一定温度以上に電解液の温度を」二げておく
ようにする加熱装置を備えた燃料電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel cell that uses methanol as a direct fuel.
When using a fuel cell in a cold region where the environmental temperature is extremely low, in order to improve the starting characteristics of the fuel cell, it is recommended to heat the electrolyte and raise the temperature of the electrolyte above a certain temperature. The present invention relates to a fuel cell equipped with a heating device.

〔従来の技術〕[Conventional technology]

従来の技術は、特開昭61−45569号公報に記載さ
れているように、燃料電池に供給する電解液の温度が設
定温度以下のときには、電解液中に設置されているヒー
タに電流を流し、その電流によりヒータを発熱させて電
解液を加熱していた。しかし、そのヒータを発熱させる
電流の電源は燃料電池以外の電源であった。
As described in Japanese Unexamined Patent Publication No. 61-45569, the conventional technology is to apply current to a heater installed in the electrolyte when the temperature of the electrolyte supplied to the fuel cell is below a set temperature. The current caused the heater to generate heat and heat the electrolyte. However, the power source for the current that caused the heater to generate heat was other than a fuel cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

」二記従来技術では、電解液を加熱する場合電解液中に
設置されているヒータに燃料電池以外の電源から電流を
流し、その電流によりヒータを発熱させて電解液を加熱
していたために電解液を加熱する際に電力を多量に消費
していた。
2. In conventional technology, when heating an electrolytic solution, a current is passed from a power source other than a fuel cell to a heater installed in the electrolytic solution, and the current causes the heater to generate heat, which heats the electrolytic solution. A large amount of electricity was consumed when heating the liquid.

本発明の目的は、燃料電池の始動特性を向上させるため
に電解液を加熱する際に、メタノールと空気を反応させ
て、その反応熱により電解液を加熱し、少ない電力消費
量で電解液を加熱することの出来る寒冷地向燃料電池を
提供することにある。
The purpose of the present invention is to heat the electrolyte by reacting methanol with air and using the heat of reaction to heat the electrolyte in order to improve the starting characteristics of a fuel cell. The object of the present invention is to provide a fuel cell for use in cold regions that can be heated.

〔問題点を解決するための手段〕[Means for solving problems]

第1の発明の特徴は温度制御装置の加熱装置が電解液供
給系の内部に設置してあり、燃料電池本体に供給する電
解液の温度を検出器により検出し、その検出値が設定温
度以下のときに空気弁を開にして加熱装置内を通る空気
量を調節し、その空気と燃料電池の発電に使用する電解
液とを触媒付き疎水性多孔質膜を介して直接反応させて
熱を発生させる点にある。
The first feature of the invention is that the heating device of the temperature control device is installed inside the electrolyte supply system, and a detector detects the temperature of the electrolyte supplied to the fuel cell main body, and the detected value is below the set temperature. At this time, the air valve is opened to adjust the amount of air that passes through the heating device, and the air is directly reacted with the electrolyte used for power generation in the fuel cell via a hydrophobic porous membrane with a catalyst to generate heat. The point is to make it happen.

第2の発明の特徴は温度制御装置の加熱装置が電解液供
給系の外部周囲に設置してあり、電解液供給系の一部か
ら電解液を加熱装置に供給する供給装置を備え、燃料電
池の発電に使用する電解液の温度を検出器により検出し
、その検出値が設定温度以下のときに空気弁を開にして
加熱装置内を通る空気量を調節し、その空気と供給器か
らの電解液とを触媒付き疎水性多孔質膜を介して反応さ
せて熱を発生させる点にある。
The second invention is characterized in that the heating device of the temperature control device is installed around the outside of the electrolyte supply system, and the fuel cell A detector detects the temperature of the electrolyte used for power generation, and when the detected value is below the set temperature, the air valve is opened to adjust the amount of air passing through the heating device, and the air is combined with that from the supply device. The point is that heat is generated by reacting an electrolytic solution through a hydrophobic porous membrane with a catalyst.

第3の発明の特徴は温度制御装置の加熱装置が、燃料電
池周囲の雰囲気温度を検出し、その温度が設定温度以下
で、かつ燃料電池が発電を停止しているときに空気弁を
開にして加熱装置内を通る空気量を調節し、その空気と
電解液とを加熱装置内に触媒を介して反応させて熱を発
生させる点にある。
The third feature of the invention is that the heating device of the temperature control device detects the ambient temperature around the fuel cell and opens the air valve when the temperature is below the set temperature and the fuel cell has stopped generating electricity. The point is that the amount of air passing through the heating device is adjusted, and the air and electrolyte are reacted inside the heating device via a catalyst to generate heat.

〔作用〕[Effect]

前述の第1の発明の構成によれば、燃料電池本体に供給
される電解液の温度が設定値以下の場合に加熱装置によ
り燃料電池の発電に使用する電解液と空気とを直接反応
させ、その反応熱により電解液を直接加熱して燃料電池
の発電に使用する電解液の温度を常に一定値以」二に保
持することができる。
According to the configuration of the first invention described above, when the temperature of the electrolytic solution supplied to the fuel cell main body is below a set value, the heating device causes the electrolytic solution used for power generation of the fuel cell to directly react with air, By directly heating the electrolytic solution using the heat of reaction, the temperature of the electrolytic solution used for power generation in the fuel cell can be maintained at a constant value or higher.

前述の第2の発明の構成によれば、燃料電池本体に供給
される電解液の温度か設定値以下の場合に電解液供給系
の外部周囲に設置しである加熱装置が、供給弁により加
熱装置内へ供給された電解液と空気とを反応させ、その
反応熱により燃料電池の発電に使用する電解液を、電解
液供給系の外部から間接的に加熱して、電解液温度を常
に一定範囲に保持することができる。
According to the configuration of the second invention described above, when the temperature of the electrolytic solution supplied to the fuel cell main body is below a set value, the heating device installed around the outside of the electrolytic solution supply system is heated by the supply valve. The electrolytic solution supplied into the device reacts with air, and the electrolytic solution used for power generation in the fuel cell is indirectly heated from outside the electrolytic solution supply system using the reaction heat to keep the electrolytic solution temperature constant. Can be kept within range.

前述の第3の発明の構成によれば、燃料電池周囲の雰囲
気湿度か設定値以下の場合で、かつ燃料電池が発電を停
止しているときに、加熱装置により電解液と空気とを反
応させて、その反応熱により燃料電池の発電に使用する
電解液を加熱して、燃料電池の始動前に電解液温度を常
に一定範囲に保持することができる。
According to the configuration of the third invention described above, when the atmospheric humidity around the fuel cell is below a set value and when the fuel cell has stopped generating electricity, the heating device causes the electrolyte and air to react. The reaction heat heats the electrolytic solution used for power generation in the fuel cell, and the temperature of the electrolytic solution can always be maintained within a certain range before starting the fuel cell.

〔実施例〕〔Example〕

初めに燃料電池の正常運転を第1図により説明する。燃
料電池本体1への燃料としてのアノライトは、アノライ
トタンク2に留められており、アノライトポンプ12に
より配管]8を通ってアノライトタンク2と燃料電池本
体]とを循環するようになっている。一方、燃料電池本
体1への酸化剤としての空気は、フィルター13.ブロ
ワ−14、仕切弁15を経て燃料電池本体1へ供給され
る。そこで空気は、イオン交換膜を介してアノライトと
反応じ、そのときのイオン交換により、燃料電池本体1
は発電をするのである。そして、燃料電池本体1を通過
した空気は、配管26を通り空気バイパス弁16を経て
排出される。
First, normal operation of a fuel cell will be explained with reference to FIG. The anolite used as fuel for the fuel cell main body 1 is kept in an anolite tank 2, and is circulated between the anolite tank 2 and the fuel cell main body through piping]8 by an anolite pump 12. There is. On the other hand, air as an oxidizing agent to the fuel cell main body 1 is passed through the filter 13. The fuel is supplied to the fuel cell main body 1 via a blower 14 and a gate valve 15. There, the air reacts with the anolyte through the ion exchange membrane, and due to the ion exchange at that time, the fuel cell body 1
generates electricity. Then, the air that has passed through the fuel cell main body 1 passes through the pipe 26 and is discharged via the air bypass valve 16.

ここて、燃料電池本体1の内部温度は空気とアノライト
の発熱反応により、反応を促進するのに十分な温度に保
たれている。しかし環境温度の極めて低い寒冷地方では
、運転を停止してしばらく時間が立つと、燃料電池本体
]の内部温度は下がってしまい、再び反応を開始するの
に十分な温度でなくなってしまうのである。そこで、運
転を停止している間に予めアノライ1〜を加熱して、燃
料電池本体1内の反応を速やかに開始される加熱装置が
必要となるのである。
Here, the internal temperature of the fuel cell main body 1 is maintained at a temperature sufficient to promote the reaction due to the exothermic reaction between the air and the anolyte. However, in cold regions where the environmental temperature is extremely low, if the fuel cell is stopped for a while, the internal temperature of the fuel cell will drop and the temperature will no longer be high enough to start the reaction again. Therefore, there is a need for a heating device that can heat the annoly 1 in advance while the operation is stopped to quickly start the reaction within the fuel cell main body 1.

以下、第1の発明の一実施例を第1図により説明する。An embodiment of the first invention will be described below with reference to FIG.

アノライトタンク2には加熱装置3が併設され、アノラ
イトタンク2内のアノライトとは疎水性多孔質膜4を介
して接触している。一方、燃料電池本体]への酸化剤と
しての空気は、燃料電池本体1から配管26を通り加熱
装置3へ供給されるか、空気バイパス弁16を経て排出
される。
A heating device 3 is attached to the anolyte tank 2 and is in contact with the anolite in the anolyte tank 2 via a hydrophobic porous membrane 4 . On the other hand, air as an oxidizing agent for the fuel cell main body is either supplied from the fuel cell main body 1 to the heating device 3 through the piping 26 or exhausted through the air bypass valve 16.

アノライト供給系配管18には、アノライトの温度を検
出するための温度検出器5が設けである。
The anolyte supply system piping 18 is provided with a temperature detector 5 for detecting the temperature of the anolyte.

温度検出器5からの検出信号は、制御器6に取り込まれ
、燃料電池本体1が起動するのに十分な温度として、前
以て設定装置25で設定した設定温度範囲(40’C〜
60’C)と比較される。そして、前記検出値が設定温
度範囲下限(40℃)以下の場合には、空気供給弁7を
開、空気バイパス弁16を閉、アノライトポンプ12を
ON、ブロワ−14をONさせる信号を制御器6が発信
し加熱袋@3へ空気を送り込む。次に、加熱装置3て燃
料電池本体1へ供給されるアノライトと前記空気供給弁
7からの流入空気とを疎水性多孔質膜4により反応させ
、その反応熱により燃料電池本体1へ供給されるアノラ
イトを直接加熱し、該アノライトの温度を上昇させるよ
うになっている。更に、加熱装置3の加熱により前記検
出値が前記設定温度範囲上限(60℃)以上に上昇した
場合には、空気供給弁7を閉、空気バイパス弁16を開
、アノライトポンプ12をOFF、ブロワ−14をOF
Fさせる信号を制御器6が発信し、加熱装置3内への空
気の流入を停止させて、加熱装置3内の反応を停止させ
、燃料電池本体1へ供給されるアノライトの温度の上昇
を停止させるようになっている。そして、前記検出値が
前記設定温度範囲内(40’C〜60℃)の場合には、
制御器6は、空気供給弁7.空気バイパス弁16.アノ
ライトポンプ12.ブロワ−14に発信していた信号を
継続発信して、加熱装置3の現状態を継続させるように
なっている。
The detection signal from the temperature detector 5 is taken into the controller 6, and is set within a set temperature range (40'C to
60'C). If the detected value is below the lower limit of the set temperature range (40°C), the air supply valve 7 is opened, the air bypass valve 16 is closed, the anolyte pump 12 is turned on, and the blower 14 is turned on. The device 6 sends a signal and sends air into the heating bag @3. Next, the anolyte supplied to the fuel cell body 1 by the heating device 3 and the incoming air from the air supply valve 7 are reacted by the hydrophobic porous membrane 4, and the reaction heat is used to cause the anorite to be supplied to the fuel cell body 1. The anolyte is directly heated to increase its temperature. Furthermore, when the detected value rises to the upper limit of the set temperature range (60° C.) due to heating by the heating device 3, the air supply valve 7 is closed, the air bypass valve 16 is opened, the anorite pump 12 is turned off, Turn off blower 14
The controller 6 sends a signal to cause the fuel cell to F, stops the flow of air into the heating device 3, stops the reaction inside the heating device 3, and stops the temperature rise of the anolite supplied to the fuel cell main body 1. It is designed to allow If the detected value is within the set temperature range (40'C to 60°C),
The controller 6 includes an air supply valve 7. Air bypass valve 16. Anorite pump 12. The current state of the heating device 3 is maintained by continuously transmitting the signal sent to the blower 14.

ここで、第2図により加熱装置の発熱原理を説明する。Here, the principle of heat generation of the heating device will be explained with reference to FIG.

第2図は、本発明に係わる加熱装置3の一部を拡大した
原理図を示したものである。疎水性多孔質膜4には、前
以てアノライトとの接触面に触媒24が塗布しである。
FIG. 2 shows a partially enlarged principle diagram of the heating device 3 according to the present invention. A catalyst 24 is applied to the hydrophobic porous membrane 4 in advance on the surface that will come into contact with the anolyte.

また疎水性多孔質膜4の他方の面には、ブロワ−14に
より、加熱装置3内へ供給された燃焼用空気が接触する
ようになっている。これにより、アノライト中のメタノ
ールが疎水性多孔質膜4の触媒を介して、燃焼用空気と
燃焼反応する。そして、その反応熱は、その殆どが気液
界面を通してアノライトに伝達されるのである。
Further, the other surface of the hydrophobic porous membrane 4 is brought into contact with combustion air supplied into the heating device 3 by the blower 14. As a result, methanol in the anolite undergoes a combustion reaction with the combustion air via the catalyst of the hydrophobic porous membrane 4. Most of the reaction heat is transferred to the anorite through the gas-liquid interface.

一方、アノライトタンク2内のアノライトの濃度は、通
常運転が消費するメタノール量、または加熱装@3で消
費するメタノール量により薄くなる。この濃度変化は、
アノライトタンク2内に設けられた濃度検出器8により
検出され、その検出信号は制御器9に取り込まれる。そ
して制御器9は、燃料タンク11か・らメタノールをア
ノライ1〜タンク2に補給するため、燃料供給弁]0を
ON−OFFする信号を発信するようになっている。
On the other hand, the concentration of anolite in the anolyte tank 2 becomes thinner due to the amount of methanol consumed during normal operation or the amount of methanol consumed by the heating device @3. This concentration change is
The concentration is detected by a concentration detector 8 provided in the anolyte tank 2, and the detection signal is taken into the controller 9. The controller 9 is configured to send a signal to turn on and off the fuel supply valve 0 in order to replenish methanol from the fuel tank 11 to the anorai 1 to tank 2.

これにより、アノライトタンク2内は常に一定の濃度に
保持される。
Thereby, the inside of the anolyte tank 2 is always maintained at a constant concentration.

以上より、アノライトタンク2内のアノライトの温度は
、常に燃料電池の始動特性を向」ニさせる(月) のに必要な温度に保持される。
As described above, the temperature of the anolite in the anolite tank 2 is always maintained at a temperature necessary to improve the starting characteristics of the fuel cell.

前記実施例において、アノライトと燃焼空気の接触面を
増加させるために、加熱装置31の疎水性多孔質膜4を
第3図のように、チューブ状に形成しアノライトタンク
2内に多数設けてもよい。
In the above embodiment, in order to increase the contact surface between the anorite and the combustion air, the hydrophobic porous membranes 4 of the heating device 31 are formed into tube shapes and provided in large numbers in the anorite tank 2, as shown in FIG. Good too.

この接触面の増加に従って反応熱が増加する。The heat of reaction increases as the contact surface increases.

第3図に示すように、燃料電池本体1の急速昇温のため
に燃料電池本体1にシーズヒータ]7を巻いてもよい。
As shown in FIG. 3, a sheathed heater 7 may be wrapped around the fuel cell main body 1 in order to rapidly raise the temperature of the fuel cell main body 1.

次に第2の発明の1実施例を第4図により説明する。加
熱装置32はアノライトタンク2を覆うように併設され
ており、アノライトタンク2と加熱装置32とは、加熱
装置32内のアノライトにより接触している。該アノラ
イトは、供給弁22により燃料電池の供給系から加熱装
置32に供給されたものである。そして、加熱装置32
は供給弁22により供給されたアノライトと空気供給弁
7による流入空気とを疎水性多孔質膜4を介して反応さ
せる。その反応熱を加熱装置32内のアノライトを通し
てアノライトタンク2へ伝えることにより、アノライ1
〜タンク2内のアノライトをその供給系の外部周囲から
間接的に加熱し、その液温度を上昇させるのである。上
記のような構成。
Next, one embodiment of the second invention will be described with reference to FIG. The heating device 32 is installed so as to cover the anolyte tank 2, and the anolyte tank 2 and the heating device 32 are in contact with each other through the anolite in the heating device 32. The anorite is supplied from the supply system of the fuel cell to the heating device 32 via the supply valve 22 . And heating device 32
The anolyte supplied by the supply valve 22 and the air flowing in by the air supply valve 7 are caused to react through the hydrophobic porous membrane 4. By transmitting the reaction heat to the anolite tank 2 through the anolite in the heating device 32, the anolite 1
~The anolite in the tank 2 is indirectly heated from the outside of the supply system to raise the liquid temperature. Configuration as above.

作用によれは、前述の第1の発明の実施例よりも加熱装
置32内の反応面積を増加することができ、アノライト
を加熱する反応熱を増加することが出来るのである。
As a result, the reaction area within the heating device 32 can be increased compared to the above-described first embodiment of the invention, and the reaction heat for heating the anolyte can be increased.

その他の構成9作用、効果は第1の発明の実施例と同様
である。
The other functions and effects of Structure 9 are the same as those of the first embodiment of the invention.

次に、第3の発明の1実施例を第5図により説明する。Next, an embodiment of the third invention will be described with reference to FIG.

燃料電池の外部には、燃2+1.電池周囲の雰囲気温度
を検出するための温度検出器23が設けである。
Outside the fuel cell, fuel 2+1. A temperature detector 23 is provided to detect the ambient temperature around the battery.

温度検出器23からの検出信号は、制御器6に取り込ま
れ、燃料電池本体]が起動するのに十分な温度として、
前以て設定装置25で設定した設定温度範囲と比較され
る。そして、前記検出値が設定温度範囲下限以下で、燃
料電池が運転を停止している場合には、空気供給弁7を
開、空気バイパス弁16を開、アノライトポンプ12を
ON、ブロワ−14をONさせる信号を制御器6が発信
し加熱装置3へ空気を送り込む。次に、加熱装置3で疎
水性多孔質膜4により燃料電池本体1へ供給されるアノ
ライトと空気供給弁7からの流入空気とを反応させ、そ
の反応熱により燃料電池本体1へ供給されるアノライト
を直接加熱し、該アノライトの温度を上昇させるように
なっている。更に、加熱装置3の加熱により前記検出値
が前記設定温度範囲上限以上で、燃料電池が運転を停止
している場合には、空気供給弁7を閉、空気バイパス弁
1Gを閉、アノライトポンプ12をOFF、ブロワ−1
4をOFFさせる信号を制御器6が発信し、加熱装置3
内への空気の流入を停止させて、加熱装置3内の反応を
停止させ、燃料電池本体1へ供給されるアノライトの温
度の上昇を停止させるようになっている。上記のような
構成2作用によれば、アノライトの温度だけで燃料電池
本体1内の温度を推測することにならず、その他の空気
の温度や燃料電池本体1自身の温度などの諸要件による
、より確実で総体的な燃料電池本体1内の温度推測かで
きる。
The detection signal from the temperature detector 23 is taken into the controller 6, and is determined as a temperature sufficient to start the fuel cell main body.
It is compared with the set temperature range set in advance by the setting device 25. If the detected value is below the lower limit of the set temperature range and the fuel cell is not operating, the air supply valve 7 is opened, the air bypass valve 16 is opened, the anolyte pump 12 is turned on, and the blower 14 is turned on. The controller 6 sends a signal to turn on the heating device 3, and air is sent to the heating device 3. Next, in the heating device 3, the anolyte supplied to the fuel cell main body 1 through the hydrophobic porous membrane 4 is caused to react with the incoming air from the air supply valve 7, and the anolite supplied to the fuel cell main body 1 is caused by the reaction heat. is directly heated to raise the temperature of the anolyte. Further, if the detected value is equal to or higher than the upper limit of the set temperature range due to heating by the heating device 3 and the fuel cell is not operating, the air supply valve 7 is closed, the air bypass valve 1G is closed, and the anorite pump is closed. 12 OFF, blower 1
The controller 6 sends a signal to turn off the heating device 3.
By stopping the flow of air into the heating device 3, the reaction inside the heating device 3 is stopped, and the rise in temperature of the anolite supplied to the fuel cell main body 1 is stopped. According to the above configuration 2, the temperature inside the fuel cell main body 1 is not estimated only from the temperature of the anorite, but also depends on other factors such as the temperature of the air and the temperature of the fuel cell main body 1 itself. It is possible to more accurately and comprehensively estimate the temperature inside the fuel cell main body 1.

その他の構成2作用、効果は第1の発明の実施例と同様
である。
Other functions and effects of Structure 2 are similar to those of the first embodiment of the invention.

〔発明の効果〕 本発明によれば、環境温度の極めて低い寒冷地方用燃料
電池において、その始動特性を向上させるために電解液
を加熱するとき、従来技術よりも少ない電力消費量で信
頼性の高い加熱ができる。
[Effects of the Invention] According to the present invention, when heating the electrolyte in order to improve the starting characteristics of a fuel cell for use in cold regions where the environmental temperature is extremely low, reliability can be achieved with lower power consumption than in the prior art. Capable of high heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の1実施例の燃料電池の構成図、第
2図は本発明に係わる加熱装置の一部を拡大した原理図
、第3図は第1の発明の別の実施例の燃料電池の構成図
、第4図は第2の発明の1実施例の燃料電池の構成図、
第5図は第3の発明の1実施例の燃料電池の構成図。 1・・燃料電池本体、2 アノライI・タンク、3・・
・加熱装置、4・疎水性多孔質膜、5 温度検出器、6
 制御器、7 空気供給弁、8 濃度検出器、9・制御
器、10 燃料供給弁、]1・燃料タンク、12・アノ
ライ1〜ポンプ、13 フィルター、(]5) ]4・・ブロワ−115・・仕切弁、16 空気バイパ
ス弁、17 シーズヒーター、18・・配管、19.2
0.21  制御器、22 供給弁、23・温度検出器
、24 触媒、25 設定装置、$ 1 図 某zriJJ 薯3 図
Fig. 1 is a block diagram of a fuel cell according to an embodiment of the first invention, Fig. 2 is a partially enlarged principle diagram of a heating device according to the invention, and Fig. 3 is another embodiment of the first invention. A configuration diagram of a fuel cell according to an example, FIG. 4 is a configuration diagram of a fuel cell according to an embodiment of the second invention,
FIG. 5 is a configuration diagram of a fuel cell according to an embodiment of the third invention. 1. Fuel cell body, 2 Anorai I tank, 3.
・Heating device, 4・Hydrophobic porous membrane, 5 Temperature detector, 6
Controller, 7 Air supply valve, 8 Concentration detector, 9 Controller, 10 Fuel supply valve, ] 1 Fuel tank, 12 Anorai 1 to pump, 13 Filter, (] 5) ] 4 Blower 115・・Gate valve, 16 Air bypass valve, 17 Sealed heater, 18・・Piping, 19.2
0.21 Controller, 22 Supply valve, 23/Temperature detector, 24 Catalyst, 25 Setting device, $ 1 Figure zriJJ 薯3 Figure

Claims (1)

【特許請求の範囲】 1、燃料電池本体に供給するアノライトの温度を検出す
る温度検出器と、前記検出器からの検出値と設定値とを
比較する制御装置と、前記制御装置からの信号に応じて
アノライトを加熱する加熱装置とから成るアノライト温
度制御装置を設けた燃料電池において、前記加熱装置は
、前記検出器により検出された温度が前記設定値より低
いときに前記制御装置からの信号に応じ弁を開いて送風
機による空気を加熱装置に供給する空気弁と、該空気弁
からの流入空気とアノライト中のメタノールを反応させ
熱を発生させる触媒付き疎水性多孔質膜とから成ること
を特徴とする燃料電池。 2、燃料電池本体に供給するアノライトの温度を検出す
る温度検出器と、前記検出器からの検出値と設定値とを
比較する制御装置と、前記制御装置からの信号に応じて
アノライトを加熱する加熱装置とから成るアノライト温
度制御装置を設けた燃料電池において、前記加熱装置は
、前記検出器により検出された温度が前記設定値より低
いときに前記制御装置からの信号に応じ弁を開いて送風
機による空気を加熱装置に供給する空気弁と、該空気弁
からの流入空気と燃料電池本体に供給されるアノライト
中のメタノールを直接反応させ熱を発生させる触媒付き
疎水性多孔質膜とから成ることを特徴とする燃料電池。 3、燃料電池本体に供給するアノライトの温度を検出す
る温度検出器と、前記検出器からの検出値と設定値とを
比較する制御装置と、前記制御装置からの信号に応じて
アノライトを加熱する加熱装置とから成るアノライト温
度制御装置を設けた燃料電池において、前記加熱装置が
燃料電池本体にアノライトを供給するアノライト供給系
の一部を周囲から加熱するように設置され、前記アノラ
イト供給系の一部からアノライトを加熱装置に供給する
供給弁と、前記検出器により検出された温度が前記設定
値より低いときに前記制御装置からの信号に応じ弁を開
いて送風機による空気を加熱装置に供給する空気弁と、
該空気弁からの流入空気と前記供給弁からのアノライト
中のメタノールを反応させ熱を発生させる触媒とから成
ることを特徴とする燃料電池。 4、燃料電池周囲の雰囲気温度を検出する温度検出器と
、前記検出器からの検出値と設定値とを比較する制御装
置と、前記制御装置からの信号に応じてアノライトを加
熱する加熱装置とから成るアノライト温度制御装置を設
けた燃料電池において、前記加熱装置は、前記検出器に
より検出された温度が前記設定値より低く、かつ燃料電
池が発電を停止しているときに前記制御装置からの信号
に応じ弁を開いて送風機による空気を加熱装置に供給す
る空気弁と、該空気弁からの流入空気とアノライト中の
メタノールを反応させ熱を発生させる触媒とから成るこ
とを特徴とする燃料電池。
[Claims] 1. A temperature detector that detects the temperature of the anorite supplied to the fuel cell main body, a control device that compares the detected value from the detector with a set value, and a signal from the control device and a heating device for heating the anorite in accordance with the temperature control device, wherein the heating device is configured to respond to a signal from the control device when the temperature detected by the detector is lower than the set value. It is characterized by consisting of an air valve that opens a response valve to supply air from a blower to the heating device, and a hydrophobic porous membrane with a catalyst that reacts the incoming air from the air valve with methanol in the anolite to generate heat. fuel cell. 2. A temperature detector that detects the temperature of the anorite supplied to the fuel cell main body, a control device that compares the detected value from the detector with a set value, and heats the anorite in accordance with a signal from the control device. In the fuel cell equipped with an anorite temperature control device comprising a heating device, the heating device opens a valve in response to a signal from the control device to turn on the blower when the temperature detected by the detector is lower than the set value. an air valve that supplies air to the heating device, and a hydrophobic porous membrane with a catalyst that directly reacts the inflow air from the air valve with methanol in the anolite supplied to the fuel cell main body to generate heat. A fuel cell featuring: 3. A temperature detector that detects the temperature of the anorite supplied to the fuel cell main body, a control device that compares the detected value from the detector with a set value, and heats the anorite in accordance with a signal from the control device. In a fuel cell equipped with an anolite temperature control device consisting of a heating device, the heating device is installed so as to heat a part of the anolite supply system that supplies anolite to the fuel cell main body from the surroundings, and the heating device a supply valve for supplying anorite from the unit to the heating device; and a supply valve that opens the valve in response to a signal from the control device when the temperature detected by the detector is lower than the set value to supply air from a blower to the heating device. air valve and
A fuel cell comprising a catalyst that causes the inflow air from the air valve to react with the methanol in the anolite from the supply valve to generate heat. 4. A temperature detector that detects the ambient temperature around the fuel cell, a control device that compares a detected value from the detector with a set value, and a heating device that heats the anorite in response to a signal from the control device. In the fuel cell equipped with an anorite temperature control device consisting of A fuel cell characterized by comprising an air valve that opens the valve in response to a signal to supply air from a blower to a heating device, and a catalyst that causes the inflow air from the air valve to react with methanol in an anolite to generate heat. .
JP62316232A 1987-12-16 1987-12-16 Fuel battery Pending JPH01159967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316232A JPH01159967A (en) 1987-12-16 1987-12-16 Fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316232A JPH01159967A (en) 1987-12-16 1987-12-16 Fuel battery

Publications (1)

Publication Number Publication Date
JPH01159967A true JPH01159967A (en) 1989-06-22

Family

ID=18074783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316232A Pending JPH01159967A (en) 1987-12-16 1987-12-16 Fuel battery

Country Status (1)

Country Link
JP (1) JPH01159967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530259A (en) * 2001-03-02 2004-09-30 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド Cold start and temperature control method and apparatus for fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004530259A (en) * 2001-03-02 2004-09-30 エムティーアイ・マイクロフューエル・セルズ・インコーポレイテッド Cold start and temperature control method and apparatus for fuel cell system

Similar Documents

Publication Publication Date Title
US8735011B2 (en) Fuel cell system
WO2003096001A1 (en) Heater-contained gas sensor operation starting method and operation stopping method, and operating method
US6613465B2 (en) Control device for a fuel reforming apparatus
JP4145641B2 (en) Sensor alternative estimation control device for fuel cell system
JP2002198073A (en) Control method of heat treatment system
JP6943285B2 (en) Fuel cell system and fuel cell system control method
US6797418B1 (en) Fuel processor for fuel cell
JPH01159967A (en) Fuel battery
JP2000034102A (en) Controller of reformer
JP2008135284A (en) Fuel cell power generating system and its starting method
JP5446095B2 (en) FUEL CELL SYSTEM, ITS CONTROL DEVICE AND OPERATION METHOD
JPH11130403A (en) Method for controlling temperature of reformer for fuel cell
JP6870737B2 (en) Fuel cell system and fuel cell system control method
JP3470909B2 (en) Hybrid fuel cell
EP1052717A1 (en) Fuel cell system
JP7087341B2 (en) Fuel cell system and fuel cell system control method
JP2003282106A (en) Fuel cell system
JP2004085294A (en) Co alarm
BR112018011215B1 (en) FUEL CELL SYSTEM AND CONTROL PROCESS OF A FUEL CELL SYSTEM
JP6777238B2 (en) Fuel cell system and fuel cell system control method
US20220190368A1 (en) Fuel cell system and method for controlling fuel cell system
JP2006261002A (en) Fuel cell system
JP2010176952A (en) Fuel cell system
JPH04115468A (en) Start-controlling apparatus for liquid electrolyte type fuel cell
JPH03272567A (en) Hybrid fuel cell