JPH0115995B2 - - Google Patents

Info

Publication number
JPH0115995B2
JPH0115995B2 JP58132523A JP13252383A JPH0115995B2 JP H0115995 B2 JPH0115995 B2 JP H0115995B2 JP 58132523 A JP58132523 A JP 58132523A JP 13252383 A JP13252383 A JP 13252383A JP H0115995 B2 JPH0115995 B2 JP H0115995B2
Authority
JP
Japan
Prior art keywords
tubes
terminal
tube
pipeline
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58132523A
Other languages
Japanese (ja)
Other versions
JPS6026884A (en
Inventor
Masao Ando
Akito Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Engineering Co Ltd
Original Assignee
Chisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Engineering Co Ltd filed Critical Chisso Engineering Co Ltd
Priority to JP58132523A priority Critical patent/JPS6026884A/en
Publication of JPS6026884A publication Critical patent/JPS6026884A/en
Publication of JPH0115995B2 publication Critical patent/JPH0115995B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pipe Accessories (AREA)
  • Pipeline Systems (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気加熱パイプラインに関する。更に
詳しくは、本発明は、本発明者が先に提案した内
外管を往復導体として発熱させ、内管を輪送管と
して使用する電気加熱管のユニツトを少なくとも
一つ含む電気加熱パイプラインに関する(特開昭
55−142200号)「温度イコライザ付電気加熱パイ
プライン」の発明の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to electrically heated pipelines. More specifically, the present invention relates to an electrically heated pipeline previously proposed by the present inventor that includes at least one electrically heated tube unit in which the inner and outer tubes are used as reciprocating conductors to generate heat and the inner tube is used as a circular feed tube. Tokukai Akira
No. 55-142200) relates to improvements in the invention of "Electrical heating pipeline with temperature equalizer".

[従来の技術] 以下図面により先行技術を説明する。[Conventional technology] The prior art will be explained below with reference to the drawings.

第1図は前記出願公開された発明のパイプライ
ンの一具体例の長さ方向の横断面図、第2図は第
1図A部の拡大図である。
FIG. 1 is a longitudinal cross-sectional view of a specific example of the pipeline of the disclosed invention, and FIG. 2 is an enlarged view of section A in FIG. 1.

これらの図において内管1は流体23を輸送す
る導電性をもつパイプ、2はその外管であつて、
強磁性体である鋼管で作られている。3,3′は
交流電源でその両端子の一つは外管2と好ましく
はそのほぼ中央部5において直接接続され、他の
一つは外管に設けられた密封形絶縁プツシング1
1を貫通する導体7によつて内管の好ましくはほ
ぼ中央部に設けられた端子4と接続されている。
内外管の間隙は絶縁スペーサ20によつて電気的
短絡を防止している。第1図では交流電源3およ
び3′より給電される2本のユニツトを示してい
るが、ユニツトは1本でも多数本でもよい。1つ
のユニツトの長さは通常10数mから数100mまで
である。そして各ユニツトの内外層はその両端で
(電源3のユニツトでは17,18で、電源3′の
ユニツトでは18,19で)、電気的に接続され
ている。
In these figures, the inner pipe 1 is a conductive pipe that transports a fluid 23, and 2 is its outer pipe,
It is made of steel tube, which is a ferromagnetic material. Reference numerals 3 and 3' denote an AC power supply, one of which is directly connected to the outer tube 2, preferably at approximately the center 5, and the other terminal is a sealed insulating pushing 1 provided on the outer tube.
It is connected by a conductor 7 passing through 1 to a terminal 4 provided preferably approximately in the center of the inner tube.
The gap between the inner and outer tubes is provided with an insulating spacer 20 to prevent electrical short circuits. Although FIG. 1 shows two units powered by AC power supplies 3 and 3', the number of units may be one or many. The length of one unit is usually from several tens of meters to several hundred meters. The inner and outer layers of each unit are electrically connected at both ends (at 17 and 18 for the power supply 3 unit and at 18 and 19 for the power supply 3' unit).

このような電気回路では、交流電源3よりの電
流10は内外管を回路として8,9のように分流
する。この場合には1つのユニツトにおいて端部
から給電する場合に較べて電源電圧を低くするこ
とができ、また相隣るユニツトの相近接する端部
の電位を等しくして各ユニツトを絶縁フランジな
しに逐次電気的に接続することができる。
In such an electric circuit, a current 10 from an AC power source 3 is divided into two parts, 8 and 9, using the inner and outer tubes as a circuit. In this case, the power supply voltage can be lowered compared to the case where power is supplied from the end of one unit, and the potentials of adjacent ends of adjacent units are made equal, so that each unit can be connected one after another without an insulating flange. Can be electrically connected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前記出願公開された発明は、第2
図に拡大して示した端子部の構造から明らかな如
く、電流よりの全電流10は、第2図の端子から
右方に流れる電流8と左方に流れる電流9との合
計であり、測定可能であることは説明するまでも
ないが、電流8,9のそれぞれの配分量は測定す
ることができない。そしてこれらの電流値8,9
が不明のままでは、端子左右の発熱量が設計値通
りになつているかどうかが不明であるばかりでな
く、万一内管1、外管2の間の絶縁不良又は破壊
が発生しても、不良又は破壊点がどの位置である
かは、たとえ電流値10の増大を知つても発見す
ることができない。
However, the invention disclosed in the application is
As is clear from the structure of the terminal section enlarged in the figure, the total current 10 from the current is the sum of the current 8 flowing to the right and the current 9 flowing to the left from the terminal in FIG. Although it is possible, needless to say, it is not possible to measure the respective distribution amounts of the currents 8 and 9. And these current values 8, 9
If this remains unknown, it is not only unclear whether the heat generation amount on the left and right sides of the terminals is as designed, but also in the unlikely event that insulation failure or breakdown occurs between the inner tube 1 and outer tube 2. Even if the increase in current value of 10 is known, it is impossible to discover where the defective or destructive point is.

本発明は、上記のようなパイプラインの分流型
の二重管電気加熱管ユニツトにおいて、これらの
電流8,9の値をそれぞれ測定可能とする構造を
提供することを目的とする。
It is an object of the present invention to provide a structure in which the values of these currents 8 and 9 can be measured, respectively, in a branch type double-tube electric heating tube unit for a pipeline as described above.

[課題を解決するための手段] 本発明は、加熱保温が必要である流体を通す導
電性の内管に、これとほぼ同心に管状間隙を置い
て導電性の外管が設けられ、前記内外管の両端は
電気的に接続され、前記内外管のいずれか一方に
端子が設けられ、この端子を交流電源の1つの端
子に接続する手段が設けられ、前記内外管の他方
に前記交流電源の他の1つの端子から給電する手
段が設けられてなる分流型二重電気加熱管のユニ
ツトを少なくとも1つ含む電気加熱パイプライン
において、前記内外管の他方が管の長さ方向に垂
直に機械的分割され、分割された管の相対する両
端部間に電気的絶縁物を介在させて接続され、そ
の分割点の両側の管のそれぞれに電気的に相互に
独立した端子が設けられ、これら端子はそれぞれ
に接続される電線部分を含む接続手段により前記
交流電源の他の1つの端子に接続され、該接続電
線部分のそれぞれに電流測定手段が設けられてな
る前記パイプラインを要旨とする。
[Means for Solving the Problems] According to the present invention, an electrically conductive outer pipe is provided with a tubular gap approximately concentrically with an electrically conductive inner pipe through which a fluid that needs to be heated and kept warm is passed. Both ends of the tube are electrically connected, one of the inner and outer tubes is provided with a terminal, a means is provided for connecting this terminal to one terminal of an AC power source, and the other of the inner and outer tubes is provided with a terminal of the AC power source. In an electric heating pipeline including at least one unit of a branch type double electric heating tube provided with means for supplying power from one terminal of the other, the other of the inner and outer tubes is mechanically connected perpendicularly to the length direction of the tube. The two opposite ends of the divided tubes are connected with an electrical insulator interposed between them, and electrically independent terminals are provided on each of the tubes on both sides of the dividing point, and these terminals are The gist of the pipeline is that it is connected to another terminal of the alternating current power supply by a connecting means including electric wire portions connected to each of the electric wire portions, and each of the connecting electric wire portions is provided with a current measuring means.

〔作用〕[Effect]

本発明によれば、前記分割されその間に電気的
絶縁物のおかれた両側の管のそれぞれに電気的に
相互に独立した端子が設けられ、これら端子はそ
れぞれに接続される電線部分を含む接続手段によ
り交流電源の1つの端子に接続され、該接続電線
部分のそれぞれに電流測定手段が設けられている
から、前記端子の左右の発熱量が設計値通りにな
つているかどうかを容易に知ることができるばか
りでなく、前記分割されたいずれかの管を含む二
重電気加熱管部分で絶縁破壊が起きたとき、前記
接続電線部分を通る電流が変化し、破壊位置を推
定することができる。
According to the present invention, electrically independent terminals are provided on each of the divided tubes on both sides with an electrical insulator placed therebetween, and these terminals are connected to each other including electric wire portions to be connected to each other. Since the electric wire is connected to one terminal of the AC power supply by a means and a current measuring means is provided on each of the connected electric wire parts, it is easy to know whether the amount of heat generated on the left and right sides of the terminal is in accordance with the designed value. Not only can this be done, but when dielectric breakdown occurs in the double electric heating tube section including any of the divided tubes, the current passing through the connecting wire section changes, and the location of the breakdown can be estimated.

〔実施例〕〔Example〕

第3図は本発明二重電気加熱管のユニツトを含
むパイプラインの一態様の管の長さ方向の断面略
図であり、この図面に表わされた数字は新しく加
えられたものの他は第1,2図と同じものを表わ
している。
FIG. 3 is a schematic longitudinal cross-sectional view of the pipe of one embodiment of the pipeline including the dual electric heating tube unit of the present invention; , represents the same thing as Figure 2.

さて本発明においては第1図の出願公開された
発明と相違して第3図に示すように外管2は絶縁
フランジ28を介して管2の長さ方向に垂直に切
断され2′,2″の部分に機械的、電気的に分割さ
れている。
Now, in the present invention, unlike the disclosed invention shown in FIG. 1, the outer tube 2 is cut perpendicularly to the length direction of the tube 2 through an insulating flange 28 as shown in FIG. It is mechanically and electrically divided into '' parts.

そして分割点の両側に端子5,5′を設けてい
る。そうすると電源3よりの全電流10は電線
7、接続端子4を通つて内管1に至り、右方に電
流8、左方に電流9と分流する。11は絶縁ブツ
シングである。そして電流8は接続端子5より電
線6′を通り、電流9は接続端子5′より電線6″
を通つて流れ、接続29で全電流10となつて電
線6を通つて電源3に帰る。
Terminals 5 and 5' are provided on both sides of the dividing point. Then, the total current 10 from the power source 3 passes through the electric wire 7 and the connecting terminal 4 to reach the inner tube 1, and is divided into a current 8 to the right and a current 9 to the left. 11 is an insulating bushing. Current 8 passes through wire 6' from connecting terminal 5, and current 9 passes through wire 6'' from connecting terminal 5'.
and returns to the power supply 3 through the wire 6 with a total current 10 at the connection 29.

そこで電線6′と6″に必要ならば変流器24,
24′を設けて、電流8,9を電流計25,2
5′で読みとる。26は電流8,9の何れかに異
状のあつたとき作動する差動リレーを示してい
る。
Therefore, if necessary, a current transformer 24,
24' is provided, and currents 8 and 9 are measured by ammeters 25 and 2.
Read with 5'. Reference numeral 26 indicates a differential relay that is activated when there is an abnormality in either of the currents 8 and 9.

このような構造で例えばスペーサ20の何れか
に絶縁破壊がおきその点で短絡したとすれば電流
8又は9は変化し、その変化は破壊したスペーサ
20の位置の接続端子4からの距離に関係する。
従つてこれら電流8,9の値を測定しこの電流変
化を知ることにより破壊位置を推定することがで
きる。
In such a structure, if dielectric breakdown occurs in any of the spacers 20 and a short circuit occurs at that point, the current 8 or 9 will change, and the change will be related to the distance from the connection terminal 4 to the position of the broken spacer 20. do.
Therefore, by measuring the values of these currents 8 and 9 and knowing the changes in these currents, the location of the breakdown can be estimated.

本発明のような加熱管では電源電圧が100Vの
ときユニツトの長さが400〜500mとなるので、も
し本発明のような構造を用いず前記出願公開され
た発明のままでは外管2の外見、ましてや図示さ
れていないが外管2の外部に保温層があるとき
は、更にその外見から絶縁破壊点を発見すること
は殆んど不可能である。従つて、本発明の有効さ
は容易に推定できる筈である。
In the heating tube of the present invention, the length of the unit is 400 to 500 m when the power supply voltage is 100V. Therefore, if the structure of the present invention is not used and the invention disclosed in the application is maintained, the appearance of the outer tube 2 will change. Even more so, when there is a heat insulating layer on the outside of the outer tube 2 (not shown), it is almost impossible to discover the dielectric breakdown point from its appearance. Therefore, the effectiveness of the present invention should be easily estimated.

第3図では絶縁フランジ28は、外管2に設け
られているが、理論的には内管1に設けられても
良く、内外管の両方に設けられても良い。しかし
加熱管の構造からして組立て、保守の便、耐久性
等の点で外管2に設けることが最良である。また
絶縁フランジが内管に設けられているときは内管
内の被輸送流体23は電気非導電性のものでなけ
ればならないのは勿論である。
In FIG. 3, the insulating flange 28 is provided on the outer tube 2, but theoretically it may be provided on the inner tube 1, or on both the inner and outer tubes. However, considering the structure of the heating tube, it is best to provide it in the outer tube 2 in terms of ease of assembly, maintenance, durability, etc. Furthermore, when the insulating flange is provided on the inner tube, it goes without saying that the fluid 23 to be transported within the inner tube must be electrically non-conductive.

次に絶縁フランジ28にかかる電圧、すなわち
端子5,5′間の電圧は、電線6′,6″が点29
で接続されておるから、この点からの電位差を考
えれば良い。この電位差は変流器24,24′に
かかる負荷である電流計25,25′および差動
リレー26に消費される電力に関係するが、これ
は合計でも10W程度であるから、電流8,9が仮
り300Aとすると、0.1V以下となつて極めて小さ
い。すなわち絶縁フランジ28は電気的には極め
て簡単なもので良い。
Next, the voltage applied to the insulating flange 28, that is, the voltage between the terminals 5, 5' is
Since they are connected at this point, we can consider the potential difference from this point. This potential difference is related to the power consumed by the ammeters 25, 25', which are loads on the current transformers 24, 24', and the differential relay 26, but since this is about 10W in total, the currents 8, 9 If it were 300A, it would be less than 0.1V, which is extremely small. That is, the insulating flange 28 may be electrically extremely simple.

しかし流体23が微少流量であるか停止し、さ
らに図示されていないが、外管2′,2″の外側の
保温層が、管の長さ方向に不均一で、管温度の不
均一が発生するのを防止するために内外管間隙2
2に液体13′を流すとき(後に詳述する)には、
絶縁フランジ28のパツキング(電気的絶縁物)
28′はこの液体の漏出を防止できるものでなけ
ればならないことは勿論である。
However, the fluid 23 has a small flow rate or has stopped, and although not shown, the heat insulating layer on the outside of the outer tubes 2' and 2'' is uneven in the length direction of the tube, resulting in uneven tube temperature. In order to prevent
When flowing liquid 13' through 2 (described in detail later),
Packing of insulating flange 28 (electrical insulator)
Of course, 28' must be capable of preventing leakage of this liquid.

さらに第3図では絶縁ブツシング11とフラン
ジ28は別の位置に置かれているが、余り距離が
ない方が保守などには便利であろう。
Furthermore, although the insulating bushing 11 and the flange 28 are placed at different positions in FIG. 3, it would be more convenient for maintenance if they were not far apart.

分流型電気加熱管ユニツトにおいて左右に流れ
る電流8,9の測定は第3図に示した構造の他第
4図に略示した構造にしても可能である。第4図
において、示した数字のうち第3図と同じものは
同じ意味を表わす。すなわち、第3図では絶縁フ
ランジ28が1個の場合であるが、第4図では絶
縁フランジを38,39に示すように2個にして
おり、このそれぞれに端子51,51′及び52,
52′を設け、これら端子を結ぶ電線48,49
に第3図同様電流測定装置25,25′を設けれ
ば発熱管ユニツトの左、右に流れる電流8,9を
測定することが可能である。第4図の構造は絶縁
フランジ38,39にはさまれた外管2の一部分
2の接続点29の左側の部分は電線48と共に
第3図における電線6″に相当し、右側の部分は
電線49と共に第3図における電線6′に相当し
ていると考えることができる。従つて第4図に示
した構造は第3図に示した構造の1つの変形と見
ることができる。電線46は第3図の電線6に相
当する。
In addition to the structure shown in FIG. 3, it is also possible to measure the currents 8 and 9 flowing left and right in the branch type electric heating tube unit by using the structure schematically shown in FIG. 4. In FIG. 4, the same numbers as in FIG. 3 have the same meaning. That is, in FIG. 3, there is one insulating flange 28, but in FIG. 4, there are two insulating flanges as shown at 38 and 39, and terminals 51, 51' and 52,
52' are provided, and electric wires 48, 49 connecting these terminals are provided.
If current measuring devices 25, 25' are provided as in FIG. 3, it is possible to measure the currents 8, 9 flowing to the left and right of the heating tube unit. In the structure shown in FIG. 4, the left part of the connection point 29 of the part 2 of the outer tube 2 sandwiched between the insulating flanges 38 and 39 corresponds to the electric wire 6'' in FIG. 3 together with the electric wire 48, and the right part corresponds to the electric wire 49 can be considered to correspond to the electric wire 6' in FIG. 3.Therefore, the structure shown in FIG. 4 can be seen as a modification of the structure shown in FIG. This corresponds to the electric wire 6 in FIG.

第3,4図に示した発明を比較した場合、第4
図の発明が第3図の発明に比較して分割点が2点
になる欠点があるが、もしこの部分に内外管の温
度差による熱応力を避けるためのベローズを設け
る場合には第4図の方が有利であろう。
When comparing the inventions shown in Figures 3 and 4, the fourth
The invention shown in the figure has the disadvantage that there are two dividing points compared to the invention shown in Fig. 3, but if a bellows is provided in this part to avoid thermal stress due to the temperature difference between the inner and outer tubes, the invention shown in Fig. 4 would be more advantageous.

本発明において外管2,2′,2″を強磁性管例
えば鋼管とすることができる。この場合にその肉
厚t(cm)が、この管の抵抗率ρ(Ωcm)、透磁率
μ、電源周波数をf(Hz)としたとき、交流電流
の表皮の深さS(cm)と吹ばれる値 S=5030√(cm) (1) に対し t>2S (2) の関係にあるときは、外管2等に流れる交流電流
は該管の内表皮付近のみに集中し、該管の外表面
に電圧は実質的に現われず、その外表面を数多く
の点で接地又は金属接触してもこれらの点で人畜
に有害な、又は燃焼性ガスを発火させるような電
流を発生しない。従つてこの管の外周に特に絶縁
層を設けなくてもそのまま敷設することができる
という利点がある。
In the present invention, the outer tubes 2, 2', 2'' can be made of ferromagnetic tubes, such as steel tubes. In this case, the wall thickness t (cm), the resistivity ρ (Ωcm), the magnetic permeability μ, When the power supply frequency is f (Hz), the relationship between the skin depth S (cm) of alternating current and the blown value S = 5030√ (cm) (1) is t>2S (2). The alternating current flowing through the outer tube 2, etc., concentrates only near the inner skin of the tube, and virtually no voltage appears on the outer surface of the tube, even if the outer surface is grounded or metal-contacted at numerous points. In these respects, no current is generated that is harmful to humans or livestock or that may ignite combustible gas.Therefore, there is an advantage that the pipe can be laid as is without the need to provide an insulating layer around the outer periphery of the pipe.

本発明において、流体23を冷い状態から加熱
昇温するときは、内管1に発生する熱はそのまま
加熱、保温に利用できるが、外管2に発生する熱
は、これを流体23に伝えて利用するためには、
これを内外管間の間隙22を通過させなければな
らない。従つて内外管1,2間には温度差ができ
る。この温度差とそれによる歪をできるだけ少な
くするために間隙22(通常10〜30mmである。)
に電気的には絶縁物であるが、空気よりは伝熱性
良好である物質を充填するのが望ましい。また、
内外管の温度差が大きいと内外管の間にひずみが
生じるから、これを防止するために、間隙22に
前記物質を充填するのが望ましい。前記充填物質
の種類はパイプラインの保持温度電源電圧等によ
つて変化するが、電源電圧が比較的低い数10Vま
では伝熱セメントのような固体でもよい。保持温
度が100℃以下と比較的低く、電圧が数100V以上
と高い場合には変圧器油が利用できるし、保持温
度が100℃以上ではエチレングリコール、シリコ
ンオイル等の既知の液体熱媒体等が利用できる。
これら液体の熱伝導率は0.2KCal/mh℃前後で
あるから余り高くないが、高温では発生する対流
の助けによつて見掛の熱伝導率は前記の値より遥
かに大きくなる。
In the present invention, when heating the fluid 23 from a cold state, the heat generated in the inner tube 1 can be used as is for heating and keeping warm, but the heat generated in the outer tube 2 is transferred to the fluid 23. In order to use
This must be passed through the gap 22 between the inner and outer tubes. Therefore, there is a temperature difference between the inner and outer tubes 1 and 2. In order to minimize this temperature difference and the distortion caused by it, the gap 22 (usually 10 to 30 mm) is used.
It is desirable to fill the chamber with a material that is electrically insulating but has better heat conductivity than air. Also,
If there is a large temperature difference between the inner and outer tubes, distortion will occur between the inner and outer tubes, so in order to prevent this, it is desirable to fill the gap 22 with the above-mentioned material. The type of filling material varies depending on the pipeline's holding temperature, power supply voltage, etc., but it may be solid such as heat transfer cement if the power supply voltage is relatively low, up to several tens of volts. If the holding temperature is relatively low, below 100℃, and the voltage is high, over several hundred volts, transformer oil can be used.If the holding temperature is above 100℃, known liquid heat media such as ethylene glycol or silicone oil can be used. Available.
The thermal conductivity of these liquids is around 0.2 KCal/mh°C, which is not very high, but at high temperatures, the apparent thermal conductivity becomes much larger than the above value due to the aid of convection.

第3図では省略したが、通常このようなパイプ
ラインでは外管2の外側には保温層がある。この
保温層はパイプラインの長さ方向にはどうしても
不均一となり、パイプラインが全長にわたつて地
上に存在し、周囲温度が均一のときでもパイプラ
インの長さ方向に±10%程度の温度差ができる。
このような温度変動は硫黄パイプラインのような
輸送可能温度範囲が140〜160℃と小さい場合、特
にその流動が停滞した時トラブル発生の原因とな
る。従つてこのような温度変動を避けるには間隙
22の充填物質を液体13′として第3図に例示
するようにポンプ12、パイピング13を使つ
て、パイプラインの一端14より流入させ、他の
一端15より、必要ならば或程度の加熱もでき、
液体を清浄にでき又は貯液できるような装置21
を通つてポンプ12に還流させて、パイプライン
の長さ方向の温度差を少なくできる。27は液体
13′の通過のために接続17にあけられた孔で
ある。
Although omitted in FIG. 3, such pipelines usually have a heat insulating layer on the outside of the outer tube 2. This heat insulation layer is inevitably uneven along the length of the pipeline, and even when the pipeline is above ground over its entire length and the ambient temperature is uniform, there is a temperature difference of about ±10% along the length of the pipeline. Can be done.
Such temperature fluctuations can cause problems in sulfur pipelines where the transportable temperature range is as small as 140 to 160°C, especially when the flow is stagnant. Therefore, in order to avoid such temperature fluctuations, the material filling the gap 22 is made into a liquid 13', and as illustrated in FIG. 15, a certain amount of heating can be done if necessary.
Device 21 capable of purifying or storing liquid
The temperature difference along the length of the pipeline can be reduced by refluxing the fluid through the pump 12. 27 is a hole drilled in the connection 17 for the passage of the liquid 13'.

渡り配管16は電気的接続手段17に流体を通
すような孔があれば不良なものである。しかしプ
レフアブのユニツトを連結してパイプラインを組
立てるときは、このような渡り配管による連結を
可能にしておけば便利なこともある。また間隙部
に使用する伝熱物質として耐熱性液体媒体を使用
すればパイプラインの保持温度を350℃までと、
従来の電気加熱パイプラインの上限約200℃を遥
かに超えることができる。
The crossover pipe 16 is defective if it has holes that allow fluid to pass through the electrical connection means 17. However, when assembling a pipeline by connecting prefabricated units, it may be convenient to make connections using such crossover piping possible. In addition, if a heat-resistant liquid medium is used as the heat transfer material in the gap, the holding temperature of the pipeline can be increased to 350℃.
It can far exceed the upper limit of about 200℃ for conventional electric heating pipelines.

なお前記公開された発明では外管2に(2)式で表
わされるような制限が加えられているが、本発明
においては管のユニツトの長さが100m以下好ま
しくは数10m以下と短いときは電源電圧は30V以
下とすることも可能であるから、(2)式の制限の代
りに、外管2の外側に簡単な絶縁層を設けること
にしてもよい。
Note that in the disclosed invention, the outer tube 2 is limited as expressed by equation (2), but in the present invention, when the length of the tube unit is as short as 100 m or less, preferably several tens of meters or less, Since the power supply voltage can be set to 30V or less, a simple insulating layer may be provided on the outside of the outer tube 2 instead of the restriction in equation (2).

〔効果〕〔effect〕

以上述べたように本発明装置は、前記出願公開
された発明のもつ欠点、すなわち内外管間の絶縁
不良又は破壊点の発見が不可能であつたことを完
全に取除くことができ、しかも前記公開された発
明の長所をも持つことができる。
As described above, the device of the present invention can completely eliminate the drawbacks of the disclosed invention, namely, that it was impossible to detect insulation defects or breakdown points between the inner and outer tubes, and furthermore, It can also have the advantages of published inventions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特開昭55−142200号公報により公開さ
れた発明にかかるパイプラインの長さ方向の断面
略図で、第2図は第1図A部の拡大図である。第
3,4図はそれぞれ本発明パイプラインの一態様
のパイプラインの長さ方向の断面略図である。こ
れらの図面において数字は次のものを表わす。 1は流体輸送内管、2は電流通路の一部となる
外管、3,3′は交流電源、4,5,5′,5″,
51,51′,52,52′は接続端子、6,6′,
6″,46,48,49,7は接続導体、8,9,
10は交流電源よりの電流、11は密封形絶縁ブ
ツシング、12は循環ポンプ、13はその配管、
14,15は配管13と外管の接続点、16は循
環液の渡り配管、17,18,19は内外管1,
2の電気接続、20は絶縁スペーサ、21は循環
液貯槽兼清浄装置兼加熱装置、22は環状間隙、
23は被輸送流体、24,24′は変流器、25,
25′は電流計、26は差動リレー、27は孔、
28,38,39は絶縁フランジ、29は接続
点。
FIG. 1 is a schematic longitudinal cross-sectional view of a pipeline according to the invention disclosed in Japanese Patent Application Laid-Open No. 142200/1982, and FIG. 2 is an enlarged view of section A in FIG. 1. 3 and 4 are schematic longitudinal cross-sectional views of a pipeline according to one embodiment of the present invention, respectively. In these drawings, the numbers represent the following: 1 is an inner tube for transporting fluid, 2 is an outer tube that becomes part of the current path, 3, 3' are AC power sources, 4, 5, 5', 5'',
51, 51', 52, 52' are connection terminals, 6, 6',
6″, 46, 48, 49, 7 are connection conductors, 8, 9,
10 is a current from an AC power supply, 11 is a sealed insulating bushing, 12 is a circulation pump, 13 is its piping,
14 and 15 are connection points between the pipe 13 and the outer pipe, 16 is a circulating fluid transfer pipe, 17, 18, and 19 are the inner and outer pipes 1,
2 electrical connection, 20 an insulating spacer, 21 a circulating fluid storage tank/cleaning device/heating device, 22 an annular gap,
23 is a fluid to be transported, 24, 24' are current transformers, 25,
25' is an ammeter, 26 is a differential relay, 27 is a hole,
28, 38, 39 are insulating flanges, and 29 is a connection point.

Claims (1)

【特許請求の範囲】 1 加熱保温が必要である流体を通す導電性の内
管1に、これとほぼ同心に管状間隙を置いて導電
性の外管2が設けられ、前記内外管の両端は電気
的に接続17,18され、前記内外管のいずれか
一方に端子4が設けられ、この端子を交流電源の
1つの端子に接続する手段7が設けられ、前記内
外管の他方に前記交流電源の他の1つの端子から
給電する手段が設けられてなる分流型二重電気加
熱管のユニツトを少なくとも一つ含む電気加熱パ
イプラインにおいて、前記内外管の他方が管の長
さ方向に直角な方向に機械的に分割され、分割さ
れた管の相対する両端部間に電気的絶縁物を介在
させて接続され、その分割点の両側の管2′,
2″のそれぞれに電気的に相互に独立した端子5,
5′;51,52が設けられ、これら端子はそれ
ぞれに接続される電線部分6′,6″;48,49
を含む接続手段により前記交流電源の他の1つの
端子に接続され、該接続電線部分6′,6″;4
8,49のそれぞれに電流測定手段が設けられて
いることを特徴とする前記パイプライン。 2 前記分割点の両側の管に設けられる端子の位
置が該両側の管の相近接する管端部であることを
特徴とする第1項記載のパイプライン。 3 前記分割点の両側の管2′,2″に設けられた
端子5,5′;51,52を交流電源の他の1つ
の端子に接続する手段が、前記接続電線部分6′,
6″;48,49よりも前記交流電源の他の1つ
の端子に近い部分において共通の導電体部分6,
46を含むことを特徴とする第1項又は第2項に
記載のパイプライン。 4 前記共通の導電体部分6が、前記分割点の両
側の管2′,2″の間に、これら管と機械的に切り
離され2か所の相対する両端部分間に電気的絶縁
物を介在させて接続され設置された管2上の点
29と前記交流電源の他の1つの端子とを結ぶ電
線46であり、この電線46並びに該点29の左
右の管部分及びそれらに設けられた各端子51′,
52′と前記分割点の両側の管2′,2″のそれぞ
れに設けられた各端子51,52とをそれぞれ結
ぶ電線48,49が、前記分割点の両側の管に設
けられた端子51,52を交流電源の他の1つの
端子に接続する手段を構成していることを特徴と
する第3項記載のパイプライン。 5 前記加熱管ユニツトを2以上連結して含む第
1項から第4項までのいずれかに記載のパイプラ
イン。 6 前記二重電気加熱管ユニツトの外管又は内管
及び外管が強磁性管よりなり、この管の肉厚が、
交流電流の表皮の深さの2倍以上である第1項か
ら第5項までのいずれかに記載のパイプライン。
[Scope of Claims] 1. A conductive inner tube 1 through which a fluid that needs to be heated and kept warm is provided, and a conductive outer tube 2 is provided approximately concentrically with a tubular gap therebetween, and both ends of the inner and outer tubes are A terminal 4 is provided on one of the inner and outer tubes, means 7 is provided for connecting this terminal to one terminal of an AC power source, and the other of the inner and outer tubes is provided with a terminal 4, and the other of the inner and outer tubes is provided with a terminal 4. In an electric heating pipeline including at least one unit of a branch type double electric heating tube provided with means for supplying power from the other terminal of the The opposite ends of the divided tubes are connected with an electrical insulator interposed between them, and the tubes 2' on both sides of the dividing point are
2″ electrically independent terminals 5,
5'; 51, 52 are provided, and these terminals are connected to wire portions 6', 6''; 48, 49, respectively.
The connecting wire portions 6', 6'';
8 and 49, each of which is provided with a current measuring means. 2. The pipeline according to item 1, wherein the terminals provided on the tubes on both sides of the dividing point are located at adjacent tube ends of the tubes on both sides. 3. Means for connecting the terminals 5, 5'; 51, 52 provided on the tubes 2', 2'' on both sides of the dividing point to the other terminal of the AC power supply is provided by the connecting wire portions 6',
6″; a common conductor portion 6 in a portion closer to the other one terminal of the AC power source than 48, 49;
4. The pipeline according to claim 1 or 2, characterized in that the pipeline comprises: 46. 4 The common conductor portion 6 is mechanically separated from the tubes 2' and 2'' on both sides of the dividing point, and an electrical insulator is interposed between the two opposing end portions. This is an electric wire 46 that connects the point 29 on the pipe 2, which is connected and installed, and one other terminal of the AC power source, and this electric wire 46, the pipe portions on the left and right of the point 29, and the respective pipes provided thereon. terminal 51',
52' and terminals 51, 52 provided on the tubes 2', 2'' on both sides of the dividing point, respectively. 5. The pipeline according to item 3, characterized in that the pipeline constitutes means for connecting the heating tube unit 52 to another terminal of an AC power source. The pipeline according to any one of paragraphs 6 to 6, wherein the outer tube or the inner tube and the outer tube of the double electric heating tube unit are made of ferromagnetic tubes, and the wall thickness of this tube is
6. The pipeline according to any one of items 1 to 5, wherein the depth is at least twice the skin depth of the alternating current.
JP58132523A 1983-07-20 1983-07-20 Current dividing type double electric heating pipe pipeline Granted JPS6026884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132523A JPS6026884A (en) 1983-07-20 1983-07-20 Current dividing type double electric heating pipe pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132523A JPS6026884A (en) 1983-07-20 1983-07-20 Current dividing type double electric heating pipe pipeline

Publications (2)

Publication Number Publication Date
JPS6026884A JPS6026884A (en) 1985-02-09
JPH0115995B2 true JPH0115995B2 (en) 1989-03-22

Family

ID=15083294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132523A Granted JPS6026884A (en) 1983-07-20 1983-07-20 Current dividing type double electric heating pipe pipeline

Country Status (1)

Country Link
JP (1) JPS6026884A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914018A (en) * 1972-05-16 1974-02-07
JPS5333219U (en) * 1976-12-18 1978-03-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914018A (en) * 1972-05-16 1974-02-07
JPS5333219U (en) * 1976-12-18 1978-03-23

Also Published As

Publication number Publication date
JPS6026884A (en) 1985-02-09

Similar Documents

Publication Publication Date Title
US3706872A (en) System for electrically heating fluid-conveying pipe lines and other structures
US3293407A (en) Apparatus for maintaining liquid being transported in a pipe line at an elevated temperature
CN102818094B (en) The electric heating system of one section of fluid transport pipe, section and be equipped with the pipe of this electric heating system
GB2304392A (en) Heated pipeline assembly
US20130220996A1 (en) Induction heater system for electrically heated pipelines
JPH0760017B2 (en) Electric fluid heater
US2513242A (en) Electric fluid heater
US20130213487A1 (en) Pipeline heating technology
EA004096B1 (en) Electrical well heating system and method
US4617449A (en) Heating device for utilizing the skin effect of alternating current
KR890003052B1 (en) Diagonal energizing heater
US11768011B2 (en) Apparatus for thermal control of tubing assembly and associated methods
US3351738A (en) Pipe heating arrangement
US3718804A (en) Fixing heat-generating pipe utilizing skin effect current
CN111434187B (en) Thermal management method and apparatus
JPH0115995B2 (en)
JPS6099951A (en) Heater
US2141912A (en) Power transmission system
JPH0321798B2 (en)
US3571561A (en) Circuit for detecting abnormality in electric heating apparatus of pipe lines
US3377464A (en) Electric resistance heating and insulating system for elongated pipes
US3377463A (en) Prefabricated electric resistance pipe heating system
US4408117A (en) Impedance heating system with skin effect particularly for railroad tank cars
JPS6313075B2 (en)
US10816123B2 (en) Station for heating fluids flowing through a network of submarine pipelines