JPH0115992B2 - - Google Patents

Info

Publication number
JPH0115992B2
JPH0115992B2 JP31107287A JP31107287A JPH0115992B2 JP H0115992 B2 JPH0115992 B2 JP H0115992B2 JP 31107287 A JP31107287 A JP 31107287A JP 31107287 A JP31107287 A JP 31107287A JP H0115992 B2 JPH0115992 B2 JP H0115992B2
Authority
JP
Japan
Prior art keywords
powder
insulator
spherical powder
temperature
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31107287A
Other languages
Japanese (ja)
Other versions
JPS63158780A (en
Inventor
Kanemitsu Nishio
Shunichi Takagi
Yasuhiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP31107287A priority Critical patent/JPS63158780A/en
Publication of JPS63158780A publication Critical patent/JPS63158780A/en
Publication of JPH0115992B2 publication Critical patent/JPH0115992B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は点火プラグに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a spark plug.

[従来技術] 点火プラグは、高速運転時には2000℃以上にも
なる爆発ガスにさらされるため、この熱を逃がす
ことが必要である。また、低速運転時にはカーボ
ンやオイルが電極部周辺に付着・堆積するので、
これを焼き切つて、清浄化する必要がある。点火
プラグの過熱防止とカーボン等の付着(くすぶ
り)の防止のためには、点火プラグの絶縁体発火
部の温度が常時凡そ450〜900℃の温度範囲にある
ことが必要であるが、発火部の温度はエンジンの
種類、運転状態、燃料の種類、寒暑の季節変動に
応じて変化する。従つて、点火プラグがこれらの
条件下において十分に機能する為には、発火部の
過熱防止のためにエンジンから受ける熱を必要に
応じて効率よく逃がしたり、また保持したりする
ことが必要である。
[Prior Art] Spark plugs are exposed to explosive gas that reaches temperatures of 2000°C or higher during high-speed operation, so it is necessary to dissipate this heat. Also, during low-speed operation, carbon and oil adhere and accumulate around the electrodes.
This needs to be burned out and cleaned. In order to prevent the spark plug from overheating and from adhering to carbon, etc. (smoldering), the temperature of the ignition part of the insulator of the ignition plug must always be within the temperature range of approximately 450 to 900℃. The temperature of the engine changes depending on the type of engine, operating conditions, type of fuel, and seasonal fluctuations in temperature and temperature. Therefore, in order for a spark plug to function satisfactorily under these conditions, it is necessary to efficiently release or retain the heat received from the engine as necessary to prevent the ignition part from overheating. be.

従来の点火プラグにおいては、発火部の熱引き
には中軸が重要な役割を占めるが、その中軸とし
てはNi合金単独中軸が一般的である。しかしこ
のNi合金中軸は温度によつて熱伝導率はほとん
ど不変であるか又は逆に高温になるほど低下する
傾向を有する。
In conventional spark plugs, the center shaft plays an important role in drawing heat from the ignition part, and the center shaft is generally made of a single Ni alloy. However, the thermal conductivity of this Ni alloy core remains almost constant depending on the temperature, or conversely tends to decrease as the temperature increases.

また、他の点火プラグとして、熱伝導率増大の
ために、Cu芯をNi合金中軸の中心部に配したCu
芯入りNi合金中軸を用いてなる点火プラグもあ
る。しかし、この点火プラグにあつても、温度変
化によつても中軸の熱伝導率したがつて伝熱量は
ほとんど一定である。
In addition, in order to increase thermal conductivity, other ignition plugs are manufactured using Cu, which has a Cu core placed in the center of the Ni alloy center shaft.
There are also spark plugs that use a cored Ni alloy center shaft. However, even with this spark plug, the thermal conductivity of the center shaft, and therefore the amount of heat transfer, remains almost constant even when the temperature changes.

従つて、従来の点火プラグでは過熱及びくすぶ
りを確実に防止することはできなかつた。
Therefore, conventional spark plugs cannot reliably prevent overheating and smoldering.

[解決すべき課題] 本発明の課題は、発火部温度変化への適応性を
改善し(ワイドレンジ化を図り)、過熱及びくす
ぶりを極力防止し得る点火プラグを提供すること
にある。かかる課題はユーザーの要求が益々厳し
くなりつつある現状において、極めて重要であ
る。
[Problems to be Solved] An object of the present invention is to provide a spark plug that improves adaptability to temperature changes in the ignition part (achieves a wide range) and can prevent overheating and smoldering as much as possible. This issue is extremely important in the current situation where user demands are becoming increasingly strict.

[課題解決のための手段] 本発明の点火プラグは、中空絶縁体の先端に中
心電極を備え、前記絶縁体の中空部であつて前記
中心電極と端子軸との間に、セラミツク被覆を有
する金属球状粉末からなる集合体を存在させ、前
記球状粉末が発火部の使用温度域において弾性変
形可能であり、前記集合体の後端を導電性を有す
るシール材で封着してなることを特徴とする。
[Means for Solving the Problems] The spark plug of the present invention includes a center electrode at the tip of a hollow insulator, and a ceramic coating in the hollow part of the insulator between the center electrode and the terminal shaft. An aggregate made of metal spherical powder is present, the spherical powder is elastically deformable in the operating temperature range of the ignition part, and the rear end of the aggregate is sealed with a conductive sealing material. shall be.

[作用] こうした特徴を有する本発明点火プラグにあつ
ては、絶縁体の中空部であつて中心電極と端子軸
との間(従来、中軸が存在していた部分)に存在
する所定の粉末集合体が、絶縁体先端部即ち発火
部付近の温度に感応して弾性変形し、粉末相互間
の接触面積が変化し、従つて伝熱量を有効に変化
させることができる。
[Function] In the spark plug of the present invention having these characteristics, a predetermined powder aggregation exists in the hollow part of the insulator between the center electrode and the terminal shaft (the part where the center shaft conventionally existed). The body elastically deforms in response to the temperature near the tip of the insulator, that is, the ignition part, and the contact area between the powders changes, thereby effectively changing the amount of heat transfer.

詳しく云えば、低温時においては、上記粉末集
合体が殆んど弾性変形せず、粉末相互間の接触面
積が小さく、その集合体による伝熱量が小さくし
たがつて発火部に熱を滞留せしめ、結果としてカ
ーボン等の焼切り清浄化に寄与する。逆に、高温
時においては、上記粉末集合体に係る弾性変形
量、接触面積及び伝熱量が大きく、したがつて発
火部の過熱を防止してプレイグニツシヨンの発生
を抑制する。
Specifically, at low temperatures, the powder aggregate hardly deforms elastically, the contact area between the powders is small, and the amount of heat transferred by the aggregate is small, so that heat is retained in the ignition part. As a result, it contributes to cleaning by burning off carbon, etc. Conversely, at high temperatures, the amount of elastic deformation, contact area, and amount of heat transfer related to the powder aggregate are large, thus preventing overheating of the firing section and suppressing the occurrence of preignition.

かかる現象を図をもつて説明すれば次の通りで
ある。各粉末は低温時には普通の緊密充填状態に
ある(第3図a)が、温度上昇に伴い個々の粉末
に弾性変形範囲内において体積膨張が生じ、隣接
する粉末間の接触面積が増加し(第3図b)、そ
の結果伝熱量が増加する。この関係を定性的に図
式化したものが第4図のグラフである。尚、弾性
変形率は単なる金属球状粉末の方がセラミツク被
覆された金属球状粉末又はセラミツク粉末よりも
大である。
This phenomenon will be explained with a diagram as follows. At low temperatures, each powder is in a normal tightly packed state (Fig. 3a), but as the temperature rises, individual powders undergo volumetric expansion within the range of elastic deformation, and the contact area between adjacent powders increases (Figure 3a). 3b), resulting in an increase in the amount of heat transfer. The graph in FIG. 4 is a qualitative diagram of this relationship. Note that the elastic deformation rate of a simple metal spherical powder is greater than that of a ceramic-coated metal spherical powder or a ceramic powder.

又、粉末集合体について、セラミツク被覆が必
須要素であることから、(金属球状粉体だけから
なる集合体に比して)粉末間の融着等による一体
化を防止し、弾性変形による膨張・収縮を確実に
反覆できる。
In addition, since a ceramic coating is an essential element for powder aggregates, it prevents the powders from becoming integrated due to fusion, etc. (compared to aggregates made only of metal spherical powders), and prevents expansion and expansion due to elastic deformation. Contraction can be reliably repeated.

[好適な実施態様] まず、金属球状粉末について述べる。[Preferred embodiment] First, the metal spherical powder will be described.

ここに「球状」とは、凡その形状を指し、完全
に球形であることは好ましいが必須ではなく、製
造上の条件に規定される変形、あるいは変形物の
混在を許容するものとする。
Here, the term "spherical" refers to a general shape, and although it is preferable that the shape be completely spherical, it is not essential, and deformations defined by manufacturing conditions or the presence of deformed objects are allowed.

金属球状粉末としては、熱伝導率が高いこと、
設定温度範囲内で適当な膨張係数を有しかつ弾性
領域内に溜まり、温度下降と共に復原性を有する
こと、またその繰り返し再現性が高いことを必要
とする。この条件を充たす金属球状粉末としては
Cu、Fe、Ni、Cr及び/又はこれらの混合物又は
合金、又はこれらにSn、Zn、Al、Pb等の添加元
素を含有する合金がある。これらの金属は凡そ
450〜900℃の弾性領域範囲内では温度の上昇下降
に従い膨張、収縮(復原)を繰り返すことができ
る。伝熱量はこの際伝熱面積にほぼ比例して増減
し、球体間の接触面積の増減に従い、伝熱量の制
御が可能となる。
As a metal spherical powder, it has high thermal conductivity,
It needs to have an appropriate coefficient of expansion within a set temperature range, stay in an elastic region, have stability as the temperature drops, and have high repeatability. Metal spherical powder that satisfies this condition is
Examples include Cu, Fe, Ni, Cr and/or mixtures or alloys thereof, or alloys containing additive elements such as Sn, Zn, Al, and Pb. These metals are approximately
Within the elastic range of 450 to 900°C, it can repeatedly expand and contract (restoring) as the temperature rises and falls. At this time, the amount of heat transfer increases or decreases almost in proportion to the heat transfer area, and it becomes possible to control the amount of heat transfer according to the increase or decrease in the contact area between the spheres.

金属球状粉末の粒径は凡そ1000μ以下のもの、
好ましくは800μ〜200μのものが用いられる。Cu
合金としては例えば重量%で、Cu70〜95%、残
部Ni(白銅)、Cu97〜99.5%、残部Cr(クロム銅)、
Cu合金等を用いることができ、さらにその他、
Zn5〜20%残部Cu(黄銅)、Sn4〜8%、P0.1%、
残部Cu(リン青銅)、Al8〜10%、Ni1〜5%、
Fe2.5〜3.0%、残部Cu(アルミニウム青銅)等の
銅合金を有利に使用することができた。
The particle size of metal spherical powder is approximately 1000μ or less,
Preferably, those having a diameter of 800μ to 200μ are used. Cu
As an alloy, for example, in weight percent, Cu70~95%, balance Ni (cupronickel), Cu97~99.5%, balance Cr (chromium copper),
Cu alloy etc. can be used, and other materials such as
Zn5~20% balance Cu (brass), Sn4~8%, P0.1%,
The balance is Cu (phosphor bronze), Al8~10%, Ni1~5%,
Copper alloys such as 2.5 to 3.0% Fe and the balance Cu (aluminum bronze) could be used advantageously.

本発明では、上記金属球状粉末にセラミツク被
覆を施してなるものが必須要素とされる。このセ
ラミツク被覆としては金属球状粉末を大気中で熱
処理することによる酸化被覆又はAl2O3、TiO2
ZrO2、SiO2等の酸化物、TiC、SiC、Mo2C、
B4C等の炭化物、AlN、BN、TiN、ZrN等の窒
化物若しくはMoSi2、TiSi等の珪化物等からなる
被覆が好ましい。この場合、これらの混合被覆又
は積層被覆も可能である。尚、炭化物、珪化物か
らなるセラミツク被覆にあつてはそれ自体として
導電性を有し、また酸化物、窒化物の中でもそれ
自体として導電性を有しないAl2O3等からなるセ
ラミツク被覆にあつては薄膜にして(場合によつ
ては微細亀裂を生ぜしめ)金属球状粉末同士の導
電性を確保するとよい。
In the present invention, the above metal spherical powder coated with ceramic is an essential element. This ceramic coating may be an oxidized coating made by heat-treating metal spherical powder in the atmosphere, or an oxidized coating made by heat-treating metal spherical powder in the atmosphere, or Al 2 O 3 , TiO 2 ,
Oxides such as ZrO 2 and SiO 2 , TiC, SiC, Mo 2 C,
Preferably, the coating is made of a carbide such as B 4 C, a nitride such as AlN, BN, TiN, ZrN, or a silicide such as MoSi 2 or TiSi. In this case, mixed or layered coatings of these are also possible. In addition, ceramic coatings made of carbides and silicides have conductivity in themselves, and ceramic coatings made of Al 2 O 3 etc., which do not have conductivity in themselves among oxides and nitrides, If so, it is best to form a thin film (in some cases, create microcracks) to ensure conductivity between the metal spherical powders.

粉末集合体はその少なくとも一部が金属球状粉
末をセラミツク被覆したものであればよい。即
ち、粉末集合体はセラミツク被覆された金属球状
粉末だけからなつてもよいし、又セラミツク被覆
された金属球状粉末と単なる(セラミツク被覆さ
れていない)金属球状粉末との混合体であつても
よい。
The powder aggregate may be at least partially made of metal spherical powder coated with ceramic. That is, the powder aggregate may consist only of ceramic-coated metal spherical powder, or it may be a mixture of ceramic-coated metal spherical powder and mere (non-ceramic-coated) metal spherical powder. .

セラミツク被覆の形成は、例えば平均粒径約
500μのCu粉を500℃にて1時間熱処理を施して金
属球表面に酸化被膜を形成するか、セラミツク原
料溶液中若しくはスラリー中に浸漬した後熱処理
を施して焼付けるか、又は化学蒸着等の公知の方
法で行なうことができる。
The formation of ceramic coatings is for example
500μ of Cu powder is heat-treated at 500℃ for 1 hour to form an oxide film on the surface of the metal sphere, or immersed in a ceramic raw material solution or slurry and then heat-treated and baked, or by chemical vapor deposition, etc. This can be done by a known method.

本発明においては、さらに粉末集合体全量に対
して凡そ20容量%以下のガラス粉末を含有させる
ことも有用である。このガラス粉末含有によりセ
ラミツク被覆を有する金属球状粉末などの亀裂を
確実に防止することができる。好ましい粉末集合
体の例としては、Cu40〜80容量%、残部Al2O3
び/又はSiC、或いはこれらに約20容量%以内の
ホウ珪酸ガラス粉を混入したものが挙げられる。
In the present invention, it is also useful to contain approximately 20% by volume or less of glass powder based on the total amount of the powder aggregate. By containing this glass powder, it is possible to reliably prevent cracks in metal spherical powder having a ceramic coating. Examples of preferred powder aggregates include 40-80% by volume of Cu, balance Al2O3 and/or SiC, or these mixed with up to about 20% by volume of borosilicate glass powder.

又、本発明の点火プラグに用いる発火電極部の
構成は、(従来の如き中軸によるものではなく)
袋状に形成された絶縁体の先端部にチツプ状に形
成されるか(金属電極)、或いは絶縁体自体に電
極を焼結して形成したものとされる。チツプ状中
心電極とは、任意の形状(例えば鋲型ないしはT
字型縦断面、或いは球状)の電極小片を絶縁体袋
状先端の小孔に形成したものをいう。電極金属と
しては、例えばNi、Ni基合金(Ni−Cr、Ni−
Cr−Fe、Ni−Cr−Si、Ni−Si−Cr−Al、Au、
Ag、Au−Ag合金、Au、Ag又はAu・Ag合金と
Pd及び/又はNi、Cr、Ni−Crとの合金、又は
Ag−Pt又はPd、Irとの合金その他公知の電極金
属を用いることができる。このチツプ状中心電極
の形成は、予め形成された絶縁体の先端小孔に嵌
着、圧着、溶着(融着)、ホツトプレス、ガラス
シールその他公知の方法により固着して行うこと
ができる。この際場合によりチツプの軸孔7側先
端ないしは突出端を囲む軸孔7先端部には必要に
応じガラスシールを施す。尚、シールガラスは導
電性シールガラスとし、例えばホウ珪酸ガラス30
〜70%に金属粉末としてCu、Ni、Fe、FeB、
NiBの一種以上の粉末を70〜30%含有するものを
用いることができる。ホウ珪酸ガラスとしては例
えばB2O315〜45%、SiO240〜70%、Al2O33〜10
%のものを用いることができる。
In addition, the configuration of the ignition electrode part used in the ignition plug of the present invention is (rather than the central axis as in the conventional case).
The electrode may be formed in the form of a chip (metal electrode) at the tip of a bag-shaped insulator, or the electrode may be sintered onto the insulator itself. The chip-shaped center electrode may have any shape (for example, a stud shape or a T-shape).
A small electrode piece with a vertical cross section or a spherical shape is formed in a small hole at the tip of an insulator bag. Examples of electrode metals include Ni, Ni-based alloys (Ni-Cr, Ni-
Cr-Fe, Ni-Cr-Si, Ni-Si-Cr-Al, Au,
Ag, Au-Ag alloy, Au, Ag or Au・Ag alloy
Pd and/or alloy with Ni, Cr, Ni-Cr, or
Ag-Pt or alloys with Pd and Ir and other known electrode metals can be used. The chip-shaped center electrode can be formed by fitting it into a small hole at the tip of a pre-formed insulator, crimping, welding (fusion), hot pressing, glass sealing, or other known methods. At this time, if necessary, a glass seal is applied to the tip of the tip on the side of the shaft hole 7 or the tip of the shaft hole 7 surrounding the protruding end. The sealing glass should be conductive sealing glass, for example, borosilicate glass 30.
Cu, Ni, Fe, FeB, as metal powder to ~70%
A material containing 70 to 30% of one or more types of NiB powder can be used. Examples of borosilicate glass include B 2 O 3 15-45%, SiO 2 40-70%, Al 2 O 3 3-10
% can be used.

又、一体焼成による中心電極形成は、プレス成
型したる焼成前絶縁体2の袋状先端部に小孔8を
形成し、小孔8に電極材料を充填又は塗布して絶
縁体2焼成と同時に焼成して成るものである。一
体焼成電極材料成分としては(以下、凡その重量
%において)Pt40〜60%、Pd20〜30%のベース
にTiO2、TiC、TiNの一種以上を10〜30%配合
したもの、同上成分にFe−Ni−Cr0〜3%及び
Al2O30〜10%含有するもの、その他Ti化合物
(TiO2、TiN、TiC)を骨格としてそれに導電性
付与物質として上記Pt、Pdの他にAu、Ag、Pu、
Rh等の貴金属を分散させたもの等を用いること
ができる。
In addition, to form the center electrode by integral firing, a small hole 8 is formed at the bag-shaped tip of the press-molded pre-fired insulator 2, the small hole 8 is filled or coated with electrode material, and the insulator 2 is fired at the same time. It is made by firing. The integrally fired electrode material components (hereinafter referred to as approximate weight percentages) are a base of 40 to 60% Pt and 20 to 30% Pd, with 10 to 30% of one or more of TiO 2 , TiC, and TiN, and the same components as Fe. -Ni-Cr0~3% and
Those containing 0 to 10% of Al 2 O 3 and other Ti compounds (TiO 2 , TiN, TiC) as skeletons and conductivity-imparting substances in addition to the above Pt and Pd, such as Au, Ag, Pu,
A material in which a noble metal such as Rh is dispersed can be used.

本発明の点火プラグにおいては、粉末集合体に
は、中心電極3a,3bに次いで、即ち絶縁体2
袋状先端部に充填形成されるが、高温時に金属球
状粉末に圧縮応力が生ずる様に、その後端は導電
性を有するシール材6a,6bでもつて十分強固
に密封されなければならない。この条件を充足し
た上でさらに、公知の抵抗体或いは、自己封着性
抵抗体等を適宜配することもできる。
In the spark plug of the present invention, the powder aggregate includes the insulator 2 next to the center electrodes 3a and 3b.
Although the bag-shaped tip is filled and formed, the rear end must be sealed sufficiently firmly with conductive sealing materials 6a and 6b so that compressive stress is generated in the metal spherical powder at high temperatures. After satisfying this condition, a known resistor, a self-sealing resistor, or the like may be appropriately disposed.

[発明の効果] 本発明によれば、次のような種々の効果を奏す
る。
[Effects of the Invention] According to the present invention, the following various effects can be achieved.

(1) 発火部から端子軸方向への熱伝導について発
火部温度に感応した制御が可能となるので、電
気的自己清浄性が高く、しかもプレイグニツシ
ヨンを確実に防止でき、熱的にワイドレンジ化
される。この場合、粉末の種類や量などを適宜
変更すれば、使用温度域に適合した制御が可能
となり、適正なワイドレンジ化を達成できる。
(1) Heat conduction from the ignition part to the terminal shaft direction can be controlled in response to the ignition part temperature, so it has high electrical self-cleaning properties, reliably prevents pre-ignition, and has a wide thermal range. be converted into In this case, by appropriately changing the type and amount of powder, it becomes possible to control the temperature to suit the operating temperature range, and achieve an appropriate wide range.

その結果、エンジン機種、負荷状態、季節等
に応じて点火プラグを変更する必要が軽減さ
れ、また、常時清浄化された発火部により点火
爆発の最適条件が充足され、エンジン設計上、
運転上及び保守点検上大きな利点となる。
As a result, the need to change the spark plug depending on the engine model, load condition, season, etc. is reduced, and the always-cleaned ignition section satisfies the optimal conditions for ignition and explosion, making it easier to design the engine.
This is a great advantage in terms of operation and maintenance inspection.

(2) セラミツク被覆を有する金属球状粉末を必須
要素とするので、金属球状粉末相互間の融着を
防止でき、したがつて粉末の弾性変形に拠る前
記ワイドレンジ化を長期間に亘り維持できる。
(2) Since the metal spherical powder having a ceramic coating is an essential element, it is possible to prevent the metal spherical powder from adhering to each other, and therefore the wide range due to the elastic deformation of the powder can be maintained for a long period of time.

(3) 中軸が不要になるので、点火プラグのコンパ
クト化に寄与できる他、従来中軸が占めていた
スペースを有効に活用できる。
(3) Since the center shaft is no longer required, the spark plug can be made more compact, and the space previously occupied by the center shaft can be effectively utilized.

[実施例] 以下本発明の実施例について述べる。[Example] Examples of the present invention will be described below.

実施例 1 第5図に示す絶縁体2の袋状先端に、焼成仕上
寸法で直径1.0mm、軸方向長さ1.5mmの小孔8を有
する高アルミナ質プレス成型体(生絶縁体)を予
め作製した。電極材料として容量%(以下同じ)
でPt25%、Pd25%、TiO230%とTiC20%の混合
粉に有機バインダーとしてワニスを約1%適量添
加混合して成る電極材ペーストを、前記小孔8に
充填し、約1600℃の温度、大気中零囲気下で焼成
して、一体焼成電極3aを有する絶縁体2とし、
その後常法にて、絶縁体2に施釉を施し、粉末集
合体(熱伝導体)4の充填部7内径3.6mm、端子
軸シール部9内径4.7mmの絶縁体2を得た。
Example 1 A high alumina press-molded body (raw insulator) having a small hole 8 with a diameter of 1.0 mm and an axial length of 1.5 mm in firing finished dimensions was preliminarily attached to the bag-shaped tip of the insulator 2 shown in Fig. 5. Created. Capacity% as electrode material (same below)
An electrode material paste made by adding an appropriate amount of varnish as an organic binder to a mixed powder of 25% Pt, 25% Pd, 30% TiO 2 and 20% TiC was filled into the small hole 8, and heated to a temperature of about 1600°C. , fired in the air under zero atmosphere to form an insulator 2 having an integrally fired electrode 3a,
Thereafter, the insulator 2 was glazed in a conventional manner to obtain an insulator 2 having an inner diameter of the filled part 7 of the powder aggregate (thermal conductor) 4 of 3.6 mm and an inner diameter of the terminal shaft seal part 9 of 4.7 mm.

その軸孔7下部にCu球状粉末(20〜60メツシ
ユ)を500℃で1時間熱処理を施して成る粉末集
合体4を0.3g充填し5〜10Kg/cm2で予圧し、そ
の上に導電性シールガラス粉末6a(組成SiO265
重量%、B2O330重量%、Al2O35重量%のホウ珪
酸ガラス粉末50重量%とFeB粉末50重量%)を
0.1g充填してつき固め5〜10Kg/cm2で予圧し、
ニツケルメツキを施した低炭素鋼製、直径4.0mm
の端子軸5を挿入した。その後200℃/分の昇温
速度で加熱し、800〜1000℃に10分間保持し16
Kg/cm2の圧力を端子軸に印加してホツトプレス
し、点火プラグ本体1を得た。
The lower part of the shaft hole 7 is filled with 0.3 g of powder aggregate 4 made by heat-treating Cu spherical powder (20 to 60 meshes) at 500°C for 1 hour, preloaded at 5 to 10 kg/cm 2 , and a conductive layer is placed on top of it. Seal glass powder 6a (composition SiO 2 65
(wt%, B2O3 30wt%, Al2O3 5wt % , borosilicate glass powder 50wt % and FeB powder 50wt%)
Fill with 0.1g, compact and preload with 5-10Kg/ cm2 .
Made of low carbon steel with nickel finish, diameter 4.0mm
Terminal shaft 5 was inserted. Then, heat at a temperature increase rate of 200℃/min and hold at 800 to 1000℃ for 10 minutes.
A pressure of Kg/cm 2 was applied to the terminal shaft and hot pressed to obtain a spark plug body 1.

実施例 2 実施例1において、電極材ペーストを先端小孔
8に充填することなくそれ以外は実施例と同様に
して絶縁体2を得た。先端小孔8にNi合金又は
Au50重量%、残部PdのAu・Pd合金製鋲型電極
チツプ(第6図)を挿入し、次いでその軸孔7側
に導電性シールガラス粉末6b(組成SiO265重量
%、B2O330重量%、Al2O35重量%のホウ珪酸ガ
ラス粉末50重量%とFeB粉末50重量%)を充填つ
き固め、さらに粉末集合体4として、Cu粉(20
〜60メツシユ)にTiN被覆したものを0.3g充填
し、以下実施例1と同様にして、点火プラグ本体
1を得た。
Example 2 Insulator 2 was obtained in the same manner as in Example 1, except that the small tip hole 8 was not filled with the electrode material paste. Tip small hole 8 is made of Ni alloy or
A stud-shaped electrode chip made of Au/Pd alloy (Fig. 6) containing 50% by weight of Au and the remainder Pd is inserted, and then conductive sealing glass powder 6b (composition: 65% by weight of SiO 2 , B 2 O 3 ) is inserted into the shaft hole 7 side. Borosilicate glass powder (50% by weight of 30% by weight, Al 2 O 3 5% by weight and 50% by weight of FeB powder) was packed and solidified, and further Cu powder (20% by weight) was packed as powder aggregate 4.
The spark plug body 1 was obtained in the same manner as in Example 1.

比較試験 実施例、従来例及び比較例に係る点火プラグに
ついて、耐熱性及び自己清浄性による耐汚損性を
評価した。
Comparative Test The spark plugs according to Examples, Conventional Examples, and Comparative Examples were evaluated for heat resistance and stain resistance based on self-cleaning properties.

点火プラグの構造は第5図にほぼ相当するもの
で、先端に一体焼成電極3aを有する絶縁体(脚
長15mm)2を多数用意し、この絶縁体2の中空部
7に従来例(No.1)ではCu芯入りNi軸、及び比
較例(No.2)では単なる金属球状粉末、実施例
(No.3〜5)では粉末集合体を封入してなる。
The structure of the spark plug is almost equivalent to that shown in FIG. ), a Ni shaft with a Cu core is used, a simple metal spherical powder is used for the comparative example (No. 2), and a powder aggregate is enclosed for the examples (Nos. 3 to 5).

各試料の詳細は次の通り。 Details of each sample are as follows.

No.1:Cu芯入りNi中軸 No.2:Cu球状粉末 No.3:Cu球状粉末に酸化被覆したもの No.4:Cu球状粉末にTiN被覆したもの No.5:Cu球状粉末にTiN被覆したもの及びCu球
状粉末(50vol%) 又、試験方法は次の通り。
No. 1: Ni core with Cu core No. 2: Cu spherical powder No. 3: Cu spherical powder coated with oxidation No. 4: Cu spherical powder coated with TiN No. 5: Cu spherical powder coated with TiN and Cu spherical powder (50vol%).The test method is as follows.

(a) 耐熱性テストは4サイクル、1800c.c.エンジン
を用いて5500rpm×4/4の条件で点火進角を
可変してプレイグニツシヨン発生進角で比較し
た。
(a) The heat resistance test was conducted using a 4-cycle, 1800c.c. engine under the conditions of 5500rpm x 4/4, varying the ignition advance angle and comparing the preignition occurrence advance angle.

(b) 自己清浄性テストは予めアイドリングの条件
でプラグ絶縁体の発火脚部表面にカーボンを付
着させておき、絶縁体発火脚部の先端から5mm
に亘つて白くなる(カーボン除去)車速で比較
した。その結果を第7図に示す。
(b) For the self-cleaning test, carbon was attached to the surface of the firing leg of the plug insulator under idling conditions, and carbon was applied 5 mm from the tip of the firing leg of the insulator.
Comparisons were made based on the vehicle speed at which the vehicle turned white (carbon removal). The results are shown in FIG.

第7図から明らかなように、従来例のCu芯
封入の金属軸のものは自己清浄性が大幅に悪い
ものに対し、実施例のものはほぼ同一の耐熱性
において自己清浄性を大幅に向上させることが
でき、全体としてワイドレンジ化をなすことが
できる。なお、No.2の比較例試料は球体間の剥
離が困難で膨張、収縮の繰返しが乏しくなる。
As is clear from Figure 7, the conventional example with a metal shaft containing a Cu core has significantly poor self-cleaning performance, whereas the example example has significantly improved self-cleaning performance with almost the same heat resistance. This makes it possible to achieve a wide range as a whole. In addition, in the comparative sample No. 2, it was difficult to separate the spheres, and the repetition of expansion and contraction was poor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明点火プラグの一実施例を示す概
略縦断面図、第2図は第1図の絶縁体先端部の拡
大断面図、第3a及び3b図は粉末の接触状態を
模式的に示した図であつて、第3a図は低温時に
おけるもの、第3b図は高温時におけるもの、第
4図は粉末集合体の伝熱量と温度との関係を示す
グラフ、第5図は、前記一実施例のホツトプレス
前の状態を示す縦断面図、第6図は本発明点火プ
ラグの他の実施例(チツプ状中心電極を有するも
の)を示す絶縁体先端部の拡大断面図、そして第
7図は比較試験(自己清浄性及び耐熱性)の結果
を示すグラフ、を表わす。 1……点火プラグ、2……中空絶縁体、3a,
3b……中心電極、4……熱伝導体(粉末集合
体)、5……端子軸、6a,6b……シール体
(シール材)、7……軸孔(中空部)。
Fig. 1 is a schematic longitudinal sectional view showing an embodiment of the spark plug of the present invention, Fig. 2 is an enlarged sectional view of the tip of the insulator shown in Fig. 1, and Figs. 3a and 3b schematically show the contact state of powder. FIG. 3a is a graph showing the graph at low temperature, FIG. 3b is graph at high temperature, FIG. 4 is a graph showing the relationship between the amount of heat transfer of the powder aggregate and temperature, and FIG. FIG. 6 is a longitudinal cross-sectional view showing the state before hot pressing of one embodiment, FIG. The figure represents a graph showing the results of comparative tests (self-cleaning and heat resistance). 1...Spark plug, 2...Hollow insulator, 3a,
3b... Center electrode, 4... Heat conductor (powder aggregate), 5... Terminal shaft, 6a, 6b... Seal body (sealing material), 7... Shaft hole (hollow part).

Claims (1)

【特許請求の範囲】 1 中空絶縁体の先端に中心電極を備え、 前記絶縁体の中空部であつて前記中心電極と端
子軸との間に、セラミツク被覆を有する金属球状
粉末からなる集合体を存在させ、 前記球状粉末が発火部の使用温度域において弾
性変形可能であり、 前記集合体の後端を導電性を有するシール材で
封着してなる、 ことを特徴とする点火プラグ。
[Claims] 1. A center electrode is provided at the tip of a hollow insulator, and an aggregate of metal spherical powder having a ceramic coating is provided in the hollow part of the insulator between the center electrode and the terminal shaft. The spherical powder is elastically deformable in the operating temperature range of the ignition part, and the rear end of the aggregate is sealed with a conductive sealing material.
JP31107287A 1987-12-10 1987-12-10 Ignition plug Granted JPS63158780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31107287A JPS63158780A (en) 1987-12-10 1987-12-10 Ignition plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31107287A JPS63158780A (en) 1987-12-10 1987-12-10 Ignition plug

Publications (2)

Publication Number Publication Date
JPS63158780A JPS63158780A (en) 1988-07-01
JPH0115992B2 true JPH0115992B2 (en) 1989-03-22

Family

ID=18012776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31107287A Granted JPS63158780A (en) 1987-12-10 1987-12-10 Ignition plug

Country Status (1)

Country Link
JP (1) JPS63158780A (en)

Also Published As

Publication number Publication date
JPS63158780A (en) 1988-07-01

Similar Documents

Publication Publication Date Title
US4400643A (en) Wide thermal range spark plug
US4659960A (en) Electrode structure for a spark plug
US6137211A (en) Spark plug and producing method thereof
US6583537B1 (en) Spark plug with built-in resistor
JPH10208853A (en) Ceramic heater and manufacture thereof
JPH0230149B2 (en)
JP3383920B2 (en) Spark plug for internal combustion engine
EP0303353B1 (en) Metallized glass seal resistor composition
KR920000219B1 (en) Electroconductive cerment compositions for ignition and heating appciances
JP3886699B2 (en) Glow plug and manufacturing method thereof
JPH0115992B2 (en)
JPS6333271B2 (en)
JPS6134877A (en) Ignition plug
JPH1025162A (en) Ceramic sintered material
JP3872586B2 (en) Insulating material for spark plug and spark plug using the same
JP2992891B2 (en) Spark plug for internal combustion engine
JPS59134585A (en) Structure of heater
JP6809872B2 (en) Spark plug
JP3886684B2 (en) Ceramic heater
JP2735721B2 (en) Ceramic heating element
JPH077696B2 (en) Spark plug for internal combustion engine
US4229672A (en) Spark plug with low erosion electrode tip
JPH07106055A (en) Quick temperature raising heating element and manufacture thereof
JPS60240087A (en) Ignition plug
JPH07151332A (en) Ceramic glow plug