JPH01159218A - Driving device of injection cylinder of motor-driven injection molding machine - Google Patents

Driving device of injection cylinder of motor-driven injection molding machine

Info

Publication number
JPH01159218A
JPH01159218A JP31742787A JP31742787A JPH01159218A JP H01159218 A JPH01159218 A JP H01159218A JP 31742787 A JP31742787 A JP 31742787A JP 31742787 A JP31742787 A JP 31742787A JP H01159218 A JPH01159218 A JP H01159218A
Authority
JP
Japan
Prior art keywords
disk
motor
injection
transmission element
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31742787A
Other languages
Japanese (ja)
Inventor
Katsuhiko Taniguchi
勝彦 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP31742787A priority Critical patent/JPH01159218A/en
Publication of JPH01159218A publication Critical patent/JPH01159218A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor

Abstract

PURPOSE:To improve quality of an injection-molded product by preventing pressure surging within resin which is ascribable to a response lag of an injection motor, by interposing a specific torque transmission element between a ball screw and the injection motor. CONSTITUTION:A torque transmission element 14 is interposed between a ball screw 9 for movement of a screw and an injection motor 10. The torque transmission element 14 comprises an output side stationary disk 18 and a piezoelectric actuator 21 whose one end is provided with a movable disk 19 contactable with and separable from the disk 18 and other end is fixed to an input side stationary disk 17 through a force detector 20. The movable disk 19 is brought into contact with the outer side disk 18 through an expansion and contraction action of the piezoelectric actuator 21, pressing force at this time is detected by the force detector 20 and the pressing force is controlled. With this construction, transmissibility of turning torque to a load to be applied to the output side disk 18 by an input side disk 17 is controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電動射出成形機の射出駆動装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an injection drive device for an electric injection molding machine.

(従来技術) 第4図に従来方式の電動射出成形機の一般的な構造を示
す。射出工程中はスクリュー回転用モータ6を停止保持
し、射出用モータ10を速度制御することにより、ボー
ルねじ9等の回転−直動変換器を使用し、スクリュー3
を前進させる。樹脂の充填が完了すると、ロードセル7
を圧力検出器として使用し、力制御を行なって保圧を行
なう。
(Prior Art) Fig. 4 shows the general structure of a conventional electric injection molding machine. During the injection process, the screw rotation motor 6 is stopped and held, and the injection motor 10 is speed-controlled using a rotation-linear converter such as a ball screw 9 to rotate the screw 3.
advance. When the resin filling is completed, the load cell 7
is used as a pressure detector to control force and maintain pressure.

このとき充填完了をロードセル7の出力を監視すること
により検知しているが、そこで保圧に移行させるために
は、モータを急速に停止に近い速度まで下げなければな
らない。
At this time, the completion of filling is detected by monitoring the output of the load cell 7, but in order to shift to pressure holding, the motor must be rapidly reduced to a speed close to stopping.

しかし、このとき第5図(a)の如くモータ自身の応答
性が10〜20m5と遅いために、第5図(b)のよう
に行き過ぎを生じる。その結果樹脂内に第5図(c)の
如くサージ圧が発生し、プラスチック製品の品質を低下
させるという問題がある。
However, at this time, as shown in FIG. 5(a), since the response of the motor itself is slow at 10 to 20 m5, overshoot occurs as shown in FIG. 5(b). As a result, a surge pressure is generated within the resin as shown in FIG. 5(c), resulting in a problem of degrading the quality of the plastic product.

(発明が解決しようとする問題点) 従来技術の問題点に鑑み、射出工程中充填過程から保圧
過程への切換時に、モータの応答遅れに起因する樹脂内
に発生するサージ圧を減少させることを目的とするもの
である。
(Problems to be Solved by the Invention) In view of the problems of the prior art, it is an object of the present invention to reduce the surge pressure generated in the resin due to the delay in response of the motor when switching from the filling process to the pressure holding process during the injection process. The purpose is to

(問題点を解決するための手段) 出力側固定円板と該円板に対し接離可能な可動円板を一
端に備え、他端を入力側固定円板に力検出器を介し固定
した圧電アクチエータとからなり、圧電アクチエータの
伸縮作用によって可動円板を出力側円板に対し接触させ
、このときの押し付け力を力検出器で検出し、該押し付
け力を制御することによって入力側円板から加えられる
回転トルクの負荷への伝達率を制御可能にしたトルク伝
達要素をスクリュー移動用のボールねじと射出用モータ
間に介装し応答性を改善した。
(Means for solving the problem) A piezoelectric device having a fixed disk on the output side and a movable disk that can move toward and away from the disk at one end, and the other end fixed to the fixed disk on the input side via a force detector. The movable disk is brought into contact with the output side disk by the expansion and contraction action of the piezoelectric actuator, the pressing force at this time is detected by a force detector, and the pressing force is controlled to cause the movable disk to contact the output side disk. A torque transmission element that can control the transmission rate of applied rotational torque to the load was interposed between the screw moving ball screw and the injection motor to improve responsiveness.

(発明の実施例) 第1図は本発明に係る駆動装置を備えた射出成形機を示
す。
(Embodiments of the Invention) FIG. 1 shows an injection molding machine equipped with a drive device according to the present invention.

1はシリンダ、2は溶融樹脂、3はシリンダ1内で回転
可能且つ前後進可能なスクリュー、4は樹脂材料供給ホ
ッパーである。5は計量時に回転用モータ6の回転をス
クリュー3に伝えるギアである。7はシリンダ1内の圧
力検出用のロードセル、8はボールねじ9と螺合するナ
ツトである。
1 is a cylinder, 2 is a molten resin, 3 is a screw that can rotate and move back and forth within the cylinder 1, and 4 is a resin material supply hopper. 5 is a gear that transmits the rotation of the rotation motor 6 to the screw 3 during measurement. 7 is a load cell for detecting pressure within the cylinder 1; 8 is a nut screwed into a ball screw 9;

ボールねじ9はカップリング11を介し出方側シャフト
16を介しトルク伝達要素14に連結されている。トル
ク伝達要素14は固定ブラケット13に取付けられた射
出用モータ1oと入力側シャフト15を介し連結されて
いる。12はガイドバーである。
The ball screw 9 is connected to a torque transmission element 14 via a coupling 11 and a shaft 16 on the output side. The torque transmission element 14 is connected to the injection motor 1o attached to the fixed bracket 13 via an input shaft 15. 12 is a guide bar.

射出工程中はスクリュー回転用モータ6を停止保持し、
射出用モータ10を速度制御することにより、ボールね
じ9の回転−直動変換器でスクリュー3を前進させる。
During the injection process, the screw rotation motor 6 is stopped and held;
By controlling the speed of the injection motor 10, the rotation-linear converter of the ball screw 9 moves the screw 3 forward.

樹脂2の充填が完了すると、ロードセル7で圧力を検出
し、力制御を行なって保圧を行なう、このとき充填完了
をロートセルフの出力を監視することにより検知してい
るが、そこで保圧に移行させるためには、射出用モータ
10を急速に停止に近い速度まで下げなければならない
が、このときサージの問題が生ずる。
When the filling of the resin 2 is completed, the pressure is detected by the load cell 7, and force control is performed to maintain the pressure. At this time, the completion of filling is detected by monitoring the output of the rotor self, and the pressure is maintained by the load cell 7. In order to make the transition, the injection motor 10 must be rapidly reduced to a near-stop speed, but this creates a surge problem.

そこで、トルク伝達要素14によって保圧圧力のサージ
を防止することができる。第2図はトルク伝達要素14
の詳細図である。15は射出用モータ10からの入力側
シャフト、16は出力側シャフトである。17は入力側
シャフトの一端に固定した入力側固定円板、18は出力
側シャフト16の一端に固定された出力側固定円板であ
る。19は出力側固定円板18と対向する可動円板で、
前記入力側固定円板17に、例えばロードセルのような
力検出器20を介し固着された圧電アクチエータ21の
端に取付けられている。
Therefore, the surge of the holding pressure can be prevented by the torque transmission element 14. Figure 2 shows the torque transmission element 14.
FIG. 15 is an input shaft from the injection motor 10, and 16 is an output shaft. 17 is an input side fixed disk fixed to one end of the input side shaft, and 18 is an output side fixed disk fixed to one end of the output side shaft 16. 19 is a movable disc facing the output side fixed disc 18;
A piezoelectric actuator 21 is fixed to the input side fixed disk 17 via a force detector 20, such as a load cell, and is attached to the end thereof.

なお図示しないが、圧電アクチエータ21に対し印加電
圧を供給する為の回路を有している。22は可動円板1
9と入力側固定円板17との間に装着された複数本のば
ねで、これによりクラッチの作動が確実に行なわれるよ
うにしている。ただしこのばねは必ずしも必要としない
Although not shown, a circuit for supplying an applied voltage to the piezoelectric actuator 21 is provided. 22 is the movable disk 1
A plurality of springs are installed between the clutch 9 and the input side fixed disk 17 to ensure reliable operation of the clutch. However, this spring is not necessarily required.

以上の例において可動円板19を出力側固定円板18と
接・離させるようにしたが、逆に入力側固定円板17に
対し接・離させるようにしても勿論さしつかえない。
In the above example, the movable disk 19 is brought into contact with and separated from the output side fixed disk 18, but it is of course possible to make it come into contact with and separated from the input side fixed disk 17.

トルク伝達要素14は圧電アクチエータ21に電圧を加
えるとこれが伸び、可動円板19が図の左方へ移動し、
出力側固定円板18へ押し付けられる。このときの押し
付け圧力は力検出器20により検出される。押し付け圧
力によって出力側固定円板18と可動円板19間のすべ
り量が変化するので、入力側シャフト15に加えられる
モータのトルクのうち、出力側シャフト16へ伝達され
るトルクの量を圧電アクチエータ21の電圧で制御する
ことができる。また圧電アクチエータ21へ加えた電圧
を減らせば縮み、可動円板19は離れトルク伝達しなく
なる。
The torque transmission element 14 expands when voltage is applied to the piezoelectric actuator 21, and the movable disk 19 moves to the left in the figure.
It is pressed against the output side fixed disk 18. The pressing pressure at this time is detected by the force detector 20. Since the amount of sliding between the output side fixed disk 18 and the movable disk 19 changes depending on the pressing pressure, the amount of torque transmitted to the output side shaft 16 out of the motor torque applied to the input side shaft 15 is determined by the piezoelectric actuator. It can be controlled with 21 voltages. Furthermore, if the voltage applied to the piezoelectric actuator 21 is reduced, it will contract and the movable disk 19 will separate and no longer transmit torque.

(作動) 第3図(a)はモータ回転速度を、第3図(b)にスク
リューの位置を、さらに第3図(Q)に樹脂圧力を示す
。これらでわかるように、モータ1oの遅れは発生する
がスクリュー3の行きすぎ、樹脂圧力のサージが第5図
に比しなくなっていることがわかる。
(Operation) FIG. 3(a) shows the motor rotation speed, FIG. 3(b) shows the screw position, and FIG. 3(Q) shows the resin pressure. As can be seen from these figures, although there is a delay in the motor 1o, the overshoot of the screw 3 and the surge in resin pressure are no longer compared to those in FIG. 5.

第3図(d)は圧電アクチエータ21へ印加される電圧
を、第3図(e)はトルク伝達要素14のすべり量を示
すグラフであって、第3図(e)ですべり量「1」とは
完全にすべっている状態を、rOJはトルクが完全に伝
達されている状態を示す。
FIG. 3(d) is a graph showing the voltage applied to the piezoelectric actuator 21, and FIG. 3(e) is a graph showing the slip amount of the torque transmission element 14. In FIG. 3(e), the slip amount is "1". and rOJ indicate a state in which the torque is completely transmitted.

さて保圧への切換点へ到達すると、モータ10の回転速
度が下がるが、このとき同時に圧電アクチエータ21へ
の印加電圧も低下させる。するとモータトルクはボール
ねじ9へ伝達されないので、スクリュー3は行き過ぎを
生じない。従ってサージ圧も発生しない。
Now, when the switching point to pressure holding is reached, the rotational speed of the motor 10 is reduced, but at the same time, the voltage applied to the piezoelectric actuator 21 is also reduced. Then, since the motor torque is not transmitted to the ball screw 9, the screw 3 does not overshoot. Therefore, no surge pressure is generated.

モータがほぼ停止状態になると、圧電アクチエータ21
への電圧が印加され、トルクが伝達されて保圧制御が可
能となる。
When the motor is almost stopped, the piezoelectric actuator 21
Voltage is applied to the cylinder, torque is transmitted, and pressure holding control becomes possible.

第5図の例ではモータ速度が一度負の値まで下がるが、
これはスクリュー位置の行き起ぎを元に戻そうとするた
めで、第3図の場合にはスクリューの行き過ぎが無いの
で、モータ速度は負の値にはならない。
In the example shown in Figure 5, the motor speed once drops to a negative value, but
This is because an attempt is made to restore the screw position to its original position. In the case of FIG. 3, the screw does not go too far, so the motor speed does not take a negative value.

又モータを切り離しても、スクリュー等の可動部の慣性
により若干の行き過ぎが生じるが、モータの慣性に比べ
るとはるかに小さいので1図では無視している。
Furthermore, even if the motor is separated, a slight overshoot will occur due to the inertia of movable parts such as the screw, but this is ignored in Figure 1 because it is much smaller than the inertia of the motor.

(効果) ボールねじと射出用モータとの間にトルク伝達要素を介
装したので、射出用モータの応答遅れに起因する樹脂内
の圧力サージを防ぐことができ、射出成形品の品質を向
上させることができる。
(Effects) Since a torque transmission element is interposed between the ball screw and the injection motor, it is possible to prevent pressure surges within the resin due to delayed response of the injection motor, improving the quality of injection molded products. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電動射出成形機。 第2図はトルク伝達要素の正面図。 第3図は射出成形機の動作説明図。 第4図は従来型電動射出成形機。 第5図は射出保圧工程中の位置・速度・圧力の変化状態
の説明図。 図において; 1 シリンダ     2 溶融樹脂 3 スクリュー   4 ホッパー 5 ギア       6 モータ 7 ロードセル    8 ナツト 9 ボールねじ    10  射出用モータ11  
カップリング  lz  ガイドバー13  固定ブラ
ケット 14トルク伝達要素15  入力端シャフト 
16  出力側シャフト17  入力端固定円板 18
  出力側固定円板19  可動円板    20  
力検出器21  圧電アクチエータ22  ばね以上 出願人 住友重機械工業株式会社 復代理人 弁理士 大 橋   勇 第2図 第3図 第5図
FIG. 1 shows an electric injection molding machine according to the present invention. FIG. 2 is a front view of the torque transmission element. FIG. 3 is an explanatory diagram of the operation of the injection molding machine. Figure 4 shows a conventional electric injection molding machine. FIG. 5 is an explanatory diagram of changes in position, speed, and pressure during the injection pressure holding process. In the figure: 1 cylinder 2 molten resin 3 screw 4 hopper 5 gear 6 motor 7 load cell 8 nut 9 ball screw 10 injection motor 11
Coupling lz Guide bar 13 Fixed bracket 14 Torque transmission element 15 Input end shaft
16 Output side shaft 17 Input end fixing disk 18
Output side fixed disk 19 Movable disk 20
Force detector 21 Piezoelectric actuator 22 Spring Applicant Sumitomo Heavy Industries, Ltd. Sub-agent Patent attorney Isamu Ohashi Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 出力側固定円板と該円板に対し接離可能な可動円板を一
端に備え、他端を入力側固定円板に力検出器を介し固定
した圧電アクチエータとからなり、圧電アクチエータの
伸縮作用によって可動円板を出力側円板に対し接触させ
、このときの押し付け力を力検出器で検出し、該押し付
け力を制御することによって入力側円板から加えられる
回転トルクの負荷への伝達率を制御可能にしたトルク伝
達要素をスクリュー移動用のボールねじと射出用モータ
間に介装したことを特徴とする電動射出成形機の射出シ
リンダ駆動装置。
It consists of a piezoelectric actuator, which has a fixed disk on the output side, a movable disk that can move toward and away from the disk at one end, and the other end is fixed to the fixed disk on the input side via a force detector, and the expansion and contraction action of the piezoelectric actuator The movable disk is brought into contact with the output side disk, the pressing force at this time is detected by a force detector, and the transmission rate of the rotational torque applied from the input side disk to the load is determined by controlling the pressing force. 1. An injection cylinder drive device for an electric injection molding machine, characterized in that a torque transmission element capable of controllable is interposed between a ball screw for screw movement and an injection motor.
JP31742787A 1987-12-17 1987-12-17 Driving device of injection cylinder of motor-driven injection molding machine Pending JPH01159218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31742787A JPH01159218A (en) 1987-12-17 1987-12-17 Driving device of injection cylinder of motor-driven injection molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31742787A JPH01159218A (en) 1987-12-17 1987-12-17 Driving device of injection cylinder of motor-driven injection molding machine

Publications (1)

Publication Number Publication Date
JPH01159218A true JPH01159218A (en) 1989-06-22

Family

ID=18088103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31742787A Pending JPH01159218A (en) 1987-12-17 1987-12-17 Driving device of injection cylinder of motor-driven injection molding machine

Country Status (1)

Country Link
JP (1) JPH01159218A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035118A (en) * 1989-06-02 1991-01-10 Canon Inc Motor-driven injection device
EP1375108A1 (en) * 2002-06-17 2004-01-02 Fanuc Ltd Injection apparatus and molding method in injection molding machine
JP4792078B2 (en) * 2005-03-17 2011-10-12 クラウスマッファイ テヒノロギース ゲゼルシャフト ミット ベシュレンクテル ハフツング Drive system for plasticizing unit of injection molding machine
CN102310517A (en) * 2011-07-08 2012-01-11 常州工学院 Piezoelectric dynamic plasticizing forming device and injection molding method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035118A (en) * 1989-06-02 1991-01-10 Canon Inc Motor-driven injection device
EP1375108A1 (en) * 2002-06-17 2004-01-02 Fanuc Ltd Injection apparatus and molding method in injection molding machine
JP4792078B2 (en) * 2005-03-17 2011-10-12 クラウスマッファイ テヒノロギース ゲゼルシャフト ミット ベシュレンクテル ハフツング Drive system for plasticizing unit of injection molding machine
CN102310517A (en) * 2011-07-08 2012-01-11 常州工学院 Piezoelectric dynamic plasticizing forming device and injection molding method thereof

Similar Documents

Publication Publication Date Title
EP0090863B1 (en) Injection molding apparatus
JPH0122135B2 (en)
JPH0425128B2 (en)
EP0422224B1 (en) Nozzle touch device for injection molding machine
JPH041687B2 (en)
JPH0230848B2 (en)
EP0350872B1 (en) Motor control device for electric injection molding machine
JPH01159218A (en) Driving device of injection cylinder of motor-driven injection molding machine
EP0277242B1 (en) Straight-acting mold clamping device of an injection molding machine
JP5236695B2 (en) Nozzle touch method and nozzle touch device
JP2002200658A (en) Mold clamping device for injection molding machine
JPH0444891B2 (en)
JPH0222025A (en) Electric injection apparatus of injection molding machine
JPH09254211A (en) System for controlling mold clamping force in motor-driven injection molding machine
JPH0344889B2 (en)
JPH043894B2 (en)
JPH0229486B2 (en) SHASHUTSUSOCHINONOZURUTATSUCHIHOHO
JPH0131464Y2 (en)
JP2002347071A (en) Drive device of electromotive injection molding machine
JPH11115006A (en) Electric motor driven injection molding machine
JPH0857919A (en) Injecting shaft driving mechanism of injection molding machine
JPH079159A (en) C type welding gun
JPH0622830B2 (en) Control method for electric mold clamping device
JPH03231810A (en) Mold clamping mechanism of motorized molding machine
JPH04290717A (en) Injection molding machine