JPH0115859B2 - - Google Patents

Info

Publication number
JPH0115859B2
JPH0115859B2 JP55118711A JP11871180A JPH0115859B2 JP H0115859 B2 JPH0115859 B2 JP H0115859B2 JP 55118711 A JP55118711 A JP 55118711A JP 11871180 A JP11871180 A JP 11871180A JP H0115859 B2 JPH0115859 B2 JP H0115859B2
Authority
JP
Japan
Prior art keywords
image
layer
light
recording medium
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55118711A
Other languages
Japanese (ja)
Other versions
JPS5742044A (en
Inventor
Takashi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP11871180A priority Critical patent/JPS5742044A/en
Publication of JPS5742044A publication Critical patent/JPS5742044A/en
Publication of JPH0115859B2 publication Critical patent/JPH0115859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/02Sensitometric processes, e.g. determining sensitivity, colour sensitivity, gradation, graininess, density; Making sensitometric wedges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、所望の画像を有するネガフイルムや
ポジフイルム等の原像記録体から、写真処理だけ
で、該原像記録体中の画像から等濃度抽出または
濃度差抽出、更に必要とあらばこれらを同時に行
なうことを可能とした画像処理法である。 写真画像から、反射濃度または透過濃度の面分
布を利用して像情報を抽出しようとする試みは、
すでに多くの方法が案出され、用いられている。
こうした方法の利用分野は、写真計測の分野のみ
ならず、デイスプレー、広告など、実生活の分野
にも入り来つつあるが、現在では写真計測の分野
が主力である。 例えば、地質、地形特に断層面、地下資源開
発、自然または農耕地などにおける植生分布、土
地利用、市街地地区の居住分布および分類と防
備、道路網情報とその整理、湖河川管理、水質管
理、深水計測、海流調査と漁業、積雪・積氷分布
と水資源の管理、雲の分布、等々の人間生活圏の
情報抽出法として用いられている写真計測および
科学写真計測の全ての分野、医療画像処理などが
ある。日本では少ないが、世界的には国防を目的
とした利用分野がかなりの比重を占めている。 本発明の目的は、上記の様に多目的に用いられ
る画像処理を、写真処理だけで、安価で、作業性
に優れ、しかも写真処理では簡単に出来なかつた
等濃度抽出または濃度差抽出を、必要とあらば同
時に可能とする処理法を提出することにある。 以下に従来技術を列記し、併せて長所短所も記
す。 (1) フイルムサンドウイツチ法とトーンライン法 ネガフイルム(以後Nと記す)とそのポジフ
イルム(以後Pと記す)を或る間隔を置き(具
体的には透明フイルムをNとP間に挿入する)、
一定方向の平行斜光線を与えた場合、N−P間
を透過する光を受けて線状画像として濃度差を
抽出する方法の事をR.N.Wellerは“フイルム
サンドウイツチ法(Film Sandwich法)”と呼
んでいる。この場合、各フイルムの銀像面を向
い合せて重ね合せた場合は、透明フイルムを挿
入しなければならないが、銀像面を反対合せす
るなどして各フイルムの透明ベースが光の開口
窓となる重ね合せでは、透明フイルムを入れな
くても良い、さらに透過光に対する開口窓を拡
げようとすれば透明フイルムを挿入すれば良
い。 この方法の欠点は、一定方向からの斜光線で
あるため、像の一方の側の線状画像としてしか
抽出出来ないことである。抽出線幅は光線の入
射角と開口窓となるN−P間の間隔幅で決ま
り、その相関を取る事が作業性を悪くする。濃
度差を有する画像部に適用した場合は簡単だが
連続階調像の一定濃度の抽出では光照射条件が
困難。Wellerは、上記法を応用し、Nから不
足露光ポジフイルムと、過度露光ポジフイルム
の密着ネガフイルムを作り、これらを重ね合せ
“トーンライン(Tone Line)”として濃度差を
抽出する方法も提案している。この長所は、不
足露光ポジフイルムと過度露光ポジフイルムの
密着ネガフイルムが出来上れば簡単に濃度差線
画が得られる事にあるが、欠点は、この不足露
光ポジフイルムと過度露光ポジフイルムの密着
ネガフイルムを作る事にある。 (2) コダツクトーンライン法 Nと記録感材フイルム間に透明フイルムを挿
入し、散乱光で照射した記録感材フイルムを現
像定着するとピンボケのPが得られる。このP
とNとを重ね合せ、高コントラスト感材に露光
すればNの濃度差の境界のみが線像として抽出
される。この方法は一般には“ボケマスク法”
と呼ばれている。 長所は、ピンボケP(ボケマスク)の作り方、
例えば、透明フイルムの厚みを変えるとか、平
行光で照射するなど、すなわち、ボケの程度で
連続階調画像の所定濃度部を線像として抽出出
来ることであり、欠点は、ボケマスクの作り方
に精度を要し、ボケマスクが出来上つてからで
ないとどの様な像になるかの判断が困難である
ことである。 (3) 回転トーンライン法 一組の位置合せしたNとPを回転板上に設置
し、回転しながら一定の斜め方向から露光を与
えることにより、結局は全ての斜め方向から一
定濃度差を線状画像として抽出する方法であ
り、(2)のコダツクトーンライン法中にも記述さ
れている。この方法では、回転板の代りに光源
を回転する方法についても述べている。N−P
間の開口窓は当然必要となる。 回転トーンライン法の欠点は、実際に行なつ
て見た結果、回転板にしろ光源にしろ、機械的
な回転ムラの除去が困難であり、回転速度の早
い所は細く、遅い所は太い線画として抽出され
ることである。 (4) レリーフ法 対応する一組のNとPとを相対的に一定方向
にズラして重ね合せ、ズレ間隔を開口窓として
透過する光で線状画像を得る方法。 欠点は、NとPを相対的に一定方向にズラす
時ズラすことの困難さ、即ち上下左右のズレを
一定にしなければ、どの方向の画像処理をして
いるかの判断が得られた画像からは判断出来
ず、ズレの方向またはズレの反対方向の部分の
線像しか得られないことである。 (5) 高域空間周波数フイルターの利用 NまたはPを光学的にフーリエ変換し、高周
波部(原像記録体上では濃度差階調を有する部
分)のみを逆フーリエ変換し記録する方法であ
り、通常、階調差部の抽出に用いられる。低周
波部記録でも良い。この欠点は、光学系を組む
必要があること、必要とする原像記録体中の画
像部が、どの程度の周波数帯であるかを見出す
ことの困難さと、見出した後、カツトフイルタ
ー(Cutfilter)の作製精度も要求されることで
ある。加えて、原像記録体の直線画像部、例え
ば家の周辺部、鉄道線路や道路の直線部や、く
り返し画像部、例えば屋根瓦部、幾何学的画像
などに対しては、この方法は極めて困難であ
る。 (6) エレクトロドツジングプロジエクター(フラ
イングスポツト管)の利用 フライングスポツトでNを照明し、スポツト
光によるN透過光強度を順次光電管で受け、光
電管出力を増幅回路を通しネガテイブフイード
バツクとして管に戻すと、スポツト管螢光面上
にはNに対応したPが得られる。この時、管の
螢光面とNとの距離を適当に取れば、スポツト
面積の持つ影響と共にボケマスクにおけるスペ
ーサーの働きが生じ、境界が強調され記録され
る。強調度を変える類似法として、管の走査速
度を変化して行なう速度変化型もあり、電気的
に画像を処理する方法として、これも商品化さ
れている(ログエトロニツク社のElectronic
Printer)。 長所として、強調度は増幅回路の増幅度で調
節し、強調度が強ければ画像の境界のみ、弱け
れば境界強調をしつつ写真全体の色調の残つた
像が得られることである。(色調の残つた像を
得る写真的処理法は困難とされている。)欠点
として先づ高価であること、処理画像の大きさ
に制限が生ずることである。 上記した従来の写真処理法を用いて画像の等濃
度抽出あるいは濃度差抽出を行つた場合、総じて
手数が掛かり、簡単な画像処理法とは言えないこ
と、濃度差抽出の場合は、得られる線幅が用いる
一組のNとPの透明ベースフイルムの厚味に限定
されること(この限度を避けるためには透明物体
を挿入すれば良いことだが)、忠実な処理を行な
うには平行光が必要なこと、などが実用上の共通
した欠点と思われる。これらの欠点を補う、ある
いは解決するために上記(6)の従来法が用いられて
いるが、特別な装置を要するなど高価な画像処理
法となつてしまう。 この様な従来法の欠点を補う目的で行なわれた
本方法は、手軽に、しかも自由に処理抽出像の線
幅を制御し、既存の写真処理装置がそのまま使用
出来る安価で平易な画像処理法である。 本発明の説明を以下に記す。ここでは原理説明
の都合上、使用する原像記録体及び反転像記録体
は、オン−オフ画像を有する銀塩写真とし、放射
線は光とする。 ここでいう原像記録体とは、具体的には化学反
応で得た発色画像を有する銀塩写真、熱写真、感
圧記録体等の発色材画像形成体、顔料、染料など
の色材を用いて物理的に画像支持体面に画像形成
を行なつた、加圧印刷物、電子印刷物、捺染物等
の色材画像形成体、透明フイルム内に微細な気泡
像を形成させカルバーフイルム等の気泡画像形成
体等の記録体で、且つ各画像は透過光下で確認可
能な適宜の透過濃度を有する。また、反転像記録
体とは、その画像が原像記録体中の画像とネガ−
ポジの関係に有る記録体である。従つて、原像記
録体がネガ型であれば反転像記録体はポジ型とな
り、原像記録体がポジ型であれば反転像記録体は
ネガ型となる。 第1図中、1は所望のオン−オフ画像を記録し
たNまたはPのいずれかの原像記録体より成る第
1層(最上層)、3は第1層1の逆濃度フイルム
即ち、第1層1のPまたはNより成る第3層(反
転像記録体)である。従つて、第1層1がNの場
合第3層3は第1層1のP、第1層1がPの場合
第3層3はそのNである。4は化学反応で発色画
像を形成する画像形成材料、顔料、染料などの色
材を用いて物理的に色材画像を形成する画像形成
材料等の記録体(画像未形成)より成る第4層で
ある。 一組のNとPとは、(1)銀像膜面が互いに向い合
つている場合、(2)相反している場合、(3)共に上方
向または(4)共に下方向を向いている場合、の四通
りの重ね合せ方がある。いづれの場合でも第1層
1と第3層3を位置合せして重ね合せた場合、通
常法、即ち、重ね合せたフイルム面に垂直に光照
射を与えても、その透過光強度は各点でほとんど
差はなく、N−P一組の透過濃度でその光強度は
決まり通常極めて小さい。したがつて、第4層4
に記録体(未露光印画紙またはフイルム等)を置
き、第1層1側から光照射を与えても何ら情報は
得られない。上記(2)、(3)、(4)の従来の場合に斜方
向から露光を与えれば、すでに述べたフイルムサ
ンドウイツチ法(Film Sandwitch法)と同様に
用いることが出来る。次に第2図および第3図
(第2図の拡大図)にて本発明について説明する。
今、第2層2として光散乱層を第1層1−第3層
3間に挿入し、光照射を与えると、第1層1の透
明部を透過した光は第2層2の散乱層で散乱され
る。散乱した光は第3層3の透明部を通過し、第
4層4の記録体に達し、記録体を感光する。この
時、第4層4への到達光は第3層3の画像形成部
の外周辺部に最も多く達する。第4層4を現像す
れば線像として情報が抽出される。また、第4層
4に達する光は、第3層3の現像銀層の外側周辺
に散乱するので、第3層3として、N(この場合、
第1層1はP)を用いるかP(この場合第1層1
はN)を用いるかで、得られる線像の情報強調度
に違いを持たせることが出来る。 以上は第1層1としてオン−オフ像を有する原
像記録体の場合(したがつて第3層3中の画像も
オン−オフ像)を例として説明したが、実際に用
いられている画像は種々の光学濃度を有する画像
である。以下にその様な場合について記す。 第1図または第2図の第1層1中の画像はオン
−オフ像ではなく、図中オフ部(非画像部)も或
る光学濃度を有し、オン部(画像部)が多少低光
学濃度となつた場合として図を読み変えて説明す
る。したがつて、第3層3のオン−オフ部も第1
層1と同様であり、位置合せして重ね合せた場合
の透過濃度は各点で一定の或る光学濃度を有する
場合とする。 この様な場合に第2層2を第1層1−第3層3
間に挿入し光照射を与えると、第1層1を透過す
る光量は透過した部分の光学濃度で差を生ずる。
差の生じた光の第2層2における散乱光分布はそ
の差に対応している。この時、オン−オフ像の場
合同様、散乱光は第3層3の光学濃度で制限され
て第4層4に向う。したがつて、第4層4に達す
る光は(1)第1層1と第3層3のトータル光学濃
度、(2)第1層1および第3層3内の光学濃度差、
(3)第2層2(散乱層)の散乱能、で異なつて来
る。濃度差を線像として抽出する場合は、散乱能
の小さい散乱層を用い、用いる感材とそれに対応
した露光量で制御出来る。この場合、濃度差の大
きい境界では濃度差の小さい境界に比べ、第4層
(感材)に達する光量が多いことが前述の説明か
らわかるが、この現象をうまく利用して、第4層
(感材)の感度および/又は、照射光量を適宜制
御してやれば所望の濃度差の部分のみを線像とし
て抽出できる。また、等濃度域も線像と同時に抽
出する場合には、散乱能の比較的大きな散乱層を
用いて同様に制御する。 第2層2の散乱層の代りに螢燐光発光層を挿入
した場合螢燐光刺激光による発光光は、散乱層と
同様の効果をはたすので、同様の画像処理効果が
得られる。 次に実施例を示す。 実施例 第2図において、第1層1と第3層3に用いる
1組の白黒像のオン−オフ濃度差が1.8と0にな
る様にコグツク セパレーシヨン ネガ型フイル
ム(Kodak SeParation Negative Film)、
Type1、4131を用い、光量を制御しテスト・チヤ
ートを作製した。マクベスTD−504濃度計で作
製後のオン−オフ部の透過濃度を測定した結果、
一方は1.82と0.02、他方は0.02と1.79であつた。
したがつて、この2枚のオン−オフ画像を有する
第1層(原像記録体)1と第3層(反転像記録
体)3の位置合せ後の濃度は1.84と1.81となつ
た。これら2枚の記録体を銀膜面を向い合せで位
置合せ後光散乱層(第2層2)を挿入した。用い
た散乱層は散乱能が種々作製可能(手軽に)な例
としてカルバーフイルムを用いた。 散乱層作製条件は下記の如くであつた。 露光装置…シヤーププリンターTz(高橋精密機械
製作所) 光源…水銀灯 G−MERC−750A 露光条件…通常の作業ではカルバーフイルムのジ
アゾ塗布面に10秒間の露光で充分な散乱層が得
られるが、ここでは種々の条件で作製し、露光
は全面に与えた。 (a) 30秒間露光 熱現像なし(透明フイルムとな
る) 濃度 0.09〜0.19 (b) 2秒 〃 熱現像を行なう 濃度 0.09〜0.195 (c) 4秒 〃 熱現像を行なう。 濃度 0.2〜0.45 (d) 8秒 〃 熱現像を行なう。 濃度 0.30〜0.60 (e) 30秒 〃 熱現像を行なう。 濃度 0.35〜0.675 (a)〜(e)の濃度は前記マクベス濃度計にコダツク
フイルターUV・106を併用して測定した可視域
光に対する拡散濃度であり、以下に記す性能の異
なるカルバーフイルムの同一条件で得られた最小
値と最大値をそれぞれ示した。 現像温度…キヤノンカルバー現像剤(キヤノン(株)
製)を使用し、約120℃で一定とし、加熱時間
も約1秒で一定とした。 なお、発泡により得られた光散乱層(b)〜(e)に対
しては、未分解ジアゾによる黄色を消去するた
め、熱現像後30秒間の再露光を与えた。 用いたカルバーフイルム…T−334、T−335、T
−337、T−154、T−157、T−334B(いづれ
もカルバー社製) 上記(a)〜(e)の各濃度に差があるのは用いたカル
バーフイルムによる差であり、同一の露光、熱現
像条件では各カルバーフイルム共同一濃度を有す
る。 抽出線像の記録はオリエンタル写真工業製イ−
グルF−4印画紙に直接行つた。印画紙の処理
は、コダツク社製の現像液および定着液を用い、
現像は19〜21℃で90秒、定着は19〜21℃で5分、
水洗10分でそれぞれ一定とした。 (A) 次に上記作製テスト・チヤートのN、Pを銀
膜面をそれぞれ向い合せて位置合せし、テスト
チヤート側からイーグルF4印画紙に向つて10
秒間光照射を与えたが、何ら線情報は得られな
かつた。光照射はフジモト写真工業製ラツキー
引伸機60M−Cを用い、内蔵されている12V−
75Wハロゲンランプから発する光をスリガラス
を通し、拡散光として行なつた。 次に前記散乱層(カルバーフイルム)の発泡
層面を下向きとしてN、P間に挿入し、同一照
射条件(9.6lux、10秒照射、光強度の測定は東
京光学機械製SP1−6A形光電池照度計を用い
た)で調べた結果、上記全ての散乱層で線像が
得られた。ただし、前記(a)の熱現像を行なわな
かつたフイルムを使用した場合には、単なるス
ペーサーとなるだけで何ら情報は得られなかつ
た。得られた線像の線幅は、同一種類のカルバ
ーフイルムにあつては発泡層作製時の照射光量
の多い(30秒間)程太く、少ない(2秒)程細
かつた。また、発泡層作製時の処理条件が同一
であつても、実効拡散能の大きなカルバーフイ
ルム(T−334)程太く、小さなもの(T−
334B)程細い線像が得られた。 (B) (A)の場合とは光照射条件を変え、光強度を約
3倍(30lux)に強め、照射時間は10秒として
実験を行つた所、(A)の場合と同様、線像が得ら
れると同時に、テストチヤートの画像部と非画
像部のトータル濃度差(0.03)が得られた。即
ち、画像の境界を強調しつつ写真全体の色調の
残つた像が得られた。この結果は、前記6の使
用で得られると言う処理結果と類似の結果であ
り、今までの写真処理では不可能だつたことで
ある。 (C) (B)で行つたN−Pの上下を逆にし(すなわち
P像を第1層上面、N像を第3層下面)、同様
の光照射条件で実験した所、(B)で得られた像と
は、逆、即ち、(B)で白色となつた部分が境界を
強調しつつ全体の色調の残つた像が得られ、(B)
の黒色画像部が白色となつた。類似のことを通
常の写真処理法で行う場合は、N像で濃度抽出
を行なつて黒色画像となつた部分は、P像に対
して濃度抽出を行なえば白色となり、処理に手
数がかかるし境界強調を同時に行なうことは出
来ない。もちろん電子計算機処理画像では類似
処理は簡単である。これに比較し、本方法では
単にN−Pの上下置き換えで簡単に行えた。 (D) (A)〜(C)の結果をより具体的に確かめる目的
で、実際に用いられているLANDSAT−Nに
対し、これからPを作製し、(B)と同様の処理を
施した所、(B)と同様の結果が得られ、(C)と同様
の処理を施した所、この場合にも(C)と同様の結
果の得られることが確かめられた。 (E) (A)〜(D)で用いた拡散層は種々の条件で作製し
たカルバーフイルムを用いて行つたが、この他
に、どの様な物体が本方法の目的に適するかあ
るいは、どんな拡散物体でも本方法に使用可能
であることを確かめることを目的とし、種々の
拡散物体につき実験を行つた。
The present invention is capable of extracting equal density or density difference from an original image recording medium such as a negative film or positive film having a desired image by just photographic processing, and further extracting density differences if necessary. This is an image processing method that makes it possible to perform both at the same time. Attempts to extract image information from photographic images using the surface distribution of reflection density or transmission density are
Many methods have already been devised and used.
These methods are being used not only in the field of photometry but also in fields of real life such as displays and advertising, but currently the field of photometry is the main field. For example, geology, topography, especially fault planes, underground resource development, vegetation distribution in natural or agricultural land, land use, residential distribution and classification and defense in urban areas, road network information and its organization, lake and river management, water quality management, deep water. All fields of photometry and scientific photometry used as information extraction methods for human living areas, such as measurements, ocean current surveys and fishing, snow/ice distribution and water resource management, cloud distribution, etc., and medical image processing. and so on. Although it is small in Japan, worldwide, a considerable proportion of the field of use is for national defense purposes. The purpose of the present invention is to perform image processing that is used for multiple purposes as described above, using only photo processing, at low cost and with excellent workability, and to perform necessary equal-density extraction or density-difference extraction, which cannot easily be performed with photo processing. If so, it is important to submit a processing method that makes it possible at the same time. The conventional techniques are listed below, along with their advantages and disadvantages. (1) Film sandwich method and tone line method A negative film (hereinafter referred to as N) and its positive film (hereinafter referred to as P) are placed at a certain distance (specifically, a transparent film is inserted between N and P). ),
RNWeller calls the method of extracting density differences as a linear image by receiving the light transmitted between N and P when parallel oblique rays are given in a certain direction the "Film Sandwich method". I'm here. In this case, if the silver image surfaces of each film are stacked one on top of the other, a transparent film must be inserted, but by placing the silver image surfaces oppositely, the transparent base of each film can be used as an aperture window for light. In this superposition, there is no need to insert a transparent film, and if you want to widen the aperture window for transmitted light, you can insert a transparent film. The disadvantage of this method is that since the light rays are oblique from a certain direction, it can only be extracted as a linear image on one side of the image. The width of the extracted line is determined by the incident angle of the light beam and the width of the interval between N and P, which forms the aperture window, and taking a correlation therewith impairs work efficiency. It is easy to apply to image areas with density differences, but the light irradiation conditions are difficult when extracting constant density from continuous tone images. Weller also proposed a method of applying the above method to create a close-contact negative film of underexposed positive film and overexposed positive film from N, and superimposing them to extract the density difference as a "tone line". ing. The advantage of this is that if you can create a negative film with underexposed positive film and overexposed positive film in close contact, you can easily obtain density difference line drawings, but the disadvantage is that this underexposed positive film and overexposed positive film are in close contact with each other. It involves making negative film. (2) Kodak Tone Line Method A transparent film is inserted between N and a recording sensitive film, and when the recording sensitive film is irradiated with scattered light and developed and fixed, an out-of-focus P is obtained. This P
If N and N are superimposed and exposed on a high-contrast sensitive material, only the boundary between the density differences of N will be extracted as a line image. This method is generally called the “bokeh mask method”
It is called. The advantages are how to make out-of-focus P (bokeh mask),
For example, it is possible to extract a predetermined density part of a continuous tone image as a line image depending on the degree of blur by changing the thickness of the transparent film or by irradiating it with parallel light.The disadvantage is that it requires precision in creating the blur mask. The point is that it is difficult to judge what kind of image will be obtained until after the blur mask is completed. (3) Rotating tone line method By placing a set of aligned N and P on a rotating plate and applying exposure from a certain diagonal direction while rotating, the end result is a line with a certain density difference from all diagonal directions. This is a method of extracting the image as a shape image, and is also described in the Kodak tone line method in (2). This method also describes a method of rotating a light source instead of a rotating plate. N-P
Of course, an opening window between the two is necessary. The disadvantage of the rotating tone line method is that it is difficult to mechanically remove uneven rotation, whether it is the rotating plate or the light source, and the line drawings are thin where the rotational speed is high and thick where the rotational speed is slow. It is extracted as . (4) Relief method A method in which a corresponding pair of N and P are overlapped with relative shifts in a certain direction, and a linear image is obtained using light that passes through the shift interval as an aperture window. The disadvantage is that it is difficult to shift N and P relatively in a certain direction, that is, if you do not keep the vertical and horizontal shifts constant, you will not be able to determine which direction the image processing is being performed on. It cannot be determined from this, and only line images in the direction of the shift or in the opposite direction of the shift can be obtained. (5) Utilization of high spatial frequency filter This is a method in which N or P is optically Fourier-transformed, and only the high-frequency part (the part with density difference gradation on the original image recording medium) is inversely Fourier-transformed and recorded. Usually used to extract gradation difference parts. It is also possible to record the low frequency part. The disadvantages of this are that it is necessary to assemble an optical system, that it is difficult to find out what frequency band the image area of the required original image recording medium has, and after finding out, it is necessary to use a cut filter. The manufacturing precision is also required. In addition, this method is extremely difficult to handle for straight image areas of the original image record, such as the periphery of a house, straight lines of railroad tracks or roads, and repetitive image areas, such as roof tiles, geometric images, etc. Have difficulty. (6) Use of electro dosing projector (flying spot tube) N is illuminated with a flying spot, the N transmitted light intensity by the spot light is sequentially received by a phototube, and the phototube output is passed through an amplifier circuit to the tube as negative feedback. When returned, P corresponding to N is obtained on the fluorescent surface of the spot tube. At this time, if the distance between the fluorescent surface of the tube and N is set appropriately, the effect of the spot area and the spacer function in the blur mask will occur, and the boundary will be emphasized and recorded. A similar method for changing the degree of emphasis is a speed-varying method in which the scanning speed of the tube is changed, and this method has also been commercialized as a method for electrically processing images (LoGetronic's Electronic
Printer). The advantage is that the degree of emphasis can be adjusted by the degree of amplification of the amplifier circuit, and if the degree of emphasis is strong, only the boundaries of the image are emphasized, and if the degree of emphasis is weak, the boundaries are emphasized while an image that retains the tones of the entire photograph is obtained. (Photographic processing methods that produce images with retained tones are considered difficult.) The disadvantages are first that they are expensive, and that there are limitations on the size of the processed images. When performing equal-density extraction or density-difference extraction of an image using the conventional photographic processing methods described above, it generally takes a lot of time and cannot be called a simple image processing method. The width is limited by the thickness of the pair of N and P transparent base films used (although it is possible to avoid this limit by inserting a transparent object), and parallel light is required for faithful processing. This seems to be a common practical drawback. The above conventional method (6) has been used to compensate for or solve these drawbacks, but it requires special equipment and is an expensive image processing method. This method, which was developed to compensate for the shortcomings of the conventional method, is an inexpensive and simple image processing method that allows you to easily and freely control the line width of the processed extracted image and can be used with existing photo processing equipment as is. It is. A description of the invention follows. Here, for convenience of explanation of the principle, the original image recording medium and the reverse image recording medium used are silver salt photographs having on-off images, and the radiation is light. Specifically, the original image recording medium referred to here refers to a coloring material image forming body such as a silver halide photograph, a thermal photograph, a pressure-sensitive recording medium, etc., which has a colored image obtained by a chemical reaction, and a coloring material such as a pigment or a dye. Color material image forming bodies such as pressurized printed materials, electronic printed materials, and printed materials in which an image is physically formed on the image support surface using a transparent film, and bubble images such as Culver film in which fine bubble images are formed within a transparent film. In a recording medium such as a formed body, each image has an appropriate transmission density that can be confirmed under transmitted light. In addition, a reversal image recording medium is one in which the image is the same as the image in the original image recording medium.
It is a recording medium that has a positive relationship. Therefore, if the original image recording medium is negative type, the reversal image recording medium will be positive type, and if the original image recording medium is positive type, the reversal image recording medium will be negative type. In FIG. 1, 1 is a first layer (uppermost layer) consisting of either an N or P original image recording medium on which a desired on-off image is recorded, and 3 is a reverse density film of the first layer 1; This is the third layer (reversal image recording body) consisting of one layer of P or N. Therefore, when the first layer 1 is N, the third layer 3 is the P of the first layer 1, and when the first layer 1 is P, the third layer 3 is the N. 4 is a fourth layer consisting of a recording material (with no image formed) such as an image forming material that forms a colored image through a chemical reaction, and an image forming material that physically forms a coloring image using a coloring material such as a pigment or dye; It is. A pair of N and P is (1) when the silver image film surfaces are facing each other, (2) when they are opposite, (3) both are facing upward, or (4) both are facing downward. In this case, there are four ways of superposition. In any case, when the first layer 1 and the third layer 3 are aligned and superimposed, even if the light is irradiated perpendicularly to the surface of the superimposed film using the normal method, the intensity of the transmitted light will be the same at each point. There is almost no difference, and the light intensity is determined by the transmission density of the N-P pair, and is usually extremely small. Therefore, the fourth layer 4
Even if a recording medium (unexposed photographic paper, film, etc.) is placed on the substrate and light is irradiated from the first layer 1 side, no information can be obtained. In the conventional cases (2), (3), and (4) above, if exposure is applied from an oblique direction, it can be used in the same manner as the film sandwitch method described above. Next, the present invention will be explained with reference to FIG. 2 and FIG. 3 (enlarged view of FIG. 2).
Now, when a light scattering layer as the second layer 2 is inserted between the first layer 1 and the third layer 3 and light irradiation is applied, the light that has passed through the transparent part of the first layer 1 will pass through the scattering layer of the second layer 2. scattered. The scattered light passes through the transparent portion of the third layer 3, reaches the recording medium of the fourth layer 4, and exposes the recording medium. At this time, most of the light reaching the fourth layer 4 reaches the outer periphery of the image forming portion of the third layer 3. When the fourth layer 4 is developed, information is extracted as a line image. In addition, since the light reaching the fourth layer 4 is scattered around the outer side of the developed silver layer of the third layer 3, the third layer 3 is N (in this case,
The first layer 1 is P) or P (in this case the first layer 1
The information emphasis degree of the obtained line image can be made different depending on whether N) is used or not. The above has been explained using an example of an original image recording medium having an on-off image as the first layer 1 (therefore, the image in the third layer 3 is also an on-off image), but the image actually used is are images with various optical densities. Such cases are described below. The image in the first layer 1 in Figure 1 or Figure 2 is not an on-off image; the OFF area (non-image area) in the figure also has a certain optical density, and the ON area (image area) is somewhat low. The diagram will be reread and explained based on the case of optical density. Therefore, the on-off portion of the third layer 3 is also the same as that of the first layer 3.
It is assumed that this layer is similar to Layer 1, and that the transmission density when aligned and superimposed has a certain optical density that is constant at each point. In such a case, the second layer 2 is replaced by the first layer 1 - third layer 3.
When the first layer 1 is inserted between the first layer 1 and irradiated with light, the amount of light transmitted through the first layer 1 causes a difference in the optical density of the transmitted portion.
The scattered light distribution in the second layer 2 of the light with the difference corresponds to the difference. At this time, as in the case of the on-off image, the scattered light is limited by the optical density of the third layer 3 and is directed toward the fourth layer 4. Therefore, the light reaching the fourth layer 4 depends on (1) the total optical density of the first layer 1 and the third layer 3, (2) the difference in optical density between the first layer 1 and the third layer 3,
(3) The scattering power of the second layer 2 (scattering layer) varies. When extracting the density difference as a line image, a scattering layer with low scattering power is used and control can be achieved by controlling the light-sensitive material used and the exposure amount corresponding to it. In this case, it can be seen from the above explanation that the amount of light reaching the fourth layer (sensitive material) is larger at the boundary where the density difference is large than at the boundary where the density difference is small. By appropriately controlling the sensitivity of the photosensitive material and/or the amount of irradiated light, it is possible to extract only the portion with the desired density difference as a line image. Furthermore, when the isodensity region is also extracted at the same time as the line image, similar control is performed using a scattering layer with relatively large scattering power. When a phosphorescent layer is inserted in place of the scattering layer of the second layer 2, the light emitted by the phosphorescent stimulation light has the same effect as the scattering layer, so that the same image processing effect can be obtained. Next, examples will be shown. Embodiment In FIG. 2, Kodak Separation Negative Film is used so that the on-off density difference between the set of black and white images used for the first layer 1 and the third layer 3 is 1.8 and 0.
Using Type 1 and 4131, we created a test chart by controlling the amount of light. As a result of measuring the transmission density of the on-off part after fabrication using Macbeth TD-504 densitometer,
One was 1.82 and 0.02, and the other was 0.02 and 1.79.
Therefore, the densities after alignment of the first layer (original image recording medium) 1 and the third layer (reverse image recording medium) 3 having the two on-off images were 1.84 and 1.81. After aligning these two recording bodies with their silver film surfaces facing each other, a light scattering layer (second layer 2) was inserted. As the scattering layer used, Culver film was used as an example in which various scattering abilities can be produced (easily). The conditions for producing the scattering layer were as follows. Exposure device: Sharp printer Tz (Takahashi Precision Machinery Co., Ltd.) Light source: Mercury lamp G-MERC-750A Exposure conditions: In normal work, a sufficient scattering layer can be obtained on the diazo-coated surface of Culver film with 10 seconds of exposure, but here They were prepared under various conditions and exposed to light over the entire surface. (a) Exposure for 30 seconds No heat development (becomes a transparent film) Density 0.09-0.19 (b) 2 seconds Perform heat development Density 0.09-0.195 (c) 4 seconds Perform heat development. Density 0.2-0.45 (d) 8 seconds 〃 Perform heat development. Density 0.30-0.60 (e) 30 seconds 〃 Perform heat development. Density 0.35 to 0.675 (a) to (e) are the diffused densities for visible light measured using the Macbeth densitometer in combination with Kodatsu filter UV 106, and are the same for Culver films with different performances as described below. The minimum and maximum values obtained under each condition are shown respectively. Development temperature...Canon Culver developer (Canon Inc.)
The temperature was kept constant at about 120°C, and the heating time was kept constant at about 1 second. Note that the light-scattering layers (b) to (e) obtained by foaming were re-exposed for 30 seconds after heat development in order to erase the yellow color caused by undecomposed diazo. Culver film used...T-334, T-335, T
-337, T-154, T-157, T-334B (all made by Culver) The differences in each density of (a) to (e) above are due to the Culver film used, and the same exposure Under thermal development conditions, each Culver film has a common density. The extracted line image was recorded using an e-mail machine manufactured by Oriental Photo Industry.
I went directly to Guru F-4 photographic paper. The photographic paper is processed using Kodatsu's developing solution and fixing solution.
Developing at 19-21℃ for 90 seconds, fixing at 19-21℃ for 5 minutes,
Each was kept constant after washing with water for 10 minutes. A
Light irradiation was applied for a second, but no line information was obtained. For light irradiation, we used Fujimoto Photo Industry's Ratsky Enlarger 60M-C, and the built-in 12V-
The light emitted from a 75W halogen lamp was passed through frosted glass as diffused light. Next, the scattering layer (Culver film) was inserted between N and P with the foamed layer surface facing downward, and the light intensity was measured using the same irradiation conditions (9.6 lux, irradiation for 10 seconds, using a Tokyo Kogaku Kikai model SP1-6A photovoltaic illuminance meter). As a result of the investigation, line images were obtained in all of the above-mentioned scattering layers. However, when a film that was not subjected to the heat development described in (a) above was used, it served as a mere spacer and no information was obtained. For the same type of Culver film, the line width of the obtained line image was thicker as the amount of irradiation light was larger (30 seconds) during foam layer preparation, and thinner as it was smaller (2 seconds). Furthermore, even if the processing conditions during foam layer production are the same, the larger the effective diffusion capacity of Culver film (T-334), the thicker the film (T-334), and the smaller the film (T-334).
334B) A thin line image was obtained. (B) The light irradiation conditions were changed from those in (A), the light intensity was increased approximately three times (30 lux), and the irradiation time was 10 seconds. At the same time, the total density difference (0.03) between the image area and the non-image area of the test chart was obtained. That is, an image was obtained in which the color tone of the entire photograph remained while the boundaries of the image were emphasized. This result is similar to the processing result obtained by using the above-mentioned method 6, and is something that has not been possible with conventional photographic processing. (C) When the N-P performed in (B) was turned upside down (that is, the P image was the top surface of the first layer, and the N image was the bottom surface of the third layer), the experiment was conducted under the same light irradiation conditions. The obtained image is the opposite, that is, the white part in (B) emphasizes the border, but the overall tone remains, and (B)
The black image area became white. If something similar is done using a normal photographic processing method, the part of the image that becomes black when density is extracted from the N image becomes white when density is extracted from the P image, which is a time-consuming process. Boundary emphasis cannot be performed at the same time. Of course, similarity processing is easy for computer-processed images. In comparison, this method can be easily performed by simply replacing the upper and lower parts of NP. (D) In order to confirm the results of (A) to (C) more specifically, P was created from LANDSAT-N, which is actually used, and the same processing as in (B) was performed. , the same results as in (B) were obtained, and when the same processing as in (C) was performed, it was confirmed that the same results as in (C) could be obtained in this case as well. (E) Culver films prepared under various conditions were used as the diffusion layers in (A) to (D), but what other objects are suitable for the purpose of this method? In order to confirm that this method can be used with diffusing objects, we conducted experiments with various diffusing objects.

【表】【table】

【表】 注 青色プリント線部は不可
〜の結果、不可であつた物体は、、
に印刷されている赤青文字部であつた。この
原因が光強度、吸収光、散乱能のいずれかに起
因しているかは今の処不明であるが、フイルム
状のほとんどの物体が可と考えられる。 上記光照射に要した時間の最小値が10秒とな
つているが、これは、照射光線強度に関係する
ことであり、強い光強度で照射すれば、ほとん
どが10秒以下でも可能である(かなり太い線像
が得られるからであり、カルバーフイルムと対
比するために決めた時間である。) 以上、光拡散性を有する物体として光散乱性物
体を使用する例を述べたが、他の拡散性物体とし
て、屈折物体や螢燐光物体の利用も可能である。
屈折物体は照射光線の通過光路方向をある特定方
向に屈折させる性質を有するため、これを第2図
で第2層2として使用すると特定方向のみに第4
層4の感材に光が到達することになる。ここで容
易に適用できる物体例としては、熱可塑性透明プ
ラスチツクシートの表面に規則的な凹凸を設けた
ものがあげられる。例えばレンチキユーラーレン
ズシート、ハニカムレンズシート、フレネルレン
ズシートなどがある。また螢燐光性物体は照射光
線の励起により自己発光性を有し、発光した光は
拡散性を有するため、第2層2として使用でき
る。但しこの物体を使用する場合、照射光線がそ
のまま第4層4の感材に到達することはなく、そ
れとは波長の異なる光が到達することになるので
感材は発光波長に感度を有するものを選ぶ必要が
ある。ここで容易に適用できる物体例としては螢
燐光性を有するプラスチツクシートがあげられ
る。 次に原像記録体中の主情報画像に対し、副情報
画像を加減する画像処理法について、第4図を参
照に説明する。 この場合、図面に示すように第2層2の光拡散
層と第3層3の反転像記録体の間に層5を挾んで
光を第4層4の感材に向つて照射する。この層5
は一部に副情報画像としての光遮蔽部分6を有す
る層である。光は光遮蔽部分6を通過しないため
第4層4の感材に到達せず、副情報画像部分をさ
し引いた画像が第4層4に得られるようになる。
また副情報画像を第2層2自体に設けることもで
きる。すなわち光拡散性を部分的に有する物体を
使用することもできる。 要するに本方法は(E)で述べた様に拡散層と光量
と記録体(感材)の組合せ、特に拡散層にどの様
なものを使用するかで線像を太くも細くも自由に
でき、必要な場合、全体の色調も加味する処理が
出来ること、特別に新たな装置が不要であるこ
と、拡散層の拡散能特性さえ決められれば処理時
間の節約が可能になることなど多くのメリツトが
ある。また、感材(記録体)に記録する代りに、
スキヤナーで走査してもよい。 また、ここで用いる放射線としては、可視光の
ほか紫外光、赤外光、X線、ガンマ線などを用い
ることができるが、記録体としては用いる放射線
に感ずるものを選んで用いることになることは云
うまでもない。
[Table] Note: Blue printed lines are not allowed. Objects that are not allowed as a result of ...
It was the red and blue text printed on the page. It is currently unclear whether this is caused by light intensity, absorption light, or scattering ability, but it is thought that most film-like objects can cause this. The minimum time required for the above light irradiation is 10 seconds, but this is related to the intensity of the irradiated light, and if irradiated with a strong light intensity, most cases can be done in less than 10 seconds ( (This is because a fairly thick line image can be obtained, and the time was determined to compare with Culver film.) Above, we have described an example of using a light-scattering object as an object with light-diffusing properties. It is also possible to use a refractive object or a fluorescent object as a sexual object.
Since a refracting object has the property of refracting the optical path direction of the irradiated light beam in a certain specific direction, if this object is used as the second layer 2 in Fig. 2, the fourth layer will be
Light reaches the sensitive material of layer 4. An example of an object that can be easily applied here is a thermoplastic transparent plastic sheet with regular irregularities on its surface. Examples include lenticular lens sheets, honeycomb lens sheets, and Fresnel lens sheets. Furthermore, the phosphorescent material can be used as the second layer 2 because it has a self-luminous property when excited by the irradiation light and the emitted light has a diffusive property. However, when using this object, the irradiated light will not reach the photosensitive material of the fourth layer 4 as it is, but the light with a different wavelength will reach it, so the photosensitive material must be sensitive to the emission wavelength. You need to choose. An example of an object that can be easily applied here is a phosphorescent plastic sheet. Next, an image processing method for adding or subtracting a sub information image to a main information image in an original image recording medium will be explained with reference to FIG. In this case, as shown in the drawing, a layer 5 is sandwiched between the light diffusing layer of the second layer 2 and the reverse image recording member of the third layer 3, and light is irradiated toward the photosensitive material of the fourth layer 4. This layer 5
is a layer that partially has a light shielding portion 6 as a sub information image. Since the light does not pass through the light shielding portion 6, it does not reach the photosensitive material of the fourth layer 4, and an image obtained by subtracting the sub-information image portion is obtained on the fourth layer 4.
It is also possible to provide the auxiliary information image on the second layer 2 itself. That is, it is also possible to use an object that partially has light diffusing properties. In short, as mentioned in (E), this method allows you to freely make the line image thick or thin depending on the combination of the diffusion layer, the amount of light, and the recording medium (sensitive material), especially the type of material used for the diffusion layer. It has many advantages, such as being able to process the overall color tone if necessary, not requiring special new equipment, and being able to save processing time as long as the diffusion properties of the diffusion layer are determined. be. Also, instead of recording on a sensitive material (recording medium),
It may also be scanned with a scanner. In addition to visible light, the radiation used here can be ultraviolet light, infrared light, X-rays, gamma rays, etc., but the recording medium must be one that is sensitive to the radiation used. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は画像処理の一工程を示す断面説明図、
第2図は本発明の一実施例の断面説明図、第3図
は第2図の部分拡大図、第4図は本発明の他の実
施例の断面説明図をそれぞれ示す。 1……第1層、2……第2層、3……第3層、
4……第4層、5……層、6……光遮蔽部分。
FIG. 1 is a cross-sectional explanatory diagram showing one step of image processing;
FIG. 2 is an explanatory cross-sectional view of one embodiment of the present invention, FIG. 3 is a partially enlarged view of FIG. 2, and FIG. 4 is an explanatory cross-sectional view of another embodiment of the present invention. 1...first layer, 2...second layer, 3...third layer,
4... Fourth layer, 5... Layer, 6... Light shielding portion.

Claims (1)

【特許請求の範囲】 1 原像記録体(ネガまたはポジ)と、当該原像
記録体から得られる反転像記録体(ポジまたはネ
ガ)間に放射線に対し拡散性を有する物体層を1
種または2種以上挿入し、重ね合せ、これを放射
線に感ずる記録体に密着し、放射線を原像記録体
側より与え、透過する放射線を該記録体に焼付け
ることにより画像を形成することを特徴とする画
像処理法。 2 拡散性を有する物体層として、光散乱性の物
体層を使用することを特徴とする特許請求の範囲
第1項記載の画像処理法。 3 拡散性を有する物体層として、螢燐光発光性
の物体層を使用することを特徴とする特許請求の
範囲第1項記載の画像処理法。 4 拡散性を有する物体層として、屈折性の物体
層を使用することを特徴とする特許請求の範囲第
1項記載の画像処理法。 5 原像記録体を主情報画像とし、これに対する
副情報画像としてさらに別の原像記録体を重ね合
せることで該副情報画像の加減を施した画像を得
ることを特徴とする特許請求の範囲第1項記載の
画像処理法。
[Scope of Claims] 1. An object layer having radiation diffusivity between an original image recording body (negative or positive) and a reversal image recording body (positive or negative) obtained from the original image recording body.
An image is formed by inserting a seed or two or more seeds, superimposing them, bringing them into close contact with a recording medium that is sensitive to radiation, applying radiation from the original image recording medium side, and printing the transmitted radiation onto the recording medium. image processing method. 2. The image processing method according to claim 1, wherein a light-scattering object layer is used as the diffusing object layer. 3. The image processing method according to claim 1, wherein a phosphorescent object layer is used as the diffusive object layer. 4. The image processing method according to claim 1, characterized in that a refractive object layer is used as the diffusive object layer. 5 Claims characterized in that an original image recording medium is used as a main information image, and by superimposing another original image recording medium as a sub information image on this, an image obtained by adding or subtracting the sub information image is obtained. The image processing method according to item 1.
JP11871180A 1980-08-28 1980-08-28 Processing method for image Granted JPS5742044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11871180A JPS5742044A (en) 1980-08-28 1980-08-28 Processing method for image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11871180A JPS5742044A (en) 1980-08-28 1980-08-28 Processing method for image

Publications (2)

Publication Number Publication Date
JPS5742044A JPS5742044A (en) 1982-03-09
JPH0115859B2 true JPH0115859B2 (en) 1989-03-20

Family

ID=14743214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11871180A Granted JPS5742044A (en) 1980-08-28 1980-08-28 Processing method for image

Country Status (1)

Country Link
JP (1) JPS5742044A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215531U (en) * 1985-07-10 1987-01-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331492A (en) * 1938-06-13 1943-10-12 Chromogen Inc Process and material for printing photographic images
US2543706A (en) * 1948-09-30 1951-02-27 Technicolor Motion Picture Method of counteracting average density fluctuation in motion pictures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331492A (en) * 1938-06-13 1943-10-12 Chromogen Inc Process and material for printing photographic images
US2543706A (en) * 1948-09-30 1951-02-27 Technicolor Motion Picture Method of counteracting average density fluctuation in motion pictures

Also Published As

Publication number Publication date
JPS5742044A (en) 1982-03-09

Similar Documents

Publication Publication Date Title
Adams The negative
Jacobson et al. Manual of Photography
Wood LIII. Phase-reversal zone-plates, and diffraction-telescopes
US5479298A (en) ND filter and aperture device using the same
FR2578661A1 (en) PHOTOGRAPHIC MATERIALS, METHODS OF FORMING COLOR IMAGES, AND EXPOSURE APPARATUS
US2407211A (en) Line and halftone reproduction
US3530779A (en) Three-dimensional photography
JPH0115859B2 (en)
US3160504A (en) Automatic dodging of photographs
US4440840A (en) Photographic image-processing method
US3198097A (en) Illuminating apparatus
Mees The fundamentals of photography
US3602590A (en) Method of producing photographic print comprising high contrast and lesser contrast portions
US4409305A (en) Method for producing characters and other representations, in particular title set, on a photo material
US3166998A (en) Photographic dodging method and apparatus
US2102021A (en) Photographic half-tone screen material and process
Wood XXXII. An application of the diffraction-grating to colour-photography
Alschuler Lippmann photography and the glory of frozen light: Eternal photographic color real and false
US20240126159A1 (en) Photographic color image using black and white emulsion
JP2771084B2 (en) ND filter for light intensity diaphragm device
US1863826A (en) Method of producing composite pictures
US1676580A (en) Photograph and method of making the same
US3924946A (en) Method of and apparatus for producing enlarged reproductions of vesicular image negatives
US1978559A (en) Process of making printing surfaces
Massopust Photographic Images Obtained in Total Darkness by Both Penetration and Reflection of Infra-red Radiation