JPH01157799A - Internal pressure rubber press device - Google Patents

Internal pressure rubber press device

Info

Publication number
JPH01157799A
JPH01157799A JP31719487A JP31719487A JPH01157799A JP H01157799 A JPH01157799 A JP H01157799A JP 31719487 A JP31719487 A JP 31719487A JP 31719487 A JP31719487 A JP 31719487A JP H01157799 A JPH01157799 A JP H01157799A
Authority
JP
Japan
Prior art keywords
pressurized fluid
pressure
pressurizing
cylinder
pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31719487A
Other languages
Japanese (ja)
Inventor
Isao Matsushita
功 松下
Hideo Iijima
飯島 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP31719487A priority Critical patent/JPH01157799A/en
Publication of JPH01157799A publication Critical patent/JPH01157799A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses

Abstract

PURPOSE:To draw out a formed part without damaging it at all by constituting an outside pressure receiving tool of a segmental rigid die, an outside pressure cylindrical body and a holding case. CONSTITUTION:A fixed shaft 2 is installed in a holding case 19, and a raw material filling space A which has been formed between a segment rigidity die 17 to which a segmental die 16 is connected and a mold 4 is filled with a raw material S. Subsequently, the raw material filling space A is covered by installing a cover body 9, a holding tool 8 is screwed and attached to the holding case 19, a pressurized fluid 7 is supplied to a first pressurized fluid feed/discharge port 2b of the fixed shaft 2 through a high pressure feed pipe 45, and also, supplied to a second pressurized fluid feed/discharge port 19b of the holding case 19. Subsequently, a raw material S and an outside pressure cylindrical body 18 are pressurized through the mold 4. Next, they are pressurized to below the pressure which does not deform nor breaks down the segmental rigidity die 17 and after a prescribed time has elapsed, the pressurized fluid 7 is discharged. As a result, an inside pressure cylindrical body 3 and the mold 4 are returned elastically to the original shape automatically by following up the pressure reduction. Also, when the pressure becomes '0', the segmental die 16 adhering closely and abutting onto a formed part 10, are released.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、環状の原料充填空間に充填されているスラリ
ー、練土又は粉体等からなる原料を内側から加圧成形す
る内圧ラバープレス装置の改良に関する。
The present invention relates to an improvement in an internal pressure rubber press device that presses and molds a raw material such as slurry, clay, or powder filled in an annular raw material filling space from the inside.

【従来の技術】[Conventional technology]

従来、内圧ラバープレス装@1は、第13図に示す如く
、外周面に加圧流°休業内面2aが形成されていると共
に該加圧流体案内面2aに加圧流体給排口2bが開口さ
れた固定軸2と、固定軸2の加圧流体案内面2aを外嵌
する可撓性の弾性素材(例えば、ネオプレンゴム、ウレ
タン樹脂等)よりなる内゛側加圧筒体3と、内側加圧筒
体3に外嵌した可撓性の弾性素材(例えば、ネオプレン
ゴム、ウレタン樹脂等)よりなるモールド4と、内側加
圧筒体3の外側に配置され且つモールド4との間に原料
充填空間Aを形成する剛体の外側受圧具5とを備えてい
る。 内圧ラバープレス装置1は、固定軸2の加圧流体案内面
2aと内側加圧筒体3との間に形成された加圧室6内に
、加圧流体給排口2bから圧力P(例えば、P−500
〜5,0OOk110II)の加圧流体7(例えば、油
、グリセリン、はう酸水又は空気等)が供給されること
により内側加圧筒体3及びモールド4を膨張(図中2点
tlIm参照)させて、原料充填空間Aに供給済みのセ
ラミック粉体等よりなる原料Sを内側から外側受圧具5
の内周面5aに向って押圧して加圧成形する。そして、
内圧ラバープレス装!!1は、所定の加圧成形時間が経
過したならば、加圧室6内の加圧流体1が加圧流体給排
口3から排出されるのに伴ない内側加圧筒体3及びモー
ルド4を元の形状に弾性復帰させ、外側受圧具5に螺着
されている保持具8及び蓋体9が取外され、原料充填空
間A内から成形品(図示は省略)が抜き取られる。
Conventionally, as shown in FIG. 13, an internal pressure rubber press device @1 has a pressurized flow closed inner surface 2a formed on the outer peripheral surface and a pressurized fluid supply/discharge port 2b opened in the pressurized fluid guide surface 2a. a fixed shaft 2, an inner pressurizing cylinder 3 made of a flexible elastic material (for example, neoprene rubber, urethane resin, etc.) that fits around the pressurized fluid guide surface 2a of the fixed shaft 2; A raw material is filled between a mold 4 made of a flexible elastic material (for example, neoprene rubber, urethane resin, etc.) fitted onto the pressure cylinder 3 and the mold 4 which is placed outside the inner pressure cylinder 3. A rigid outer pressure receiving device 5 that forms a space A is provided. The internal pressure rubber press device 1 supplies a pressure P (for example, , P-500
~5,0OOk110II) of pressurized fluid 7 (for example, oil, glycerin, hydrochloric acid, air, etc.) is supplied to inflate the inner pressurized cylinder 3 and mold 4 (see 2 points tlIm in the figure). Then, the raw material S made of ceramic powder etc. that has already been supplied to the raw material filling space A is transferred from the inside to the outside pressure receiving tool 5.
Pressure molding is performed by pressing toward the inner circumferential surface 5a of. and,
Internal pressure rubber press equipment! ! 1, when a predetermined pressure molding time has elapsed, the pressurized fluid 1 in the pressurized chamber 6 is discharged from the pressurized fluid supply/discharge port 3, and the inner pressurized cylinder 3 and mold 4 is elastically returned to its original shape, the holder 8 and lid 9 screwed onto the outer pressure receiving tool 5 are removed, and the molded product (not shown) is extracted from the raw material filling space A.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかし、高圧の加圧流体7で加圧成形された成形品は、
加圧流体1の排出に伴ない非加圧状態となプても、その
内部に発生する残留応力により外側受圧具5の内周面5
aに抑圧密着する状態を維持する。そのため、従来の内
圧ラバープレス装置1は、外側受圧具5の内部から成形
品を抜き取ることが非常に難しく成形品を破損させるこ
とがある。更に、従来の内圧ラバープレス装置1は、外
側受圧具5の内周面5aから密着する成形品を抜き取る
必要があるため、外側受圧具5の内周面5aに凹凸面を
形成することが不可能であり、外嵌面が平坦な成形品し
か成形で°きない。
However, molded products that are pressure-molded using high-pressure pressurized fluid 7,
Even if the pressurized fluid 1 is discharged and becomes unpressurized, the inner circumferential surface 5 of the outer pressure receiving device 5 may be damaged due to the residual stress generated inside it.
Maintain a state of tight contact with a. Therefore, in the conventional internal pressure rubber press device 1, it is very difficult to extract the molded product from the inside of the outer pressure receiving tool 5, and the molded product may be damaged. Further, in the conventional internal pressure rubber press device 1, it is necessary to extract the molded product that is in close contact with the inner peripheral surface 5a of the outer pressure receiving tool 5, so it is impossible to form an uneven surface on the inner peripheral surface 5a of the outer pressure receiving tool 5. However, only molded products with a flat outer fitting surface can be molded.

【発明の目的】[Purpose of the invention]

本発明は、上記問題点に鑑み、原料充填空間内から成形
品を何ら破損させることなく極めて簡単に抜き取ること
ができると共に、凹凸の外周面を有する成形品の加圧成
形を可能とする内圧ラバープレス装置の提供を目的とす
る。
In view of the above-mentioned problems, the present invention provides an internal pressure rubber that allows the molded product to be removed from the raw material filling space extremely easily without causing any damage, and also enables pressure molding of the molded product having an uneven outer circumferential surface. The purpose is to provide press equipment.

【問題点を解決するための手段】[Means to solve the problem]

本発明の要旨は、外周面に加圧流体案内面が形成されて
いると共に該加圧流体案内面に第1加圧流体給排口が開
口された固定軸と、固定軸の加圧流体案内面を外嵌する
可撓性の内側加圧筒体と、内側加圧筒体の外側に配置さ
れ且つ内側加圧筒体との間に原料充填空間を形成する外
側受圧具とを備えた内圧ラバープレス装置にお、いて、
前記外側受圧具は、剛性の大きな素材より成り且つ周方
向に分割された複数の分割片を連接して前記原料充填空
間の外周壁面を形成する分割剛性型と、分割剛性型の外
周面をバックアップし且つ外周面に加圧流体受圧面を形
成した可撓性の外側加圧筒体と、外側加圧筒体を外嵌し
且つ内周面に形成された加圧流体案内面に第2加圧流体
給排口を開口した保持ケースとを備えたことである。 (作 用1 分割剛性型は、複数の分割片を連接した筒状体の形状が
維持されるように、第1加圧流体袷排日及び第2加圧流
体給排口から夫々所定圧の加圧流体が供給されると、そ
の外周面が外側加圧筒体で緊締されると共に、その内周
面が加圧された原料を介して押圧される。加圧流体によ
る所定時間の加圧が経過した後に加圧流体が排出される
と、分割剛性型は、外周面に対する外側加圧筒体の締付
ケカ解除されると共に、成形品に発生していル残留応力
で内周面が押圧されて分割片の連接状態を解除して拡径
する。成形品は、分割剛性型の拡径に伴ない、分v1剛
性型の内周面に対する押圧力がなくなるか又は非常に小
さくなるため、極めて簡単に原料充填空間から抜き取ら
れる。 [実施例の説明] 次に、本発明に係る内圧ラバープレス装M(以下、「本
発明装置」という)を図面に示す実施例に基づいて説明
する。 (第1実滴例) 第1四乃至第5図は、第1実施例の本発明装置11を示
すものである。 本発明装置11における改良箇所である外側受圧具15
を除いた構造は、前記第13図に示すものと同じであっ
て、同一符号のものは同一部材である。 外側受圧具15は、前記原料充填空間Aの外周壁面を内
周面17aで形成する分割剛性型17と、分割剛性型1
7の外周面17bをバックアップする可撓性の外側加圧
同体18と、外側加圧筒体18を外嵌する保持ケース1
9とを備えている。 前記分glJ削性型17は、剛性の大きな素材(例えば
・鋼、アルミニューム又は高硬度の合成趣旨等)より適
宜肉厚T(例えば、T−3〜10■)で形成され且つ周
方向に分割された複数の分割片1B、16゜16を連接
したものであって、各分割片16の離接端面16aを固
定軸2の軸長方向に沿うように形成しである。なお、分
割剛性型17は、その形状が円筒体の外に、図示は省略
したが、成形対象の立体形状に対応した四角筒体又は三
角筒体等の横断面適宜形状の筒状体に形成されると共に
、内周面17aが平滑面の外に、梨地面の如き適宜形状
の凹凸面とされる。更に、分割剛性型17は、図示は省
略したが、隣接する分割片16.16の対向する離接端
面16a、16c間の適所に強制離隔用のコイルバネを
内蔵させ、外側加圧筒体18によるバックアップが解除
されたときには自動的に拡径するように構成することも
勿論可能である。更に、分割剤性型17の配置は、保持
ケース19の内側凹部に嵌着するほかに、図示は省略し
たが、上方の蓋体9と下方の蓋体10との間に配置する
ことも可能である。 前記外側加圧筒体18は、可撓性の弾性素材(例えば、
ネオブレンゴム、ウレタン樹脂等)より形成され、その
上下端が保持ケース19に水密状態に保持されている。 外側加圧筒体18は、外周面に加圧流体案内18aが形
成され、保持ケース19の加圧流体案内面19aとの間
に流体導入空間2oを形成している。なお、外側加圧筒
体18は、図示は省略したが、内周面18bに、可°撓
性の弾性素材で形成された保護筒を必要に応じて内嵌す
ることがある。 前記保持ケース19は、剛体に形成され、加圧流体案内
面19aに第2加圧流体給排口19b、19cを開口し
である。 固定軸2に内側加圧筒体3を外嵌した加圧具は、本実施
例においては、円柱状に形成されたものが1本だけ配置
されているが、何らこれに限定するものではなく、図示
は省略したが、内側加圧筒体3の外周面の横断面形状が
多角形又は楕円等の適宜形状のものを適宜本数だけ配置
することも勿論可能である。 本発明装W111にオイルからなる加圧流体7を給排す
る加圧流体給排装置30を第3図に示す実施例に基づい
て説明する。加圧流体給排装置30は、流体供給装置5
6と高低圧分岐装置57とドレン配管58とからなる。 流体供給装置56を構成する低圧用ポンプ31及びブー
ス用ポンプ32は、オイルタンク33に吸引口31a、
32aを臨ませである。低圧用ポンプ31の吐出口31
bは、チエツクバルブ34を介して流体主管35に接続
配管されている。低圧用ポンプ31の吐出口31bとチ
エツクバルブ34との間には、圧力スイッチ36及びリ
リーフパルス37が接続配管されている。ブース用ポン
プ32の吐出口32bは、ブーストシリンダ38の流入
口38a及びリリーフバルブ40に接続配管されている
。ブーストシリンダ38の吐出口38bは、チエツクバ
ルブ41を介して前記流体主管35に接続配管されてい
る。ブーストシリンダ38の吐出口38bとチエツクバ
ルブ41との間には、圧力スイッチ42が接続配管され
ている。低圧用ポンプ31及びブース用ポンプ32を起
動停止する操作回路43は、初期圧設定用の圧力スイッ
チ36が設定圧力検知信号を出力するまで初期加圧用ポ
ンプ31のみを起動させ、圧力スイッチ36が出力する
設定圧力検知信号を受けたときに、初期加圧用ポンプ3
1を停止する共にブース用ポンプ32を起動させる。更
に、操作回路43は、高圧設定用の圧力スイッチ42が
設定検知信号を出力するまでブース用ポンプ32を起動
させ、圧力スイッチ42が出力する設定圧力検知信号を
受けたとき、ブース用ポンプ32を停止させる。オイル
タンク33には、液面検出スイッチ60が配置されてい
る。前記高低圧分岐装置57は、流体主管35にチエツ
クバルブ44を介して接続された高圧供給管45と、流
体主管35にチエツクバルブ44及び流m調整弁46を
介して接続された低圧供給管47と、高低差圧保障装置
48とからなる。 高低差圧保障装置48は、高圧供給管45に接続された
圧力スイッチ49と、低圧供給管47に接続された圧力
スイ、ツチ50と、低圧供給管47に接続されたリリー
フバルブ59と、両圧力スイッチ49.50の検知圧力
の差圧ΔPを検知差圧信号aとして入力すると共に検知
差圧ΔPが設定差圧となるまでリリーフバルブ50に増
圧又は減圧の操作信号すを出力する操作回路51とから
なる。高圧供給管45は、バルブ53を介して固定軸2
の第1加圧流体給排口2bに接続されている。低圧供給
管47は、バルブ52を介して保持ケース19の第2加
圧流体給排口19bに接続されている。前記オイルタン
ク33に通じるドレン配管58は、第1加圧流体給排口
2b及び第2加圧流体給排口19cの夫々にバルブ54
.55を介して接続されている。 次に、本発明装置11の動作を、加圧流体給排装置30
の動作と共に説明する。先ず、第1図に示す如く、保持
ケース19に固定軸2を挿着し、分割片16.16.1
6を連接してなる分割剛性型17とモールド4との間に
形成された原料充填空間Aに原料Sを充填する。そして
、固定軸2の肩部2Cに蓋体9を嵌着して原料充填空間
A8覆蓋すると共に、保持ケース19に保持具8を螺着
して準備を完了する。 次に、第3図に示す如く、加圧流体供給装置30から供
給される加圧流体7(例えば、油、グリセリン、はう酸
水又は空気等)は、高圧供給管45を介して固定軸2の
第1加圧流体給排口2bに供給されると共に、低圧供給
管41を介して保持ケース19の第2加圧流体給排口1
9bに供給される。固定軸2の第1加圧流体給排口2b
に供給された高圧の加圧流体7aは、供給量の増大に伴
ない内側加圧筒体3の内周部3aを押圧して拡径させ、
モールド4を介して原料Sを加圧する。保持ケース19
の第2加圧流体給排口19bに供給さた低圧の加圧流体
7bは、流体導入空間20内に導入iれ、外側加圧筒体
18の加圧流体受圧面18aを押圧する。押圧された外
側加圧筒体18は、分割剛性型17の外周面17bを締
付けて、分割剛性型17を構成する分割片16,16.
16(第2図参照)の夫々対向する離接端面16a、1
6a同志を密着当接させる。高圧の流体7bと低圧の加
圧流体7bとの差圧ΔPは、分割剛性型17を構成する
分割片16.16.16の夫々対向する離接端面16a
、16a同志を密着当接させるに充分な圧力とし、分割
剛性型17を極度に変形又は破壊させない圧力以下とす
る。所定の加圧時間が経過したならば、加圧流体7a、
7bを減圧させつつ排出する。加圧流体7a・7bの減
圧は、前記分割片16,16.16の夫々対向する離接
端面16a、16a同志の密着当接を維持するように、
所定の差圧ΔPを保持させつつ行なわれる。 内側加圧筒体3及びモールド4は、加圧流体7aの減圧
に伴ない自動的に元の形状に弾性復帰する。 本発明装置11に供給されていた加圧流体7a、7bの
圧力がゼロになると、分割剛性型17は、成形品10の
残留応力を内周面17aに受けて、分割型16,113
゜16の夫々対向する離接端面16a、16a同志を離
隔させるように若干拡径し、成形品10との密着当接を
断つ。最後に、第4図に示す如く、保持ケース19に螺
着されている保持具8及び蓋体9が取外され、原料充填
空間A内から成形品10を扱き取る。この成形品10の
扱き取りは、成形品10と分割剛性型17との密着当接
が断たれているため、成形品10を何ら破損させること
なく円滑にできる。 〈第2実施例) 第5図乃至第7図は、第2実施例の本発明装置61を示
すものである。 本発明装@61は、原料充填空間Aに充填された原料S
の初期加圧を、原料充填空間Aの一局部(例えば、中央
寄り領域)から原料充填空間Aの上下端部に向って時間
的に順次拡大させることにより、原nSに含まれている
成形障害物(例えば、原料Sが粉体の場合には空気、ま
た原料Sが練土の場合には水分)を原料充填空間Aの上
下端部に絞り寄せて障害物排除を完全にし、長尺の成形
品を加圧成形できるようにしたものである。 本発明装置61が前記第1実施例の本発明装置11と異
る所は、内側加圧筒体63である。内側加圧筒体63は
、左半分を省略した第5図に示す如く、内周面63aを
固定軸2の加圧流体案内面2aに密着当接させである。 内側加圧筒体63は、可撓性の弾性素材(例えば、ネオ
ブレンゴム、ウレタン樹脂等)より形成されたものであ
って、その硬度がJISゴム硬度40〜90度の範囲で
適宜選択され、上下端部間に位置する適宜−局部を初期
加圧領域63a−1としである。固定軸2は、内側加圧
筒体63の初期加圧領域133a−1に対向する部位に
、第1加圧流体袷排口2bが開口されている。 内側加圧筒体63における上下端寄りのシール構造64
は、第7図に示す如く、固定軸2に凹設された環状凹溝
65の内部に内側加圧筒体63の端縁部63Cが収嵌さ
れ、端縁部63cの内周面63a側にシールリング収嵌
溝66が凹設され、シールリング収嵌溝66に収嵌した
シールリング67が環状凹溝65の内周面65aに密着
され、環状凹溝65の内奥部65bが端縁部63cのバ
ックアップ部とされたものである。 シールリング67は、断面0状のものに限定するもので
はなく、断面V状又はX状等の断面形状のものから適宜
選択される。 次に、第2実施例における本発明装置61の動作を用法
に基づいて説明す′る。加圧流体給排装置30(第3図
参照)から高圧の加圧流体7aが固定軸2の第1加圧流
体給排口2bに供給されると共に、低圧の加圧流体7b
が保持ケース19の第2加圧流体給排口19bに供給さ
れる。保持ケース19の第2加圧流体給排口19bに供
給さた低圧の加圧流体7bは、流体導入空間20内に導
入され、外側加圧筒体18の加圧流体受圧面18aを押
圧する。押圧された外側加圧同体18は、分割剛性型1
7の外周面17bを締付けて、分割剛性型17を構成す
る分割片16,16.16(第2図参照)の夫々対向す
る離接端面16a、 lea同志を密着当接させる。高
圧の流体7aと低圧の加圧流体7bとの差圧ΔPは、分
割剛性型17を構成する分割片16.16.16の夫々
対向する離接端面16a、16a同志を密着当接させる
に充分な圧力とし、分割剛性型17を極度に変形又は破
壊させない圧力以下とする。固定軸2の第1加圧流体供
給口2bに供給された高圧の加圧流体1aは、所定圧力
(例えば、50〜200に9/Crj)になると、初期
加圧領!!63a−1のみを押圧して、第6図に示す如
く、初期加圧煩lfi 63a−1を内方に膨張変形さ
せる。モールド4は、内側加圧筒体63の初期加圧領1
i1.63a−1と対向する領域の外周面4aのみが押
圧されてモールド内径が減少し、原料Sを加圧する。加
圧された原料S中の前記成形障害物(図示は省略)は、
障害物に対する圧力が上昇するため、加圧されていない
原料中の大きな粒子間隙で形成された排出通路へ急速に
流出し、加圧された原料S中に圧縮された状悪で残留す
ることはない。加圧流体7は、その供給量が増大するに
伴ない、内側加圧筒体63の初期領bll 63a−1
に隣接する時期加圧領域に流出し、この次期加圧領域の
膨張変形を内側加圧筒体63の上下端部に向って順次拡
大させて行く。そして、原料充填空間A内に充填されて
いる原料Sは、内側加圧筒体63の初期加圧領域63a
−1と対向する原料充填空間A内の領域から上下端部に
向って順次加圧されて行く。原料充填空間Aに充填され
ている原料S中に介在する成形障害物は、原料Sの順次
加圧に伴ない、内側加圧筒体63の初期領域63a−1
と対向する原料充填空間A内の領域から上下端部に向っ
て絞り寄せられられる。その結果、加圧された原料S中
には、成形品を破損に至らしめる成形障害物である圧縮
空気又は余分な水分等が残留することはない。内側加圧
筒体63の内周面63aの全面と固定軸2の加圧流体案
内面2aとの間に供給された加圧液体7aは、更に所定
圧力(例えば、500〜5,0OOk+1/cd)まで
昇圧され、原料Sを加圧成形する。所定の加圧時間が経
過したならば、加圧流体7a、7bを減圧させつつ排出
する。加圧流体7a、7bの減圧は、前記分割片16,
16,16 (第2因参照)の夫々対向する離接端面1
6a、 16a同志の密着当接を維持するように、所定
の差圧ΔPを保持させつつ行なわれる。内側加圧筒体6
3及びモールド4は、加圧流体1aの減圧に伴ない自動
的に元の形状に弾性復帰する。本発明装置61に供給さ
れていた加圧流体7a、 7bの圧力が所定圧まで減圧
されると、前記第1実施例と同様に、原料充填空間A内
から成形品が抜き取られる。この成形品の抜き取りは、
成形品と分割剛性型17との密着当接が断たれているた
め、成形品を何ら破損させることなく円滑にできる。 (第3実施例) 第8図及び第9図は、第3実施例の本発明装置71を示
すものである。 本発明装置71は、前記第2実施例の本発明装置61と
同様に原料充填空間Aに充填された原料Sの初期加圧を
、原料充填空間Aの一局部(例えば、中央寄り領域)か
ら原料充填空間Aの上下端部に向って時間的に順次拡大
させることにより、原料Sに含まれている成形障害物を
原料充填空間Aの上下端部に絞り寄せて障害物排除を完
全にし、長尺の成形品を加圧成形できるようにしたもの
である。 本発明装置71が前記第2実施例の本発明装置61と異
る所は、内側加圧筒体73である。内側加圧筒体73は
、左半分を省略した第8図に示す如く、可撓性の弾性素
材(例えば、ネオブレンゴム、ウレタン樹脂等)より形
成されたものであって、その硬度がJISゴム硬度40
〜90度の範囲で適宜選択される。内側加圧筒体73の
外周面73aには、第9囚人に示す如く、外周面長手方
向に沿って適宜ピッチP毎(例えば、P−10〜100
a+m )に環状凹溝73b、73b・・・が凹設され
、7分割された加圧領域73a−1、738−2・・・
、 73a−7が形成されている。これら複数の加圧領
域のうち任意の加圧領域(例えば、中央の加圧領域73
a−4)は、初期加圧領域とされている。環状凹溝73
b、73b・・・の夫々には、弾性シールリング74.
74・・・が締まりばめ状態に嵌着されている。弾性シ
ールリング74は、断面を0状に限定するものではなく
、図示は省略が、断面が■状又はX状等の適宜形状のも
のを選択することも勿論可能である。内側加圧筒体73
の内周面73aの上下端寄りには、第8図に示す如く、
シール構造64゜64(第7図参照)が設けられている
。固定軸2は、内側加圧筒体73の初期加圧領Ti17
3a−4に対向する部位に、第1加圧流体給排口2bが
開口されている。 なお、前記内側加圧筒体73の内周面73aに形成され
る加圧領域の分割数は、図示実施例の如き7分割された
ものに限定するものではなく、図示は省略したが、2分
割以上のものであればよい。 次に、第3実施例における本発明装置71の動作を用法
に基づいて説明する。加圧流体給排装置30(第3図参
照)から高圧の加圧流体7aが固定軸2の第1加圧流体
給排口2bに供給されると共に、低圧の加圧流体7bが
保持ケース19の第2加圧流体給排口19bに供給され
る。保持ケース19の゛第2加圧流体給排口19bに供
給さた低圧の加圧流体7bは、流体導入空間20内に導
入され、外側加圧筒体18の加圧流体受圧面18aを押
圧する。押圧された外側加圧筒体18は、分割剛性型1
7の外周面17bを締付けて、分割剛性型17を構成す
る分割片16,16.16(第2図参照)の夫々対向す
る離接端面16a、16a同志を密着当接させる。固定
軸2の第1加圧流体供給口2bに供給された高圧加圧流
体7aは、所定圧力(例えば、50〜200に+3/c
tJ)になると、第9図人に示す如く、初期加圧領域7
3a−4のみを押圧して初期加圧領域73a−4を内方
にi張度形させる。 モールド4は、内側加圧筒体73の初期加圧領域73a
−4と対向する領域の外周面4aのみが押圧されてモー
ルド内径が減少し、原料Sを加圧する。加圧された原料
S中の成形障害物(図示は省略)は、成形障害物に対す
る圧力が上昇するため、加圧されていない原料中の大き
な粒子間隙で形成された排出通路へ急速に流出し、加圧
された原料S中に圧縮された状態で残留することはない
。内側加圧筒体73の初期加圧領域73a−4は、加圧
流体7aの供給量が増大するに伴ない拡径mが大きくな
る。内側加圧筒体73における初期加圧領域73a−4
と隣接する加圧領w1.73a−3,73a−5との間
に凹設された環状凹溝73b、73bの部分は、第9図
日に示す如く、外方へ変形して拡径する。環状凹溝73
b、73bに締まりばめ状態で嵌着された弾性シールリ
ング74゜74は、環状囲y473b、73bの拡径に
伴ないリング内径を増大させ、固定軸2の加圧流体案内
面2aとの間に間隙を形成してシール機能を喪失する。 加圧流体7は、弾性シールリング74 、74のシール
機能の喪失に伴ない、内側加圧筒体73の初期加圧領域
73a−4に隣接する次期加圧領域73a−3,73a
−5に流出し、この次期加圧領域73a−3,73a−
5を押圧する。 この様に高圧の加圧流体7aは、供給量が増大するのに
伴ない、加圧領域の膨張変形を内側加圧筒体73の上下
端部に向って順次拡大させて行く。そして、原料充填空
間A内に充填されている原料Sは、内側加圧筒体63の
初期加圧領域63a−1と対向する原料充填空間A内の
領域から上下端部に向って順次加圧されて行く。原料充
填空間Aに充填されている原料S中に介在する成形障害
物は、原料Sの順次加圧に伴ない、内側加圧筒体73の
初期領域73a−4と対向する原料充填空間A内の領域
から上下端部に向って絞り寄せられられる。その結果、
加圧された原料S中には、成形品を破損に至らしめる成
形障害物である圧縮空気または余゛分な水分等が残留す
ることはない。内側加圧筒体73の内周面73aの全面
と固定軸2の加圧流体案内面2aとの間に供給された加
圧液体7aは、更に所定圧力(例えば、500〜s 、
 ooo−/、j)まで昇圧され、原料Sを加圧成形す
る。所定の加圧時間が経過したならば、加圧流体7a、
7bを減圧させつつ排出する。加圧流体7a、7bの減
圧は、前記分割片16,16.16 (第2図参照)の
夫々対向する離接端面16a、16a同志の密着当接を
維持するように、所定の差圧ΔPを保持させつつ行なわ
れる。内側加圧筒体73及びモールド4は、加圧流体7
aの減圧に伴ない自動的に元の形状に弾性復帰する。本
発明装@11に供給されていた加圧流体7a、7bが所
定圧力まで減圧すると、前記第1実施例と同様に、原料
充填空間A内から成形品が抜き取られる。この成形品の
抜き取りは、成形品と分割剛性型17との密着当接が断
たれているため、成形品を何ら破損させることなく円滑
にできる。 (第4実施例) 第10図及び第11図は、第4実施例の本発明装置81
を示すものである。 本発明装置81は、前記第2.3実施例の本発明装置6
1.71と同様に原料Sに含まれている成形障害物を原
料充填空間Aの上下端部に絞り寄せて障害物排除を完全
にし、長°尺の成形品を加圧成形できるようにしたもの
である。 本発明装置81が前記第2実施例の本発明装置61と異
なる所は、内側加圧筒体83である。内側加圧筒体83
は、可撓性の素材(例えば、ネオブレンゴム、ウレタン
樹脂等)より形成され、芯材層84を被f!層asで被
覆したものである。芯材層84は、別個に形成された適
宜長さしく例えば、し−10〜100ffi+a)のリ
ング材84a、84b−84iを、夫々の端面同志を当
接した状態で一列状に配置したものである。各リング材
84a、84b・・・841は、中央のリング材84e
から上下のリング材84a、84iに向って行く程に、
弾性係数が段階的に大きくなるようにしである。所望の
弾性係数を得るには、リング材84a、84b・・・8
41のゴム硬度(例えば、JISゴム硬度40〜90度
)を適宜選択することにより行なうのが一般的である。 内側加圧筒体83の内周面83aは、9分割された加圧
領域83−1.83−2・・・83−9が形成され、中
央の加圧領域83−5を初期加圧領域とする。 固定軸2は、内側加圧筒体83の内周面83aに密着当
接する外周面が加圧流体案内面2aとして形成されてい
る。固定軸2の加圧流体案内面2aには、前記内側加圧
筒体83の初期加圧領域83−5に対向する部位に第1
加圧流体給排口2bを開口しである。 なお、前記内側加圧筒体83に形成される加圧領域の分
割数は、図示実施例の如き9分割されたものに限定する
ものではなく、2分割以上のものであればよい。 次に、第4実施例における本発明袋fi81の動作を説
明する。加圧流体給排装置30(第3図参照)から高圧
の加圧流体7aが固定軸2の第1加圧流体給排口2bに
供給されると共に、低圧の加圧流体7bが保持ケース1
9の第2加圧流体給排口19bに供給される。保持ケー
ス19の第2加圧流体給排口19bに供給さた低圧の加
圧流体7bは、流体導入空間20内に導入され、外側加
圧筒体18の加圧流体受圧面18aを押圧する。押圧さ
れた外側加圧筒体18は、分割剛性型17の外周面17
bを締付けて、分割剛性型17を構成する分割片16,
16.16 (第2図参照)の夫々対向する離接端面1
6a、16a同志を密着当接させる。固定軸2の第1加
辻流体供給口2bに供給された低圧の加圧流体7a(例
えば、50〜200に9/c+j)は、第11図(8)
に示す如く、初期加圧領域83−5のみを押圧して初期
加圧領域83−5を内方に膨張変形させる。その理由は
、初期加圧領域83−5の弾性係数が隣接する加圧領域
83−4.83−6の弾性係数に比べて小さいことから
、初期加圧領域83−5が容易に変形するためである。 モールド4は、内側加圧筒体83の初期加圧領域83−
5と対向する領域の内周面4aのみが押圧されてモール
ド内径が増大し、原料Sを加圧する。加圧された原料S
中の成形障害物(図示は省略)は、成形障害物に対する
圧力が上昇するため、加圧されていない原料中の大きな
粒子間隙で形成された排出通路へ急速に流出し、加圧さ
れた原料S中に残留することはない。内側加圧筒体83
は、加圧流体7aの供給圧力が増大するに伴ない、初期
加圧領域83−5に隣接する次期加圧領域83−4.8
3−6に加圧流体1aが流出し、この次期加圧領域83
−4.83−6を押圧する。なお、加圧流体7aの圧力
は、内側加圧筒体83の初期加圧領域83−5のみを加
圧する場合より、次期加圧領域83−4.83−6を加
圧する場合の方が増大する。加圧力の増大現象により、
中央領域で初期加圧された原料Sは、更に加圧される。 この加圧力の増大現象は、最初に加圧された原料S中に
残存する微細な成形障害物をも排出することになり、障
害物排除を完全なものにする。加圧流体1aは、昇圧す
るのに伴ない、次期加圧領域の膨張変形を内側加圧筒体
83の上下端部に向って順次拡大させて行く。原料充填
空間A内に充填されている原料Sは、内側加圧筒体83
の初期加圧領it 83−5と対向する原料充填空間A
内の領域から端部に向って順次加圧されて行く、原料充
填空間Aに充填されている原料S中に介在する成形障害
物は、原料Sの順次加圧に伴ない、内側加圧筒体83の
初期領域83−5と対向する原料充填空間A内の領域か
ら端部に向って絞り寄せられられる。その結果、加圧さ
れた原料S中には、成形品を破損に至らしめる成形障害
物が残留することはない。内側加圧筒体83の内周面8
3aの全面と固定軸2の加圧流体案内面2aとの間に供
給された加圧液体7aは、更に所定圧力(例えば、50
0〜5.000h / car )まで昇圧され、原料
Sを加圧成形する。所定の加圧時間が経過したならば、
加圧流体7a、7bを減圧させつつ排出する。加圧流体
7a、7bの減圧は、前記分割片16,16.16の夫
々対向する離接端面16a、16a同志の密着当接を維
持するように、所定の差圧ΔPを保持させつつ行なわれ
る。 内側加圧筒体13及びモールド4は、加圧流体7aの減
圧に伴ない自動的に元の形状に弾性復帰する。 本発明装置!81に供給されていた加圧流体7の圧力が
所定圧まで減圧されると、分割剛性型17は、内周面1
7aに成形品の残留応力を受けて、分割型16、16.
16の夫々対向する離接端面16a、16a同志を離隔
させるように若干拡径し、成形品との密着当接を断つ。 最後に、保持ケース19に螺着されている保持具8及び
蓋体9が取外され、原料充填空間A内から成形品が抜出
される。この成形品の抜出は、成形品と分割剛性型17
との密着当接が断たれているため、成形品10を何ら破
損させることなく円滑にできる。 (第5実施例) 第12図は、第5実施例の本発明装置91を示すもので
ある。 本発明装置1t91は、前記第2.3.4実施例の本発
明装[61,71,81と同様に原料Sに含まれている
/成形障害物を原料充填空間Aの上下端部に絞り寄せて
障害物排除を完全にし、長尺の成形品、を加圧成形でき
るようにしたものである。 本発明装置91が前記第2実施例の本発明装置61と異
なる所は、内側加圧筒体93である。内側加圧筒体93
は、結果的に第3実施例の内側加圧筒体73と第4実施
例の内側加圧筒体83とを組合せたとこ/3 ニ61造
上の特徴がある。即ち、内側加圧筒体93は、芯材W!
J94の弾性係数を中央のリング材94eから上下のリ
ング材94a、94tに向って行く程に段階的に大きく
なるようにすると共に、被覆層95の内周面に環状凹溝
93b、93b・・・を凹設し且つ各環状凹溝93bに
弾性シールリング74を嵌着させ、弾性シールリング7
4を固定軸2の加圧流体案内面2aに密着させたもので
ある。固定軸2の加圧流体案内面2aには、前記芯材層
94の弾性係数が塔も小さなリング材94eに対向する
部位に、第1加圧流体給排口2bが開口されている。 【本発明の効果] 以上詳述の如く、本発明装置は、次の如き優れた効果を
有する。 ■ 分割剛性型は、その外周面に対する外側加圧筒体の
締付けが解除されると、成形品に発生している残留応力
で内周面が押圧され、分割剛性型の内周面に対する押圧
力がなくなるか又は非常に小さくなるまで拡径する。そ
の結果、成形品を何らは破損させることなく復き取るす
ることが可能となり、従来に比べて歩留を飛躍的に向上
させることができる。 ■ 分割剛性型を成形品脱型に支障のない状態まで拡径
させることが可能となるため、凹凸の外周面を有する成
形品の加圧成形をできる。その結果、内圧ラバー成形の
適用範囲が従来に比べて広範囲となる。
The gist of the present invention is to provide a fixed shaft having a pressurized fluid guide surface formed on its outer peripheral surface and a first pressurized fluid supply/discharge port opened in the pressurized fluid guide surface, and a pressurized fluid guide of the fixed shaft. An internal pressure device comprising a flexible inner pressurizing cylinder whose surface is fitted onto the outside, and an outer pressure receiver disposed outside the inner pressurizing cylinder and forming a raw material filling space between the inner pressurizing cylinder and the inner pressurizing cylinder. In the rubber press equipment,
The outer pressure receiving device is made of a material with high rigidity and has a divided rigid type in which a plurality of circumferentially divided pieces are connected to form an outer peripheral wall surface of the raw material filling space, and a divided rigid type that backs up the outer peripheral surface of the raw material filling space. and a flexible outer pressurizing cylinder having a pressurized fluid pressure receiving surface formed on its outer circumferential surface, and a second pressurizing cylinder having a pressurized fluid guiding surface that fits around the outer pressurizing cylinder and is formed on its inner circumferential surface. A holding case having a pressurized fluid supply/discharge port is provided. (Function 1) In the split rigid type, a predetermined pressure is applied from the first pressurized fluid outlet and the second pressurized fluid supply/discharge port, respectively, so that the shape of the cylindrical body in which a plurality of divided pieces are connected is maintained. When the pressurized fluid is supplied, its outer circumferential surface is tightened by the outer pressurizing cylinder, and its inner circumferential surface is pressed through the pressurized raw material. Pressurization by the pressurized fluid for a predetermined period of time When the pressurized fluid is discharged after the elapse of time, the split rigid type releases the tightening of the outer pressurizing cylinder against the outer circumferential surface, and the inner circumferential surface is pressed by the residual stress generated in the molded product. The joint state of the divided pieces is released and the diameter of the molded product is expanded.As the diameter of the divided rigid mold increases, the pressing force against the inner circumferential surface of the v1 rigid mold disappears or becomes very small. It is very easy to extract the raw material from the filling space. [Explanation of Examples] Next, an internal pressure rubber press apparatus M according to the present invention (hereinafter referred to as "the apparatus of the present invention") will be described based on an example shown in the drawings. (First Actual Drop Example) Figures 14 and 5 show the device 11 of the present invention of the first embodiment.Outer pressure receiving tool 15 which is an improved part of the device 11 of the present invention
The structure except for is the same as that shown in FIG. 13, and the same reference numerals indicate the same members. The outer pressure receiving tool 15 includes a divided rigid type 17 in which the outer peripheral wall surface of the raw material filling space A is formed by an inner peripheral surface 17a, and a divided rigid type 1.
A flexible outer pressure member 18 backing up the outer circumferential surface 17b of 7 and a holding case 1 into which the outer pressure cylinder 18 is fitted.
9. The glJ machinability mold 17 is made of a material with high rigidity (for example, steel, aluminum, or high-hardness synthetic material) and has an appropriate wall thickness T (for example, T-3 to 10 mm), and is A plurality of divided pieces 1B, 16° 16 are connected, and the separated end surfaces 16a of each divided piece 16 are formed along the axial direction of the fixed shaft 2. In addition, the split rigid mold 17 may be formed into a cylindrical body having an appropriate cross-sectional shape such as a square cylinder or a triangular cylinder corresponding to the three-dimensional shape of the molding object, although not shown in the drawings. At the same time, the inner circumferential surface 17a is not only a smooth surface but also has an appropriately shaped uneven surface such as a satin surface. Furthermore, although not shown in the drawings, the split rigid type 17 has a built-in coil spring for forced separation at an appropriate location between the opposing separation end surfaces 16a and 16c of the adjacent split pieces 16.16, and Of course, it is also possible to configure the diameter to be expanded automatically when the backup is canceled. Furthermore, in addition to fitting the splitting agent mold 17 into the inner recess of the holding case 19, it is also possible to arrange it between the upper lid 9 and the lower lid 10, although not shown. It is. The outer pressure cylinder 18 is made of a flexible elastic material (for example,
(neobrene rubber, urethane resin, etc.), and its upper and lower ends are held in a watertight state by a holding case 19. The outer pressurized cylinder 18 has a pressurized fluid guide 18a formed on its outer peripheral surface, and forms a fluid introduction space 2o between it and the pressurized fluid guide surface 19a of the holding case 19. Although not shown in the drawings, the outer pressurizing cylinder 18 may have a protective cylinder formed of a flexible elastic material fitted into the inner circumferential surface 18b as necessary. The holding case 19 is formed into a rigid body, and has second pressurized fluid supply/discharge ports 19b and 19c opened on a pressurized fluid guide surface 19a. In this embodiment, only one pressurizing tool having an inner pressurizing cylinder 3 fitted onto a fixed shaft 2 is arranged in a cylindrical shape, but the present invention is not limited to this in any way. Although not shown in the drawings, it is of course possible to arrange an appropriate number of inner pressurizing cylinders 3 whose outer peripheral surface has an appropriate cross-sectional shape such as a polygon or an ellipse. A pressurized fluid supply and discharge device 30 for supplying and discharging pressurized fluid 7 made of oil to and from the device W111 of the present invention will be described based on an embodiment shown in FIG. The pressurized fluid supply/discharge device 30 is the fluid supply device 5
6, a high/low pressure branching device 57, and a drain pipe 58. The low pressure pump 31 and the booth pump 32 that constitute the fluid supply device 56 have a suction port 31a in the oil tank 33,
32a is facing me. Discharge port 31 of low pressure pump 31
b is connected to a main fluid pipe 35 via a check valve 34. A pressure switch 36 and a relief pulse 37 are connected between the discharge port 31b of the low pressure pump 31 and the check valve 34. The discharge port 32b of the booth pump 32 is connected to the inlet 38a of the boost cylinder 38 and the relief valve 40. A discharge port 38b of the boost cylinder 38 is connected to the main fluid pipe 35 via a check valve 41. A pressure switch 42 is connected between the discharge port 38b of the boost cylinder 38 and the check valve 41. The operation circuit 43 that starts and stops the low pressure pump 31 and the booth pump 32 starts only the initial pressurization pump 31 until the initial pressure setting pressure switch 36 outputs a set pressure detection signal, and the pressure switch 36 outputs the initial pressure setting pressure detection signal. When the set pressure detection signal is received, the initial pressurization pump 3
1 and starts the booth pump 32. Further, the operation circuit 43 starts the booth pump 32 until the pressure switch 42 for high pressure setting outputs a setting detection signal, and starts the booth pump 32 when the pressure switch 42 receives the setting pressure detection signal. make it stop. A liquid level detection switch 60 is arranged in the oil tank 33. The high and low pressure branching device 57 includes a high pressure supply pipe 45 connected to the main fluid pipe 35 via a check valve 44, and a low pressure supply pipe 47 connected to the main fluid pipe 35 via a check valve 44 and a flow adjustment valve 46. and a height differential pressure guarantee device 48. The pressure differential guarantee device 48 includes a pressure switch 49 connected to the high pressure supply pipe 45, a pressure switch 50 connected to the low pressure supply pipe 47, and a relief valve 59 connected to the low pressure supply pipe 47. An operating circuit that inputs the differential pressure ΔP between the detected pressures of the pressure switches 49 and 50 as a detected differential pressure signal a, and outputs an operating signal for increasing or decreasing pressure to the relief valve 50 until the detected differential pressure ΔP reaches the set differential pressure. It consists of 51. The high pressure supply pipe 45 is connected to the fixed shaft 2 via a valve 53.
The first pressurized fluid supply/discharge port 2b is connected to the first pressurized fluid supply/discharge port 2b. The low pressure supply pipe 47 is connected to the second pressurized fluid supply/discharge port 19b of the holding case 19 via a valve 52. A drain pipe 58 communicating with the oil tank 33 has valves 54 at each of the first pressurized fluid supply/discharge port 2b and the second pressurized fluid supply/discharge port 19c.
.. 55. Next, the operation of the device 11 of the present invention will be explained using the pressurized fluid supply and discharge device 30.
This will be explained along with the operation. First, as shown in FIG. 1, the fixed shaft 2 is inserted into the holding case 19, and the divided pieces 16.16.1
The raw material S is filled into the raw material filling space A formed between the split rigid mold 17 formed by connecting the molds 6 and the mold 4. Then, the lid 9 is fitted onto the shoulder portion 2C of the fixed shaft 2 to cover the raw material filling space A8, and the holder 8 is screwed onto the holding case 19 to complete the preparation. Next, as shown in FIG. 2 to the first pressurized fluid supply/discharge port 2b of the holding case 19, and the second pressurized fluid supply/discharge port 1 of the holding case 19 via the low pressure supply pipe 41.
9b. First pressurized fluid supply/discharge port 2b of fixed shaft 2
The high-pressure pressurized fluid 7a supplied to presses the inner circumferential portion 3a of the inner pressurizing cylinder 3 to expand its diameter as the supply amount increases,
The raw material S is pressurized through the mold 4. Holding case 19
The low pressure pressurized fluid 7b supplied to the second pressurized fluid supply/discharge port 19b is introduced into the fluid introduction space 20 and presses the pressurized fluid receiving surface 18a of the outer pressurized cylinder 18. The pressed outer pressure cylinder 18 tightens the outer circumferential surface 17b of the divided rigid mold 17, and the divided pieces 16, 16 .
16 (see FIG. 2), respectively opposing separated end surfaces 16a, 1
6a Bring the comrades into close contact. The pressure difference ΔP between the high-pressure fluid 7b and the low-pressure pressurized fluid 7b is determined by the opposing separation end surfaces 16a of the divided pieces 16, 16, and 16 constituting the divided rigid mold 17.
, 16a are brought into close contact with each other, and the pressure is set to a pressure that does not cause extreme deformation or destruction of the split rigid mold 17. After the predetermined pressurization time has elapsed, the pressurized fluid 7a,
7b is discharged while reducing the pressure. The pressure reduction of the pressurized fluids 7a and 7b is performed so as to maintain close contact between the opposing separated end surfaces 16a and 16a of the divided pieces 16 and 16.16, respectively.
This is performed while maintaining a predetermined pressure difference ΔP. The inner pressure cylinder 3 and the mold 4 automatically elastically return to their original shapes as the pressure of the pressurized fluid 7a is reduced. When the pressure of the pressurized fluids 7a and 7b supplied to the device 11 of the present invention becomes zero, the divided rigid mold 17 receives the residual stress of the molded product 10 on the inner peripheral surface 17a, and the divided molds 16, 113
The opposing end faces 16a, 16a of 16° are slightly expanded in diameter so as to be separated from each other, and the close contact with the molded product 10 is cut off. Finally, as shown in FIG. 4, the holder 8 and lid 9 screwed onto the holding case 19 are removed, and the molded product 10 is removed from the raw material filling space A. The molded product 10 can be handled smoothly without any damage to the molded product 10 because the molded product 10 and the split rigid die 17 are not in close contact with each other. (Second Embodiment) FIGS. 5 to 7 show an apparatus 61 of the present invention according to a second embodiment. The device of the present invention @61 is a raw material S filled in a raw material filling space A.
By temporally increasing the initial pressurization from a local part (for example, a region near the center) of the raw material filling space A toward the upper and lower ends of the raw material filling space A, molding defects contained in the original nS can be removed. By squeezing objects (for example, air when the raw material S is powder, or moisture when the raw material S is kneaded soil) into the upper and lower ends of the raw material filling space A, the obstructions are completely eliminated, and the long This allows molded products to be pressure molded. The present invention device 61 differs from the present invention device 11 of the first embodiment in the inner pressurizing cylinder 63. The inner pressurizing cylinder 63 has an inner circumferential surface 63a in close contact with the pressurized fluid guide surface 2a of the fixed shaft 2, as shown in FIG. 5 with the left half omitted. The inner pressure cylinder 63 is made of a flexible elastic material (for example, neoprene rubber, urethane resin, etc.), and its hardness is appropriately selected within the JIS rubber hardness range of 40 to 90 degrees. An appropriate local area located between the ends is defined as the initial pressurizing area 63a-1. The fixed shaft 2 has a first pressurized fluid outlet 2b opened at a portion facing the initial pressurizing area 133a-1 of the inner pressurizing cylinder 63. Seal structure 64 near the upper and lower ends of the inner pressurizing cylinder 63
As shown in FIG. 7, the end edge 63C of the inner pressurizing cylinder 63 is fitted into the annular groove 65 formed in the fixed shaft 2, and the inner circumferential surface 63a side of the end edge 63c is A seal ring fitting groove 66 is recessed in the seal ring fitting groove 66, and the seal ring 67 fitted in the seal ring fitting groove 66 is brought into close contact with the inner circumferential surface 65a of the annular groove 65, and the inner deep part 65b of the annular groove 65 is at the end. This serves as a backup portion for the edge 63c. The seal ring 67 is not limited to one having a zero cross section, but may be appropriately selected from those having a cross section such as a V shape or an X shape. Next, the operation of the device 61 of the present invention in the second embodiment will be explained based on its usage. High-pressure pressurized fluid 7a is supplied from the pressurized fluid supply/discharge device 30 (see FIG. 3) to the first pressurized fluid supply/discharge port 2b of the fixed shaft 2, and low-pressure pressurized fluid 7b is supplied to the first pressurized fluid supply/discharge port 2b of the fixed shaft 2.
is supplied to the second pressurized fluid supply/discharge port 19b of the holding case 19. The low pressure pressurized fluid 7b supplied to the second pressurized fluid supply/discharge port 19b of the holding case 19 is introduced into the fluid introduction space 20 and presses the pressurized fluid receiving surface 18a of the outer pressurized cylinder 18. . The pressed outer pressure unit 18 is divided into rigid type 1
The outer circumferential surfaces 17b of the split rigid die 17 are tightened to bring the opposing separated end surfaces 16a and lea of the split pieces 16, 16.16 (see FIG. 2) of the split rigid mold 17 into close contact. The pressure difference ΔP between the high-pressure fluid 7a and the low-pressure pressurized fluid 7b is sufficient to bring the opposing separated end surfaces 16a, 16a of the divided pieces 16, 16, and 16 constituting the divided rigid mold 17 into close contact with each other. The pressure is set at a pressure that does not cause extreme deformation or destruction of the split rigid mold 17. When the high-pressure pressurized fluid 1a supplied to the first pressurized fluid supply port 2b of the fixed shaft 2 reaches a predetermined pressure (for example, 50 to 200 to 9/Crj), it reaches the initial pressurization region! ! By pressing only 63a-1, initial pressurization lfi 63a-1 is expanded and deformed inward, as shown in FIG. The mold 4 is the initial pressure area 1 of the inner pressure cylinder 63.
Only the outer peripheral surface 4a of the area facing i1.63a-1 is pressed, the mold inner diameter is reduced, and the raw material S is pressurized. The forming obstruction (not shown) in the pressurized raw material S is
As the pressure against the obstruction increases, it will rapidly flow out into the discharge passage formed by the large particle gaps in the unpressurized raw material, and will not remain in a compressed state in the pressurized raw material S. do not have. As the supply amount of the pressurized fluid 7 increases, the initial area bll 63a-1 of the inner pressurizing cylinder 63 increases.
, and the expansion deformation of this next pressurizing area is gradually expanded toward the upper and lower ends of the inner pressurizing cylinder 63. The raw material S filled in the raw material filling space A is then transferred to the initial pressurized area 63a of the inner pressurized cylinder 63.
-1 is sequentially pressurized from the area in the raw material filling space A toward the upper and lower ends. Molding obstacles present in the raw material S filled in the raw material filling space A are removed from the initial region 63a-1 of the inner pressurizing cylinder 63 as the raw material S is sequentially pressurized.
The material is squeezed toward the upper and lower ends from the area in the raw material filling space A that faces the raw material filling space A. As a result, no compressed air or excess moisture remains in the pressurized raw material S, which is a molding obstacle that could cause damage to the molded product. The pressurized liquid 7a supplied between the entire inner circumferential surface 63a of the inner pressurized cylinder 63 and the pressurized fluid guide surface 2a of the fixed shaft 2 is further heated to a predetermined pressure (for example, 500 to 5,0OOk+1/cd). ), and the raw material S is pressure-molded. After a predetermined pressurization time has elapsed, the pressurized fluids 7a and 7b are discharged while being reduced in pressure. The pressure of the pressurized fluids 7a and 7b is reduced by the divided pieces 16,
16, 16 (refer to the second factor), respectively opposing separated end surfaces 1
This is done while maintaining a predetermined differential pressure ΔP so as to maintain close contact between 6a and 16a. Inner pressure cylinder 6
3 and the mold 4 automatically elastically return to their original shapes as the pressure of the pressurized fluid 1a is reduced. When the pressure of the pressurized fluids 7a and 7b supplied to the device 61 of the present invention is reduced to a predetermined pressure, the molded product is extracted from the raw material filling space A, as in the first embodiment. To extract this molded product,
Since the molded product and the split rigid die 17 are not in close contact with each other, the molded product can be smoothly molded without any damage. (Third Embodiment) FIGS. 8 and 9 show an apparatus 71 of the present invention according to a third embodiment. The apparatus 71 of the present invention applies initial pressure to the raw material S filled in the raw material filling space A from a local part (for example, a region near the center) of the raw material filling space A, similar to the apparatus 61 of the present invention of the second embodiment. By temporally sequentially expanding the raw material filling space A toward the upper and lower ends, forming obstacles contained in the raw material S are squeezed toward the upper and lower ends of the raw material filling space A, and the obstacles are completely eliminated. This allows pressure molding of long molded products. The present invention device 71 differs from the present invention device 61 of the second embodiment in the inner pressurizing cylinder 73. As shown in FIG. 8 with the left half omitted, the inner pressure cylinder 73 is made of a flexible elastic material (for example, neoprene rubber, urethane resin, etc.), and its hardness is in accordance with the JIS rubber hardness. 40
The angle is appropriately selected within the range of ~90 degrees. As shown in the ninth prisoner, the outer circumferential surface 73a of the inner pressurizing cylinder 73 is coated at appropriate pitches P (for example, P-10 to P-100) along the longitudinal direction of the outer circumferential surface.
a+m) are provided with annular grooves 73b, 73b... and are divided into seven pressurizing areas 73a-1, 738-2...
, 73a-7 are formed. Any pressurizing area among these plurality of pressurizing areas (for example, the central pressurizing area 73
a-4) is the initial pressurization area. Annular groove 73
b, 73b... are each provided with an elastic seal ring 74.
74... are fitted in a tight fit state. The elastic seal ring 74 is not limited to a zero-shaped cross section, and although not shown, it is of course possible to select a cross-sectional shape having an appropriate shape such as a square shape or an X shape. Inner pressure cylinder 73
As shown in FIG. 8, near the upper and lower ends of the inner circumferential surface 73a,
A seal structure 64°64 (see FIG. 7) is provided. The fixed shaft 2 is connected to the initial pressurizing area Ti17 of the inner pressurizing cylinder 73.
A first pressurized fluid supply/discharge port 2b is opened at a portion facing 3a-4. Note that the number of divisions of the pressurizing area formed on the inner circumferential surface 73a of the inner pressurizing cylinder 73 is not limited to seven as in the illustrated embodiment; It suffices if it is more than division. Next, the operation of the device 71 of the present invention in the third embodiment will be explained based on its usage. High-pressure pressurized fluid 7a is supplied from the pressurized fluid supply/discharge device 30 (see FIG. 3) to the first pressurized fluid supply/discharge port 2b of the fixed shaft 2, and low-pressure pressurized fluid 7b is supplied to the holding case 19. The pressurized fluid is supplied to the second pressurized fluid supply/discharge port 19b. The low-pressure pressurized fluid 7b supplied to the second pressurized fluid supply/discharge port 19b of the holding case 19 is introduced into the fluid introduction space 20 and presses the pressurized fluid receiving surface 18a of the outer pressurized cylinder 18. do. The pressed outer pressure cylinder 18 is divided into rigid type 1
The outer circumferential surface 17b of the split rigid die 17 is tightened to bring the opposing separated end surfaces 16a, 16a of the split pieces 16, 16.16 (see FIG. 2), which constitute the split rigid die 17, into close contact with each other. The high-pressure pressurized fluid 7a supplied to the first pressurized fluid supply port 2b of the fixed shaft 2 is heated to a predetermined pressure (for example, 50 to 200 +3/c
tJ), as shown in Figure 9, the initial pressure area 7
3a-4 is pressed to make the initial pressure area 73a-4 inward into the i-tension shape. The mold 4 is an initial pressurizing area 73a of the inner pressurizing cylinder 73.
Only the outer circumferential surface 4a of the region facing -4 is pressed, the mold inner diameter is reduced, and the raw material S is pressurized. Molding obstacles (not shown) in the pressurized raw material S rapidly flow out into the discharge passage formed by large particle gaps in the unpressurized raw material because the pressure against the molding obstacle increases. , it will not remain in a compressed state in the pressurized raw material S. The diameter m of the initial pressurizing region 73a-4 of the inner pressurizing cylinder 73 increases as the supply amount of the pressurized fluid 7a increases. Initial pressurization area 73a-4 in inner pressurization cylinder 73
As shown in FIG. 9, the annular grooves 73b and 73b formed between the adjacent pressure areas w1.73a-3 and 73a-5 deform outward and expand in diameter. . Annular groove 73
The elastic seal ring 74° 74, which is tightly fitted to the annular enclosures y473b and 73b, increases the inner diameter of the ring as the diameter of the annular enclosures y473b and 73b increases, and the elastic seal ring 74 is tightly fitted to the pressurized fluid guide surface 2a of the fixed shaft 2. A gap is formed between the two and the sealing function is lost. The pressurized fluid 7 is applied to the next pressurizing area 73a-3, 73a adjacent to the initial pressurizing area 73a-4 of the inner pressurizing cylinder 73 due to the loss of the sealing function of the elastic seal rings 74, 74.
-5, and this next pressurization area 73a-3, 73a-
Press 5. In this way, as the supply amount of the high-pressure pressurized fluid 7a increases, the expansion and deformation of the pressurized region is gradually expanded toward the upper and lower ends of the inner pressurizing cylinder 73. The raw material S filled in the raw material filling space A is sequentially pressurized from the region in the raw material filling space A facing the initial pressurizing region 63a-1 of the inner pressurizing cylinder 63 toward the upper and lower ends. I'm going to be done. As the raw material S is sequentially pressurized, the forming obstructions present in the raw material S filled in the raw material filling space A are removed in the raw material filling space A facing the initial region 73a-4 of the inner pressurizing cylinder 73. The area is narrowed toward the upper and lower ends. the result,
In the pressurized raw material S, there is no remaining compressed air or excess moisture, which are obstacles to molding that can cause damage to the molded product. The pressurized liquid 7a supplied between the entire surface of the inner circumferential surface 73a of the inner pressurized cylinder 73 and the pressurized fluid guide surface 2a of the fixed shaft 2 is further heated to a predetermined pressure (for example, 500~s,
The pressure is increased to ooo-/, j), and the raw material S is pressure-molded. After the predetermined pressurization time has elapsed, the pressurized fluid 7a,
7b is discharged while reducing the pressure. The pressure reduction of the pressurized fluids 7a and 7b is performed at a predetermined pressure difference ΔP so as to maintain close contact between the opposing separated end surfaces 16a and 16a of the divided pieces 16 and 16.16 (see FIG. 2). This is done while maintaining the The inner pressure cylinder 73 and the mold 4 contain the pressurized fluid 7
It automatically elastically returns to its original shape as the pressure of a is reduced. When the pressurized fluids 7a and 7b supplied to the apparatus 11 of the present invention are reduced to a predetermined pressure, the molded product is extracted from the raw material filling space A, as in the first embodiment. Since the molded product is not in close contact with the split rigid die 17, the molded product can be removed smoothly without any damage to the molded product. (Fourth Embodiment) FIGS. 10 and 11 show an apparatus 81 of the present invention according to the fourth embodiment.
This shows that. The present invention device 81 is the present invention device 6 of the second and third embodiments.
As in 1.71, the molding obstacles contained in the raw material S were squeezed to the upper and lower ends of the raw material filling space A to completely eliminate the obstacles and enable pressure molding of long molded products. It is something. The present invention device 81 differs from the present invention device 61 of the second embodiment in the inner pressurizing cylinder 83. Inner pressure cylinder 83
is made of a flexible material (for example, neoprene rubber, urethane resin, etc.) and is covered with a core material layer 84. It is coated with a layer as. The core material layer 84 is formed by separately forming ring materials 84a, 84b-84i of appropriate length, for example, -10 to 100ffi+a), arranged in a line with their respective end surfaces in contact with each other. be. Each ring material 84a, 84b...841 is a center ring material 84e.
As it goes toward the upper and lower ring members 84a and 84i,
The elastic modulus increases step by step. To obtain the desired elastic modulus, ring materials 84a, 84b...8
This is generally carried out by appropriately selecting a rubber hardness of 41 degrees (for example, JIS rubber hardness of 40 to 90 degrees). The inner circumferential surface 83a of the inner pressurizing cylinder 83 is divided into nine pressurizing areas 83-1, 83-2...83-9, and the central pressurizing area 83-5 is the initial pressurizing area. shall be. The fixed shaft 2 has an outer circumferential surface that closely contacts the inner circumferential surface 83a of the inner pressurizing cylinder 83 and is formed as a pressurized fluid guide surface 2a. The pressurized fluid guide surface 2a of the fixed shaft 2 includes a first pressurizing area 83-5 of the inner pressurizing cylinder 83 at a portion facing the initial pressurizing area 83-5.
The pressurized fluid supply/discharge port 2b is opened. The number of divisions of the pressurizing area formed in the inner pressurizing cylinder 83 is not limited to nine as in the illustrated embodiment, but may be two or more. Next, the operation of the bag fi81 of the present invention in the fourth embodiment will be explained. High-pressure pressurized fluid 7a is supplied from the pressurized fluid supply/discharge device 30 (see FIG. 3) to the first pressurized fluid supply/discharge port 2b of the fixed shaft 2, and low-pressure pressurized fluid 7b is supplied to the holding case 1.
9 is supplied to the second pressurized fluid supply/discharge port 19b. The low pressure pressurized fluid 7b supplied to the second pressurized fluid supply/discharge port 19b of the holding case 19 is introduced into the fluid introduction space 20 and presses the pressurized fluid receiving surface 18a of the outer pressurized cylinder 18. . The pressed outer pressure cylinder 18 is pressed against the outer circumferential surface 17 of the split rigid mold 17.
b is tightened to form the divided rigid mold 17,
16.16 (see Figure 2), respectively opposing separated end surfaces 1
6a and 16a are brought into close contact. The low pressure pressurized fluid 7a (for example, 9/c+j from 50 to 200) supplied to the first Katsu fluid supply port 2b of the fixed shaft 2 is as shown in FIG. 11 (8).
As shown in the figure, only the initial pressurized area 83-5 is pressed to expand and deform the initial pressurized area 83-5 inward. The reason for this is that the initial pressurization area 83-5 easily deforms because the elastic modulus of the initial pressurization area 83-5 is smaller than that of the adjacent pressurization area 83-4.83-6. It is. The mold 4 has an initial pressurizing area 83- of the inner pressurizing cylinder 83.
Only the inner circumferential surface 4a in the region facing the mold 5 is pressed, increasing the mold inner diameter and pressurizing the raw material S. Pressurized raw material S
Molding obstructions (not shown) in the pressurized raw material flow out rapidly into the discharge passage formed by large particle gaps in the unpressurized raw material due to the increase in pressure against the molding obstruction, and the pressurized raw material It does not remain in S. Inner pressure cylinder 83
As the supply pressure of the pressurized fluid 7a increases, the next pressurization area 83-4.8 adjacent to the initial pressurization area 83-5 increases.
The pressurized fluid 1a flows out to 3-6, and this next pressurized area 83
-4. Press 83-6. Note that the pressure of the pressurized fluid 7a increases when pressurizing the next pressurizing area 83-4, 83-6, than when pressurizing only the initial pressurizing area 83-5 of the inner pressurizing cylinder 83. do. Due to the phenomenon of increased pressure,
The raw material S that was initially pressurized in the central region is further pressurized. This phenomenon of increase in pressurizing force also discharges minute molding obstacles remaining in the initially pressurized raw material S, making the obstacle elimination complete. As the pressure of the pressurized fluid 1a increases, the expansion and deformation of the next pressurizing region is gradually expanded toward the upper and lower ends of the inner pressurizing cylinder 83. The raw material S filled in the raw material filling space A is transferred to the inner pressurized cylinder 83.
Raw material filling space A facing the initial pressurization area it 83-5
The forming obstructions present in the raw material S filled in the raw material filling space A, which is sequentially pressurized from the inner region toward the end, are removed from the inner pressurizing cylinder as the raw material S is sequentially pressurized. The material is squeezed from the area in the raw material filling space A that faces the initial area 83-5 of the body 83 toward the end. As a result, no molding obstructions that could cause damage to the molded product remain in the pressurized raw material S. Inner peripheral surface 8 of inner pressurizing cylinder 83
The pressurized liquid 7a supplied between the entire surface of 3a and the pressurized fluid guide surface 2a of the fixed shaft 2 is further heated to a predetermined pressure (for example, 50
The pressure is increased to 0 to 5.000 h/car), and the raw material S is pressure-molded. Once the predetermined pressurization time has elapsed,
The pressurized fluids 7a and 7b are discharged while being reduced in pressure. The pressure reduction of the pressurized fluids 7a, 7b is carried out while maintaining a predetermined pressure difference ΔP so as to maintain close contact between the opposing separated end surfaces 16a, 16a of the divided pieces 16, 16.16. . The inner pressure cylinder 13 and the mold 4 automatically elastically return to their original shapes as the pressure of the pressurized fluid 7a is reduced. Inventive device! When the pressure of the pressurized fluid 7 supplied to the 81 is reduced to a predetermined pressure, the split rigid mold 17
7a receives the residual stress of the molded product, and the split molds 16, 16.
16, the opposing end faces 16a, 16a are slightly expanded in diameter so as to be separated from each other, and the close contact with the molded product is cut off. Finally, the holder 8 and the lid 9 screwed onto the holding case 19 are removed, and the molded product is extracted from the raw material filling space A. The molded product is extracted from the molded product and the split rigid mold 17.
Since the close contact with the molded product 10 is cut off, the molded product 10 can be smoothly molded without any damage. (Fifth Embodiment) FIG. 12 shows an apparatus 91 of the present invention according to a fifth embodiment. The apparatus of the present invention 1t91 squeezes the forming obstacles contained in the raw material S to the upper and lower ends of the raw material filling space A, similar to the apparatus of the present invention [61, 71, 81 of the 2.3.4 embodiment]. This completely eliminates obstacles and enables pressure molding of long molded products. The present invention device 91 differs from the present invention device 61 of the second embodiment in the inner pressurizing cylinder 93. Inner pressure cylinder 93
As a result, the inner pressurizing cylinder 73 of the third embodiment and the inner pressurizing cylinder 83 of the fourth embodiment are combined. That is, the inner pressurizing cylinder 93 is made of core material W!
The elastic modulus of J94 is made to increase stepwise from the center ring material 94e toward the upper and lower ring members 94a, 94t, and annular grooves 93b, 93b...・ is recessed and an elastic seal ring 74 is fitted into each annular groove 93b.
4 is brought into close contact with the pressurized fluid guide surface 2a of the fixed shaft 2. A first pressurized fluid supply/discharge port 2b is opened in the pressurized fluid guide surface 2a of the fixed shaft 2 at a portion facing the ring material 94e in which the core material layer 94 has a small elastic modulus. [Effects of the Present Invention] As detailed above, the apparatus of the present invention has the following excellent effects. ■ For the split rigid type, when the outer pressure cylinder is unfastened from the outer circumferential surface, the inner circumferential surface is pressed by the residual stress generated in the molded product, and the pressing force against the inner circumferential surface of the split rigid type is increased. Expand the diameter until it disappears or becomes very small. As a result, it becomes possible to recover the molded product without causing any damage, and the yield can be dramatically improved compared to the conventional method. (2) Since it is possible to expand the diameter of the split rigid mold to a state where there is no problem with demolding the molded product, it is possible to pressure mold a molded product with an uneven outer peripheral surface. As a result, the range of application of internal pressure rubber molding becomes wider than that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明装置の第1実施例を示すもの
であって、第1図は縦断面図、第2図は第1図の■ −
■線における横断面図、第3図は図中の左側に加圧形成
の途中の縦断面を示すと共に、右側に加圧流体給排装置
の模式図を示すものであら、第4図は脱型状態を示す縦
断面図、第5図乃至第7図は本発明装置の第2実施例の
本発明装置を示すものであって、第5図は左半分を省略
した縦断面図、第6図は初期加圧状態の要部を、拡大し
て示す断面図、第7図は内側加圧筒体のシール構造を拡
大して示す断面図、第8図及び第9図は本発明装置の第
3実施例を示すものであって、第8図は左半分を省略し
た縦断面図、第9図(8)は初期加圧状態の第1段階を
示す要部拡大断面図、第9図03]は初期加圧状態の第
2段階を示す要部拡大断面図、第10図及び第11図は
本発明装置の第4実施例を示すものであって、第10図
は左半分を省−路した縦断面図、第11囚人は初期加圧
状態の第1段階を示す要部拡大断面図、第11図日は初
期加圧状態の第2段階を示す要部拡大断面図、第12図
は本発明装置の第5実茄例を示す左車分を省略した縦断
面図、第13図は従来の内圧ラバープレス装置を示す縦
断面図である。 A・・・原料充填空間   2・・・固定軸3  (6
3,73,83,93)・・・内側加圧筒体16・・・
分割片      17・・・分割剛性型2b  ・・
・第1加圧流体給排口 190・・・第2加圧流体給排口 特許出願人   松  下    切 回     株式会社イナックス 代 理 人   弁理士 内1)敏彦 第2図 第13図
1 to 4 show a first embodiment of the device of the present invention, in which FIG. 1 is a longitudinal sectional view, and FIG. 2 is a vertical sectional view of FIG. 1.
Figure 3 is a cross-sectional view taken along line ■, and the left side of the figure shows a vertical cross section in the middle of pressurized formation, and the right side is a schematic diagram of the pressurized fluid supply and discharge device. 5 to 7 are longitudinal cross-sectional views showing the mold state, and FIG. 5 is a longitudinal cross-sectional view showing the second embodiment of the present invention apparatus, FIG. The figure is an enlarged sectional view showing the main part in the initial pressurized state, FIG. 7 is an enlarged sectional view showing the seal structure of the inner pressurizing cylinder, and FIGS. 8 is a vertical sectional view with the left half omitted, FIG. 9 (8) is an enlarged sectional view of the main part showing the first stage of the initial pressurized state, and FIG. 03] is an enlarged cross-sectional view of the main part showing the second stage of the initial pressurization state, and FIGS. 10 and 11 show the fourth embodiment of the device of the present invention, with the left half of FIG. Prisoner 11 is an enlarged cross-sectional view of the main part showing the first stage of the initial pressurized state, Figure 11 is an enlarged cross-sectional view of the main part showing the second stage of the initial pressurized state, Prisoner 12 The figure is a longitudinal cross-sectional view of a fifth practical example of the apparatus of the present invention, with the left side omitted, and FIG. 13 is a longitudinal cross-sectional view of a conventional internal pressure rubber press apparatus. A... Raw material filling space 2... Fixed shaft 3 (6
3, 73, 83, 93)...Inner pressure cylinder 16...
Divided piece 17...Divided rigid type 2b...
・First pressurized fluid supply/discharge port 190...Second pressurized fluid supply/discharge port Patent applicant: Kirikai Matsushita Agent, Patent attorney, Inax Co., Ltd. 1) Toshihiko, Figure 2, Figure 13

Claims (1)

【特許請求の範囲】 1、外周面に加圧流体案内面が形成されていると共に該
加圧流体案内面に第1加圧流体給排口が開口された固定
軸と、固定軸の加圧流体案内面を外嵌する可撓性の内側
加圧筒体と、内側加圧筒体の外側に配置され且つ内側加
圧筒体との間に原料充填空間を形成する外側受圧具とを
備えた内圧ラバープレス装置において、前記外側受圧具
は、剛性の大きな素材より成り且つ周方向に分割された
複数の分割片を連接して前記原料充填空間の外周壁面を
形成する分割剛性型と、分割剛性型の外周面をバックア
ップし且つ外周面に加圧流体受圧面を形成した可撓性の
外側加圧筒体と、外側加圧筒体を外嵌し且つ内周面に形
成された加圧流体案内面に第2加圧流体給排口を開口し
た保持ケースとを備えたことを特徴とする内圧ラバープ
レス装置。 2、前記固定軸を複数備えた特許請求の範囲第1項記載
の内圧ラバープレス装置。 3、前記内側加圧筒体の内周面は前記固定軸の加圧流体
案内面に密着当接され、前記第1加圧流体給排口は加圧
流体案内面の両端部間に位置する適宜の一局部に位置す
る特許請求の範囲第1項又は第2項記載の内圧ラバープ
レス装置。 4、前記内側加圧筒体は、内周面が内側加圧筒体の軸長
方向に適宜間隔を置いて凹設された複数個の環状凹溝に
より複数の加圧領域に区画され、これらの加圧領域のう
ちから選択された一つの加圧領域が初期加圧領域とされ
ると共に、各環状凹溝の夫々に嵌着され且つ前記固定軸
の加圧流体案内面に密着当接する複数の弾性シールリン
グを備え、前記第1加圧流体給排口は上記初期加圧領域
に対向する部位に位置する特許請求の範囲第1項又は第
2項記載の内圧ラバープレス装置。 5、前記内側加圧筒体は、内側加圧筒体における両端部
間に位置する適宜の一局部が初期加圧領域とされると共
に、筒壁構成材の弾性係数が初期加圧領域から内側加圧
筒体の端部に向つて行くにつれて連続的又は段階的に大
きくなるようにされ、前記第1加圧流体給排口は上記初
期加圧領域に対向する部位に位置する特許請求の範囲第
1項又は第2項記載の内圧ラバープレス装置。 6、前記内側加圧筒体は、内周面が内側加圧筒体の軸長
方向に適宜間隔を置いて凹設された複数個の環状凹溝に
より複数の加圧領域に区画され、これらの加圧領域のう
ちから選択された一つの加圧領域が初期加圧領域とされ
ると共に、各環状凹溝の夫々に嵌着され且つ前記固定軸
の加圧流体案内面に密着当接する複数の弾性シールリン
グを備え、更に筒壁構成材の弾性係数が初期加圧領域か
ら内側加圧筒体の端部に向つて行くにつれて連続的又は
段階的に大きくなるようにされ、前記第1加圧流体給排
口は上記初期加圧領域に対向する部位に位置する特許請
求の範囲第1項又は第2項記載の内圧ラバープレス装置
[Claims] 1. A fixed shaft having a pressurized fluid guide surface formed on its outer peripheral surface and a first pressurized fluid supply/discharge port opened in the pressurized fluid guide surface, and pressurization of the fixed shaft. It includes a flexible inner pressurizing cylinder into which a fluid guide surface is fitted, and an outer pressure receiver disposed outside the inner pressurizing cylinder and forming a raw material filling space between the inner pressurizing cylinder and the flexible inner pressurizing cylinder. In the internal pressure rubber press device, the outer pressure-receiving tool is made of a material with high rigidity and has a split rigid type in which a plurality of pieces divided in the circumferential direction are connected to form an outer peripheral wall surface of the raw material filling space; A flexible outer pressurizing cylinder that backs up the rigid outer peripheral surface and has a pressurized fluid pressure receiving surface formed on the outer peripheral surface, and a pressurizing cylinder that fits the outer pressurizing cylinder and is formed on the inner peripheral surface. An internal pressure rubber press device comprising: a holding case having a second pressurized fluid supply/discharge port opened on a fluid guide surface. 2. The internal pressure rubber press device according to claim 1, comprising a plurality of said fixed shafts. 3. The inner peripheral surface of the inner pressurized cylinder is in close contact with the pressurized fluid guide surface of the fixed shaft, and the first pressurized fluid supply/discharge port is located between both ends of the pressurized fluid guide surface. An internal pressure rubber press device according to claim 1 or 2, which is located in a suitable local area. 4. The inner circumferential surface of the inner pressure cylinder is divided into a plurality of pressure areas by a plurality of annular grooves recessed at appropriate intervals in the axial direction of the inner pressure cylinder; One pressurizing area selected from among the pressurizing areas is set as the initial pressurizing area, and a plurality of pressurizing areas are fitted into each of the annular grooves and are in close contact with the pressurized fluid guide surface of the fixed shaft. 3. The internal pressure rubber press device according to claim 1, wherein the first pressurized fluid supply/discharge port is located at a portion facing the initial pressurization area. 5. In the inner pressurizing cylinder, an appropriate local area located between both ends of the inner pressurizing cylinder is set as an initial pressurizing area, and the elastic modulus of the cylinder wall constituent material increases from the initial pressurizing area to the inner side. The first pressurized fluid supply/discharge port is configured to increase in size continuously or stepwise toward the end of the pressurized cylinder, and the first pressurized fluid supply/discharge port is located at a location opposite to the initial pressurization area. The internal pressure rubber press device according to item 1 or 2. 6. The inner circumferential surface of the inner pressurizing cylinder is divided into a plurality of pressurizing areas by a plurality of annular grooves recessed at appropriate intervals in the axial direction of the inner pressurizing cylinder; One pressurizing area selected from among the pressurizing areas is set as the initial pressurizing area, and a plurality of pressurizing areas are fitted into each of the annular grooves and are in close contact with the pressurized fluid guide surface of the fixed shaft. furthermore, the elastic modulus of the cylinder wall component increases continuously or stepwise as it goes from the initial pressurizing area toward the end of the inner pressurizing cylinder; The internal pressure rubber press device according to claim 1 or 2, wherein the pressure fluid supply/discharge port is located at a portion facing the initial pressurization area.
JP31719487A 1987-12-14 1987-12-14 Internal pressure rubber press device Pending JPH01157799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31719487A JPH01157799A (en) 1987-12-14 1987-12-14 Internal pressure rubber press device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31719487A JPH01157799A (en) 1987-12-14 1987-12-14 Internal pressure rubber press device

Publications (1)

Publication Number Publication Date
JPH01157799A true JPH01157799A (en) 1989-06-21

Family

ID=18085505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31719487A Pending JPH01157799A (en) 1987-12-14 1987-12-14 Internal pressure rubber press device

Country Status (1)

Country Link
JP (1) JPH01157799A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417461A (en) * 1977-07-07 1979-02-08 Caterpillar Tractor Co Power transmitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417461A (en) * 1977-07-07 1979-02-08 Caterpillar Tractor Co Power transmitting device

Similar Documents

Publication Publication Date Title
US4989482A (en) Method and apparatus for punching a hole in sheet material
US3350905A (en) Liquid pressure bulge forming apparatus
US4616392A (en) Bladder mandrel for hydraulic expansions of tubes and sleeves
US5511404A (en) Seal head for tube expansion apparatus
US6161834A (en) Pressure energized seal
JPH0198773A (en) Valve device
JPH05240162A (en) Hydraulically driven diaphragm pump
US5673470A (en) Extended jacket end, double expansion hydroforming
JPH05504726A (en) A device for hydrostatically deforming a hollow body made of cold deformable metal.
US4724595A (en) Bladder mandrel for hydraulic expansions of tubes and sleeves
JPH01157799A (en) Internal pressure rubber press device
WO1998051427A1 (en) Sealing unit for hydroforming apparatus
US8910500B2 (en) Low friction end feeding in tube hydroforming
JP2000102825A (en) Method and device for pipe molding
US6532785B1 (en) Method and apparatus for prefilling and hydroforming parts
JPS63268595A (en) Powder compacting device
JP3240406B2 (en) Assembling method of powder pressure molding equipment
JPH01156008A (en) Press molding device
JPH082518B2 (en) Powder pressure molding method and molding apparatus
JPS62234624A (en) Manufacture of spherical shell like metal part
JPH0228406B2 (en)
JPH07102562B2 (en) Pressurizing device
CN111922174A (en) Device for forming by high pressure in wave
EP1242746B1 (en) Method and apparatus for generating hydraulic pressure
JPH0780068B2 (en) Powder pressure molding equipment