JPH01157445A - Reinforcing structure for inorganic substance plate - Google Patents

Reinforcing structure for inorganic substance plate

Info

Publication number
JPH01157445A
JPH01157445A JP31440087A JP31440087A JPH01157445A JP H01157445 A JPH01157445 A JP H01157445A JP 31440087 A JP31440087 A JP 31440087A JP 31440087 A JP31440087 A JP 31440087A JP H01157445 A JPH01157445 A JP H01157445A
Authority
JP
Japan
Prior art keywords
long fibers
plate
board
inorganic
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31440087A
Other languages
Japanese (ja)
Other versions
JP2516228B2 (en
Inventor
Takao Uchida
孝夫 内田
Masao Yokoi
横井 征夫
Nobunao Murakami
信直 村上
Kunitomi Tanaka
田中 国富
Hideo Takashima
高島 秀郎
Kiyokimi Asahi
朝日 清公
Keiichi Yugaki
遊垣 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Takenaka Komuten Co Ltd
Masaru Industries Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Takenaka Komuten Co Ltd
Masaru Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Takenaka Komuten Co Ltd, Masaru Industries Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP62314400A priority Critical patent/JP2516228B2/en
Publication of JPH01157445A publication Critical patent/JPH01157445A/en
Application granted granted Critical
Publication of JP2516228B2 publication Critical patent/JP2516228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inorganic substance plate excellent in bending resistivity by providing long fiber for reinforcement along the outer surface of the plate in the positions located near the outer surface on only one side of the inorganic substance plate. CONSTITUTION:In this reinforcing structure for inorganic substance plate, the long fibers 2 for reinforcement is disposed along the outer surface of the plate in the positions located near the outer surface on only one side of the inorganic substance 1. The long fibers 2 are glass fibers and plural filaments are bundled into a roving which is longitudinally and latitudinally disposed so as to form network, and the longitudinal rovings and the latitudinal rovings are not combined but only overlapped each other. Short fibers 3 are also glass fibers called strands. The thickness t1 of an outer layer part 1A made of motar is 0.5-5mm, preferably 1-2mm, and the thickness t0 of a cement-motar plate 1 is 10-50mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンクリートスラブやコンクリート壁を作製
するためのコンクリート打設用の捨型枠等として用いら
れるもので、詳しくは、セメントモルタルやコンクリー
ト、ケイ酸カルシウム等からなる無機質板の補強構造に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used as a waste form for pouring concrete to produce concrete slabs and concrete walls. , relates to a reinforcing structure for an inorganic plate made of calcium silicate or the like.

〔従来の技術〕[Conventional technology]

今日では、セメントモルタル板やコンクリート板、ケイ
酸カルシウム板で代表される無機質板の補強構造として
、ガラス繊維や炭素繊維、金属繊維、アラミド繊維、炭
化ケイ素繊維等の無機質・有機質の各種の長繊維を無機
質板内に配設してその無機質板を曲げ強度面で補強する
ものが知られている。その−例としては、コンクリート
板内の表裏画板表面に近い箇所の夫々に長繊維を板表面
に沿った姿勢で配設したものが知られている(例えば特
開昭62−178644号公報参照)。
Today, various inorganic and organic long fibers such as glass fiber, carbon fiber, metal fiber, aramid fiber, and silicon carbide fiber are used as reinforcement structures for inorganic boards such as cement mortar boards, concrete boards, and calcium silicate boards. It is known that the inorganic plate is reinforced in terms of bending strength by arranging the inorganic plate within the inorganic plate. As an example of this, it is known that long fibers are arranged in positions close to the front and back surfaces of a concrete board in a manner that follows the surface of the board (for example, see Japanese Patent Application Laid-open No. 178644/1983). .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来の補強構造によるときは、コンクリー
ト打設用の捨型枠や土留用の簡易な矢板等、表裏の板表
面に作用する荷重に大きな差があって一方側への曲げ応
力のみが作用する条件下で使用される無機質板を考えた
場合、曲げ応力が引張力として作用する側の板表面の近
くに位置する長繊維は、その引張力に抗してその板表面
の曲げに起因したひび割れを防止するといったように、
曲げ応力に対して効果的に作用するものの、他方の板表
面の近くに位置する長繊維は、曲げ応力の対策として役
に立っていない。
However, when using the above-mentioned conventional reinforcement structure, there is a large difference in the loads acting on the front and back surfaces of the plates, such as waste forms for concrete pouring and simple sheet piles for earth retention, and the bending stress is only applied to one side. When considering an inorganic board used under conditions where bending stress acts as a tensile force, the long fibers located near the board surface on the side where bending stress acts as a tensile force will resist the tensile force and cause the bending of the board surface. For example, to prevent cracks caused by
Although they act effectively against bending stress, the long fibers located near the other plate surface are not useful as a countermeasure against bending stress.

従って、前述したように、一方側への曲げ応力のみが作
用する無機質板において、表裏の両板表面近くの夫々に
長繊維を配設することは、要求される耐曲げ性能の割に
は長繊維の使用量が不当に多くて材料面からのコストア
ップを招来し、しかも、長繊維を表裏の両板表面近くに
それら板表面に沿った姿勢で配設するといった手数のか
かる長繊維設置作業が2回も必要となって作業面からも
コストアップを招来するのである。
Therefore, as mentioned above, in an inorganic plate where bending stress only acts on one side, it is difficult to arrange long fibers near the front and back surfaces of the plate, which is too long for the required bending resistance. The amount of fiber used is unreasonably large, leading to an increase in material costs.Furthermore, the long fiber installation process is labor-intensive, as the long fibers are placed close to the front and back surfaces of both boards in a posture along the board surfaces. It is necessary to do this twice, which leads to an increase in costs from a work standpoint.

そして、一方側への曲げ応力のみが作用する条件下で使
用する無m質板の用途は多岐にわたり、かつ、多々発見
されており、その結果、今日においては、そのような用
途に使用できる耐曲げ性能をそなえながらも、安価であ
る無機質板が強く望まれている。
A wide variety of applications have been discovered for amorphous plates used under conditions where only bending stress is applied to one side. There is a strong desire for an inexpensive inorganic plate that has good bending performance.

本発明の目的は、無機質板に対する前述の強い要望を十
分に充足できるようにする点にある。
An object of the present invention is to fully satisfy the above-mentioned strong demand for inorganic plates.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による無機質板の補強構造の特徴構成は、無機質
板内のうち表裏一方の板表面に近い箇所にのみ、補強用
の長繊維を板表面に沿った姿勢で配設してある点にあり
、その作用・効果は次の通りである。
The characteristic structure of the reinforcement structure for an inorganic board according to the present invention is that reinforcing long fibers are arranged in a posture along the board surface only in locations close to the board surface on one of the front and back sides of the inorganic board. , its actions and effects are as follows.

〔作 用〕[For production]

無機質板の表裏の画板表面のうち長繊維に近い側の板表
面を引張力作用側とする曲げ応力が無機質板に作用した
とき、長繊維によって、無機質板に作用する曲げ応力に
起因して生じる引張力に抗して板表面のひび割れを防止
できるため、長繊維に近い側の板表面を引張力作用側と
する曲げ応力に対する耐曲げ性能を十分に確保できる。
When a bending stress is applied to the inorganic board, with the tensile force acting on the surface of the drawing board on the front and back sides of the inorganic board, which is closer to the long fibers, the bending stress that acts on the inorganic board due to the long fibers is generated. Since cracks on the plate surface can be prevented against tensile force, sufficient bending resistance against bending stress with the plate surface closer to the long fibers acting as the tensile force side can be ensured.

しかも、一方の板表面近くにのみ耐曲げ性能向上のため
の長繊維を配設してあるため、前述した従来のものに比
較して、長繊維の使用量を半減できるとともに、長繊維
の配設といった手数のかかる作業の数を半減できる。
Furthermore, since long fibers are arranged only near the surface of one plate to improve bending resistance, the amount of long fibers used can be halved compared to the conventional type mentioned above, and the long fibers are The number of labor-intensive tasks such as installation can be halved.

〔発明の効果〕〔Effect of the invention〕

その結果、一方側への曲げ応力のみが作用する条件下で
の多岐にわたる用途に使用できながらも、安価に作製で
きる無機質板を提供できるようになった。
As a result, it has become possible to provide an inorganic plate that can be manufactured at low cost and can be used in a wide variety of applications under conditions where only bending stress is applied to one side.

特に、無機質板のうち、長繊維とそれに近い側の板表面
との間に位置する表層部分の厚さを0.5〜5鶴として
実施することが望ましい。なぜなら、それより薄くする
と、無機質板と長繊維との結合力が弱くなって長繊維に
よる耐引張力作用を期待できなくなり、反対に鉄筋コン
クリートや鉄骨コンクリートの構造をそのまま採用して
それよりも厚くすると、引張力が作用したとき、長繊維
近くの無機質板部分の引張力による破壊は防止できるも
のの、長繊維による破壊防止作用が板表面にまで及ばず
、板表面にひび割れが生じ易いといったことが実験を繰
返した結果、知見したからである。
In particular, it is desirable to set the thickness of the surface layer portion of the inorganic board between the long fibers and the surface of the board near the long fibers to be 0.5 to 5 mm. This is because if it is made thinner than this, the binding force between the inorganic board and the long fibers becomes weaker, and the tensile strength effect of the long fibers cannot be expected.On the other hand, if the structure of reinforced concrete or steel-framed concrete is adopted as is and it is made thicker than that, Experiments have shown that when a tensile force is applied, the inorganic plate near the long fibers can be prevented from being destroyed by the tensile force, but the long fibers do not have the effect of preventing damage to the plate surface, and cracks are likely to occur on the plate surface. This is because I discovered this after repeating the process.

また、無機質板はコンクリート打設用の捨型枠として非
常に有用である。なぜなら、長繊維が配設されていない
側の板表面は、曲げ応力が作用したとき圧縮力を受けて
破損するおそれがあるが、その破損のおそれがある板表
面は打設コンクリートと結合して修復され、強度面およ
び外観とに悪影響が全くないからである。
In addition, inorganic boards are very useful as waste forms for concrete pouring. This is because the plate surface on the side where long fibers are not arranged may be damaged by compressive force when bending stress is applied, but the plate surface where there is a risk of damage is bonded to the poured concrete. This is because it has been repaired and there is no adverse effect on strength or appearance.

〔実施例〕〔Example〕

次に本発明の実施例を示す。 Next, examples of the present invention will be shown.

第3図に示すように、コンクリート打設用の捨型枠(A
)として用いられセメントモルタル板(1)(無機質板
)であって、第1図に示すように、このセメントモルタ
ル板(1)内の表裏一方の板表面近くの箇所には、補強
用の長繊維(2)が板表面に沿った姿勢のネットを形成
する状態で配設されている。
As shown in Figure 3, a waste form for concrete pouring (A
) is a cement mortar board (1) (inorganic board) used as The fibers (2) are arranged to form a net along the board surface.

前記長繊維(2)は、ガラス繊維であって、第2図に示
すように、複数のフィラメントが集束したロービングを
単位としてネットの網目を形成するように縦横に配置さ
れており、ネットの縦糸になるロービングと横糸になる
ロービングとは、結合しておらず、重なっているだけで
ある。
The long fibers (2) are glass fibers, and as shown in FIG. 2, the long fibers (2) are arranged vertically and horizontally to form a network of a net in units of rovings in which a plurality of filaments are bundled. The roving that becomes the weft and the roving that becomes the weft are not combined, but only overlap.

前記セメントモルタル板(1)のうち、前記長繊維(2
)とそれに近い側の板表面との間に位置する表層部分(
1^)は、モルタルをもって構成されており、長繊維(
2)と他方の板表面との間に位置する層部分(IB)は
、短繊維(3)をランダム配向状態で混入した繊維補強
モルタルをもって構成されている。
Of the cement mortar board (1), the long fibers (2
) and the surface of the board near it (
1^) is composed of mortar and long fibers (
The layer portion (IB) located between 2) and the other plate surface is constituted by fiber-reinforced mortar mixed with short fibers (3) in a randomly oriented state.

前記短繊維(2)は、ガラス繊維で、ストランドと称さ
れているものである。
The short fibers (2) are glass fibers and are called strands.

そして、前記モルタル製の表層部分(1A)の厚さ(t
)(一般に鉄筋コンクリートや鉄骨コンクリートにおけ
るかぶり厚に相当するもの)は、0.5〜5fl、好ま
しくは1〜2Nであり、セメントモルタル板(1)の厚
さ(to)は、10〜50龍である。つまり、表層部分
(1A)の厚さ(1)は、セメントモルタル板(1)の
厚さ(to)の1710〜1/25である。
The thickness (t) of the surface layer portion (1A) made of mortar is
) (which generally corresponds to the cover thickness in reinforced concrete or steel frame concrete) is 0.5 to 5 fl, preferably 1 to 2 N, and the thickness (to) of the cement mortar board (1) is 10 to 50 fl. be. That is, the thickness (1) of the surface layer portion (1A) is 1710 to 1/25 of the thickness (to) of the cement mortar board (1).

そして、そのようにネット状の長繊維(2)および短繊
維(3)で補強されたセメントモルタル板(1)は、第
3図に示すように、長繊維(2)に近い側の板表面を外
側に位置させる状態で捨型枠(A)として用いられるの
であって、スラブや壁となるコンクリート(B)の打設
に伴う曲げ応力で外側の板表面に引張力が作用するもの
の、この引張力に長繊維(2)で対抗して、板表面のひ
び割れが防止されるのである。
Then, as shown in Figure 3, the cement mortar board (1) reinforced with the net-like long fibers (2) and short fibers (3) has a surface close to the long fibers (2). It is used as a waste formwork (A) with the plate placed on the outside, and although tensile force is applied to the surface of the outer plate due to bending stress caused by pouring the concrete (B) that will become the slab or wall, this By countering the tensile force with the long fibers (2), cracks on the board surface are prevented.

前記セメントモルタル板(1)の作製方法の一例を示す
と、第4図(イ)に示すように、成形型(4)に表層部
分(1八)を形成するためのモルタル(5)を所定厚さ
(1〜2fl)に吹付け、その吹付はモルタル(5)が
硬化する前に第4図(Tl)に示すように、その吹付は
モルタル(5)の上面に長繊維(2)をネット状に配置
し、ローラ等を用いて脱泡し、その後、第4図(ハ)に
示すように、その上に層部分(IB)を形成するための
短繊維混入モルタル(6)を所定の厚さに吹付け、その
上面を整形したのち、養生させ、脱型する。
An example of the method for manufacturing the cement mortar plate (1) is as shown in FIG. As shown in Figure 4 (Tl), before the mortar (5) hardens, the long fibers (2) are sprayed to a thickness (1 to 2 fl) on the top surface of the mortar (5). Arranged in a net shape, defoamed using a roller or the like, and then, as shown in Figure 4 (C), short fiber mixed mortar (6) is placed on top of it to form a layer portion (IB). After spraying to a thickness of

次に本発明者が行った耐曲げ性能の試験を示す。Next, a test of bending resistance performance conducted by the present inventor will be shown.

試験は、長繊維入りのセメントモルタル板と、長繊維無
しのセメントモルタル板とを供試体として、それぞれに
ついて、曲げ比例限界強度(LOP)と曲げ破壊強度(
MOR)とヤング係数(E)とを調べることで行った。
The test used cement mortar plates containing long fibers and cement mortar plates without long fibers as test specimens, and measured the proportional bending strength (LOP) and bending failure strength (LOP) for each specimen.
This was done by examining the MOR) and Young's modulus (E).

前記長繊維入り供試体は、上述した実施例のセメントモ
ルタル板で、かつ、径が13μmのガラスフィラメント
を200本集束させたロービングをもって形成した5f
i角の網目のネットを長繊維(2)として配設するとと
もに、総重量の5%の重量の量のガラスストランドを短
繊維(3)として混入し、かつ、表層部分(1A)の厚
さ(1)を1〜1.5Nとして作製したものである。
The long fiber-containing specimen was made of the cement mortar board of the above-mentioned example, and was formed with a roving made up of 200 glass filaments with a diameter of 13 μm.
A net with an i-square mesh is arranged as long fibers (2), and glass strands in an amount of 5% of the total weight are mixed as short fibers (3), and the thickness of the surface layer portion (1A) is (1) was produced with 1 to 1.5N.

前記長繊維無し供試体は、総重量の5%の重量の量のガ
ラスストランドを短繊維(3)として混入したモルタル
から作製したものである。
The specimen without long fibers was prepared from a mortar mixed with glass strands as short fibers (3) in an amount of 5% of the total weight.

なお、両種供試体は、ともに、スチームで高温養生した
のち、脱型し、所定寸法に切断し、水中養生し、材令7
日で取出したのち室内で養生させた材令28日のもので
ある。
Both types of specimens were cured at high temperature with steam, demolded, cut into specified dimensions, cured in water, and aged 7.
The wood is 28 days old and was taken out for a day and then cured indoors.

結果を表(イ)に示す。なお、結果は6つの供試体の平
均であり、()内の数字は標準偏差である。
The results are shown in Table (a). Note that the results are the average of six specimens, and the numbers in parentheses are standard deviations.

表(イ) 〔別実施例〕 以下、本発明の別実施例を示す。Table (a) [Another example] Another example of the present invention will be shown below.

[1]上記実施例では、長繊維(2)として、縦糸用の
長繊維と横糸用の長繊維とを板厚さ方向で重ねただけの
ネットを示したが、長繊維(2)としては、両種長繊維
を編む又は織った構造のネット状のものであっても良い
。また、縦糸用又は横糸用のうちの一方の長繊維を引張
力作用方向に沿わせるように配設することが望ましいが
、長繊維を引張力の作用方向に対して傾斜する姿勢に配
設して実施しても良い。
[1] In the above example, the long fibers (2) are nets in which long fibers for the warp and long fibers for the weft are simply overlapped in the board thickness direction, but as the long fibers (2) It may also be a net-like structure in which long fibers of both types are knitted or woven. Furthermore, although it is desirable to arrange the long fibers for one of the warp and weft threads along the direction in which the tensile force is applied, it is preferable to arrange the long fibers in an attitude that is inclined to the direction in which the tensile force acts. It may also be carried out.

加えて、両種の長繊維の間隔、つまり、ネットの網目の
大きさはその無機質板(1)に作用する引張力に応じて
適宜選定するのである。
In addition, the distance between the long fibers of both types, that is, the size of the mesh of the net, is appropriately selected depending on the tensile force acting on the inorganic plate (1).

[2]上記実施例では、長繊維(2)をネット状に配置
したが、長繊維(2)は、縞状に一方向に沿った姿勢に
配設しても良い。
[2] In the above embodiment, the long fibers (2) are arranged in a net shape, but the long fibers (2) may be arranged in a striped manner along one direction.

[3]上記実施例では、短繊維(3)が混入した無機質
板(1)を示したが、本発明は、短繊維(3)のないも
のにも適用できる。
[3] In the above example, the inorganic board (1) mixed with short fibers (3) was shown, but the present invention can also be applied to a board without short fibers (3).

[4]上記実施例では、無機質板(1)としてセメント
モルタル板を示したが、無機質板(1)としては、コン
クリート板やケイ酸カルシウム板等であっても良い。
[4] In the above embodiment, a cement mortar board is shown as the inorganic board (1), but the inorganic board (1) may also be a concrete board, a calcium silicate board, or the like.

[5]上記実施例では、コンクリート打設用の捨型枠(
A)として使用される無機質板(1)を示したが、本発
明は、スラブや壁、天井下地、天井等各種の用途に使用
される無機質板(1)に適用できる。
[5] In the above embodiment, the waste formwork for concrete pouring (
Although the inorganic board (1) used as A) is shown, the present invention can be applied to inorganic boards (1) used for various purposes such as slabs, walls, ceiling bases, and ceilings.

[6]上記実施例では、長繊維(2)としてガラス繊維
を示したが、長繊維(2)としては、ガラス繊維の他に
、炭素繊維、ステンレス等の金属繊維、アラミド繊維、
炭化ケイ素繊維等、有機質、無機質の各種の繊維を挙げ
ることができる。
[6] In the above examples, glass fibers were shown as long fibers (2), but in addition to glass fibers, long fibers (2) may include carbon fibers, metal fibers such as stainless steel, aramid fibers,
Examples include various organic and inorganic fibers such as silicon carbide fibers.

[7コ長繊維(2)として、多数の技又は突起を備えた
ものを用いる。この場合、長繊維(2)と無機質板(1
)との結合力を物理的に増大させることができる。
[7 As the long fiber (2), one with a large number of protrusions or protrusions is used. In this case, the long fibers (2) and the inorganic board (1
) can physically increase the bonding force with

[8]長繊維(2)として、表面に無機質板(1)との
結合力を増大させる化学的処理が施されたものを用いる
[8] As the long fibers (2), those whose surfaces have been chemically treated to increase the bonding strength with the inorganic board (1) are used.

[9]長繊維(2)にプレストレスをかけた状態で無機
質板(1)内に配設する。
[9] The long fibers (2) are placed in the inorganic board (1) in a prestressed state.

[10]尚、特許請求の範囲の項に図面との対照を便利
にする為に符号を記すが、該記入により本発明は添付図
面の構造に限定されるものではない。
[10] Note that although reference numerals are written in the claims for convenience of comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る無機質板の補強構造の実施例を示し
、第1図は縦断面図、第2図は一部切欠き平面図、第3
図は使用状態を示す縦断面図、第4図(イ)〜(ハ)は
作製工程図である。 (1)・・・・・・無機質板、(2)・・・・・・長繊
維、(1A)・・・・・・表層部分。
The drawings show an embodiment of the reinforcing structure for an inorganic plate according to the present invention, and FIG. 1 is a longitudinal sectional view, FIG. 2 is a partially cutaway plan view, and FIG.
The figure is a longitudinal sectional view showing the state of use, and FIGS. 4(A) to 4(C) are manufacturing process diagrams. (1)... Inorganic board, (2)... Long fibers, (1A)... Surface layer portion.

Claims (1)

【特許請求の範囲】 1、無機質板(1)内のうち表裏一方の板表面に近い箇
所にのみ、補強用の長繊維(2)を板表面に沿った姿勢
で配設してある無機質板の補強構造。 2、前記無機質板(1)のうち、前記一方の板表面と長
繊維(2)との間に位置する表層部分(1A)の厚さ(
t)が0.5〜5mmである特許請求の範囲第1項に記
載の無機質板の補強構造。 3、前記無機質板(1)が、コンクリート打設用の捨型
枠である特許請求の範囲第1項又は第2項に記載の無機
質板の補強構造。
[Claims] 1. An inorganic board in which reinforcing long fibers (2) are arranged along the board surface only at locations close to the board surface on one of the front and back sides of the inorganic board (1). reinforcement structure. 2. The thickness of the surface layer portion (1A) of the inorganic board (1) located between the one board surface and the long fibers (2) (
The reinforcing structure for an inorganic plate according to claim 1, wherein t) is 0.5 to 5 mm. 3. The inorganic plate reinforcement structure according to claim 1 or 2, wherein the inorganic plate (1) is a waste form for concrete pouring.
JP62314400A 1987-12-12 1987-12-12 Reinforcement structure of inorganic board Expired - Lifetime JP2516228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314400A JP2516228B2 (en) 1987-12-12 1987-12-12 Reinforcement structure of inorganic board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314400A JP2516228B2 (en) 1987-12-12 1987-12-12 Reinforcement structure of inorganic board

Publications (2)

Publication Number Publication Date
JPH01157445A true JPH01157445A (en) 1989-06-20
JP2516228B2 JP2516228B2 (en) 1996-07-24

Family

ID=18052894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314400A Expired - Lifetime JP2516228B2 (en) 1987-12-12 1987-12-12 Reinforcement structure of inorganic board

Country Status (1)

Country Link
JP (1) JP2516228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273660A (en) * 2013-05-06 2013-09-04 福建海源新材料科技有限公司 Long-fiber reinforced thermoplastic composite material of longitude and latitude glass fiber surface, and molding method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032608A (en) * 1983-08-04 1985-02-19 株式会社栗本鐵工所 Fiber reinforced cement molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032608A (en) * 1983-08-04 1985-02-19 株式会社栗本鐵工所 Fiber reinforced cement molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273660A (en) * 2013-05-06 2013-09-04 福建海源新材料科技有限公司 Long-fiber reinforced thermoplastic composite material of longitude and latitude glass fiber surface, and molding method and application thereof

Also Published As

Publication number Publication date
JP2516228B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US7311964B2 (en) Inorganic matrix-fabric system and method
Kišiček et al. Strengthening of masonry walls with FRP or TRM
Triantafillou et al. Innovative applications of textile-based composites in strengthening and seismic retrofitting as well as in the prefabrication of new structures
WO2006020261A2 (en) Confinement reinforcement for masonry and concrete structures
NO854749L (en) BUILDING ELEMENT, SPECIAL PANEL, OF FIBER REINFORCED CEMENT.
JPS60155564A (en) Tensile resistant material comprising hydraulic substance
KR101839449B1 (en) Structure for repairing concrete construction
JPH02248556A (en) Front constituting element having self-holding ability
JPH01157445A (en) Reinforcing structure for inorganic substance plate
JP3604315B2 (en) Concrete reinforcement, concrete structure, and method of forming concrete structure
KR102265884B1 (en) Concrete structure for repairing and strengthening using textile grid reinforcement and highly durable inorganic binder, and repair and strengthening method for the same
WO2006138224A1 (en) Fabric reinforced concrete
JPH10504359A (en) Concrete formwork panel
Najafgholipour et al. Experimental investigation on flexural behavior of masonry prisms strengthened by fiber-reinforced mortar layer
JPS62178644A (en) Fiber reinforced concrete structure
JP3520766B2 (en) FRP reinforced concrete structure
JP2558100B2 (en) Hybrid type fiber reinforced lightweight concrete structure
Rempel et al. Extremely light and slender precast-bridge made out of textile-reinforced-concrete
JP3706557B2 (en) Repair and reinforcement methods for concrete structures
KR102188961B1 (en) Precast concrete structure and manufacturing method thereof
JPH01154939A (en) Reinforcing structure of inorganic board
JPH0699194B2 (en) Surface reinforcement method for concrete structure
JP7455931B1 (en) Precast board manufacturing method and precast board
JPH02256733A (en) Manufacture of surface-finished concrete structure and surface finishing material therefor
JP6112543B2 (en) Slab structure and method for manufacturing slab structure