JPH0115740B2 - - Google Patents

Info

Publication number
JPH0115740B2
JPH0115740B2 JP414181A JP414181A JPH0115740B2 JP H0115740 B2 JPH0115740 B2 JP H0115740B2 JP 414181 A JP414181 A JP 414181A JP 414181 A JP414181 A JP 414181A JP H0115740 B2 JPH0115740 B2 JP H0115740B2
Authority
JP
Japan
Prior art keywords
valve
fluid
circuit
main circuit
push
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP414181A
Other languages
Japanese (ja)
Other versions
JPS57116964A (en
Inventor
Masanori Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP414181A priority Critical patent/JPS57116964A/en
Publication of JPS57116964A publication Critical patent/JPS57116964A/en
Publication of JPH0115740B2 publication Critical patent/JPH0115740B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、中立弁装置に関し、殊に流体ポンプ
及び流体モータを流体閉主回路で接続し且つ該主
回路へ流体を供給する押込み回路を配設した流体
圧伝動装置に適用され中立状態を得るとともに流
体圧伝動装置が伝動状態にある時適宜主回路と押
込み回路とを連通し遮断するチエツク機能を備え
たチエツク弁兼用中立弁装置に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a neutral valve device, and in particular to a fluid pressure transmission device in which a fluid pump and a fluid motor are connected through a closed fluid main circuit and a push-in circuit is provided for supplying fluid to the main circuit. This invention relates to a check valve/neutral valve device which is applied to a fluid pressure transmission device and has a check function to appropriately connect and disconnect a main circuit and a pushing circuit when a fluid pressure transmission device is in a transmission state to obtain a neutral state.

一般に流体圧伝動装置の中立状態を得る為には
流体ポンプの圧油の吐出を零にすれば良いが、流
体ポンプの吐出流量を制御する部材(例えばアキ
シヤルピストン型ポンプにあつてはピストンの行
程域を変える斜板)を吐出流量零の中立状態に保
持することは、リンク機構における遊隙、或は部
品の製作誤差による中立位置のバラツキ等がある
為実用的には困難である。従つて吐出流量を制御
する部材を中立状態近傍に操作するようこれに付
設された弁装置か機構的に連動して流体閉主回路
の吐出側回路と吸込側回路とを連通させるものが
提案されているが弁装置を連動させる機構か必要
なばかりか弁及び油路が複雑になるという欠点が
あつた。又、チエツク弁装置は別体として配設さ
れるのが普通であり一層回路を複雑にしている。
Generally, in order to obtain a neutral state of a fluid pressure transmission device, it is sufficient to reduce the discharge of pressure oil from a fluid pump to zero, but the components that control the discharge flow rate of a fluid pump (for example, in the case of an axial piston type pump, the piston It is practically difficult to maintain the swash plate (which changes the stroke range) in a neutral state with zero discharge flow rate because there is play in the link mechanism or variations in the neutral position due to manufacturing errors in parts. Therefore, it has been proposed to connect the discharge side circuit and the suction side circuit of the fluid closed main circuit by mechanically interlocking a valve device attached thereto so as to operate the discharge flow rate control member near the neutral state. However, it not only requires a mechanism for interlocking the valve devices, but also has the disadvantage that the valves and oil passages are complicated. Additionally, the check valve device is usually provided as a separate component, further complicating the circuit.

本発明は、流体圧伝動装置等の主回路に連通さ
れる弁孔、この弁孔に対し同心的に形成され弁座
を有し流体圧伝動装置等の押込み回路に連通され
る通孔、弁孔内に滑動可能に配設されており通孔
に形成された弁座に係合する円錐状の弁頭を有す
る弁体、この弁体を弁座方向に押圧する第1スプ
リング、及びこの第1スプリングに対して対向的
に弁体を押圧する第2スプリングを備えるととも
に、2つのスプリングの力の釣合により弁頭を弁
座から所定量だけ離すようにしたことにより、チ
エツク弁機能と中立弁機能とを併せもつた構造か
簡単で且つ正確な作動をするチエツク弁兼用中立
弁装置を提供することを目的とする。
The present invention relates to a valve hole that communicates with a main circuit of a fluid pressure transmission device, a through hole that is formed concentrically with the valve hole and has a valve seat, and that communicates with a push circuit of a fluid pressure transmission device, etc. A valve body having a conical valve head that is slidably disposed within the hole and engages with a valve seat formed in the through hole, a first spring that presses the valve body toward the valve seat, and the first spring. A second spring is provided that presses the valve body opposite to the first spring, and the balance of the forces of the two springs allows the valve head to be separated from the valve seat by a predetermined amount, thereby achieving a check valve function and a neutral valve. It is an object of the present invention to provide a check valve/neutral valve device which has a structure that has both a valve function and a simple and accurate operation.

以下本発明の実施例を図面に従つて説明する。
第1図は、本発明によるチエツク弁兼用中立弁装
置1a,1bを組込んだ流体圧伝動装置を示すも
のであり、原動機2により駆動される流体ポンプ
3と被駆動部材に連動された流体モータ4は閉主
回路5,6により接続されている。この閉主回路
5,6へ流体を供給或は補給する為の押込み回路
7には原動機2に駆動される押込みポンプ8及び
調圧弁9が配設されており、押込み回路7と閉主
回路5,6との間にチエツク弁兼用中立弁装置1
a,1bが配設されている。又、閉主回路5,6
には、これらの主回路内の作動最高圧力を設定し
た所定圧に保持するリリーフ弁5a,6aが設け
られている。このリリーフ弁5a,6aは通常バ
ランスピストン形リリーフ弁が用いられる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a fluid pressure transmission device incorporating a check valve/neutral valve device 1a, 1b according to the present invention, in which a fluid pump 3 driven by a prime mover 2 and a fluid motor linked to a driven member are shown. 4 are connected by closed main circuits 5 and 6. A push pump 8 driven by the prime mover 2 and a pressure regulating valve 9 are disposed in a push circuit 7 for supplying or replenishing fluid to the closed main circuits 5 and 6. , 6, there is a neutral valve device 1 that also serves as a check valve.
a and 1b are arranged. Also, closed main circuits 5, 6
are provided with relief valves 5a and 6a that maintain the maximum operating pressure in these main circuits at a predetermined pressure. The relief valves 5a, 6a are normally balanced piston type relief valves.

第2図は本発明によるチエツク弁兼用中立弁装
置1a,1b(以下単に弁装置と称す)を組込ん
だ油圧回路用ブロツク部材10の断面図であり、
同一の弁装置1a,1bが2つ対向的に配設され
ている。この油圧回路用ブロツク部材10は通例
として油圧伝動装置等に付設される。
FIG. 2 is a sectional view of a hydraulic circuit block member 10 incorporating check valve/neutral valve devices 1a and 1b (hereinafter simply referred to as a valve device) according to the present invention.
Two identical valve devices 1a and 1b are arranged facing each other. This hydraulic circuit block member 10 is usually attached to a hydraulic transmission device or the like.

以下一方の弁装置1a(第2図示左方部分)に
ついて構成を説明する。油圧回路用ブロツク部材
10は、押込み回路7に接続される押込側通口1
1と主回路に接続される主回路側通口12を備
え、図示左方の端面13から押込側通口11に向
け円筒孔14が穿設されている。円筒孔14の右
端底部15には、押込側通口11に連通する通孔
16が円筒孔14に対し同心的に穿設されてい
る。通孔16の左方(円筒孔14側)角部は弁座
17となる。円筒孔14には、中ぐり状に形成さ
れた室18が設けられており、この室18を介し
て円筒孔14と通口12とが連通される。円筒孔
14にはスリーブ部材20がその外径21にて嵌
挿されており、シール部材20aにより液密され
止め具19により抜け止めされている。スリーブ
部材20の内部には通孔16に対し同心的に弁孔
22が形成されており、この弁孔22には前記弁
座17に当接係合し得る截頭円錐状の弁頭25を
備えた弁体26が摺動可能に嵌合しており、弁体
側部には切欠27が設けられており弁孔22との
間に通路が形成される。スリーブ部材20にはま
た室18と弁孔22内とを連通する通孔23が穿
設されている。弁体26は該弁体を弁座方向に押
圧する第1第2スプリング28とこのスプリング
に対向して弁体26を押圧する第2スプリング2
9との付勢力の均合によつて弁頭25部分が弁座
17から軸方向にXだけ離間した常態に組付けら
れている。これにより押込側通口11と主回路側
通口12とが連通されている。他方の弁装置1b
(第1図示右方部分)は一方の弁装置1aと同一
であるので省略する。
The configuration of one valve device 1a (the second left portion in the figure) will be described below. The hydraulic circuit block member 10 has a push-in side port 1 connected to the push-in circuit 7.
1 and a main circuit side port 12 connected to the main circuit, and a cylindrical hole 14 is bored from the end surface 13 on the left side in the drawing toward the push side port 11. A through hole 16 communicating with the push-in side port 11 is bored concentrically with the cylindrical hole 14 at the right end bottom 15 of the cylindrical hole 14 . The left corner (on the cylindrical hole 14 side) of the through hole 16 becomes a valve seat 17. The cylindrical hole 14 is provided with a chamber 18 formed in the shape of a bore, and the cylindrical hole 14 and the passage 12 communicate with each other via the chamber 18 . A sleeve member 20 is fitted into the cylindrical hole 14 at its outer diameter 21, and is kept liquid-tight by a seal member 20a and prevented from coming off by a stopper 19. A valve hole 22 is formed inside the sleeve member 20 concentrically with the through hole 16, and the valve hole 22 has a frusto-conical valve head 25 that can abut and engage with the valve seat 17. A valve body 26 is slidably fitted therein, and a notch 27 is provided on the side of the valve body to form a passage between the valve body and the valve hole 22 . The sleeve member 20 is also provided with a through hole 23 that communicates between the chamber 18 and the inside of the valve hole 22 . The valve body 26 includes a first and second spring 28 that presses the valve body toward the valve seat, and a second spring 2 that presses the valve body 26 in opposition to this spring.
9, the valve head 25 is normally assembled with the valve head 25 separated from the valve seat 17 by an amount X in the axial direction. This allows the push-in side port 11 and the main circuit side port 12 to communicate with each other. The other valve device 1b
(the first right-hand portion in the figure) is the same as the one valve device 1a, and will therefore be omitted.

次に、第2図に示す弁装置1a,1bの作用を
第1図に示す流体圧伝動装置とともに説明する。
原動機2により流体ポンプ3と押込みポンプ8と
が駆動されており、押込み回路7に所定圧P1
供給されている。今流体ポンプ3の押のけ容積変
化手段3aが中立状態位置から僅かに偏位し主回
路6へ圧油を吐出しており流体モータ4は停止し
ているとする。押込み回路7の圧油は第1図示上
方(第2図示左方)の弁装置1aを過て主回路5
へ供給される。又、主回路6へ吐出された圧油
は、第1図示下方(第2図示右方)の弁装置1b
が第2図示の如く弁開度Xが所定値だけ弁頭25
を弁座17から離間している為弁装置1bを過て
押込み回路7へ環戻される。従つて、主回路6内
の圧力P3は流体モータ4を駆動するまでには上
昇せず所謂クリープが防止される。
Next, the operation of the valve devices 1a and 1b shown in FIG. 2 will be explained together with the fluid pressure transmission device shown in FIG.
A fluid pump 3 and a push pump 8 are driven by the prime mover 2, and a predetermined pressure P1 is supplied to the push circuit 7. It is now assumed that the displacement changing means 3a of the fluid pump 3 is slightly deviated from the neutral position and is discharging pressure oil to the main circuit 6, and the fluid motor 4 is stopped. Pressure oil in the pushing circuit 7 passes through the valve device 1a at the upper side in the first figure (the left side in the second figure) and enters the main circuit 5.
supplied to In addition, the pressure oil discharged to the main circuit 6 is transferred to the valve device 1b at the lower side in the first figure (the right side in the second figure).
As shown in the second diagram, the valve opening degree
Since it is separated from the valve seat 17, it passes through the valve device 1b and returns to the push circuit 7. Therefore, the pressure P3 in the main circuit 6 does not rise until the fluid motor 4 is driven, and so-called creep is prevented.

続いて、原動機2の回転速度を上昇させ或は流
体ポンプ3の押のけ容積変化手段3aを操作し或
は両動作を同時に行わせて主回路6への吐出流量
Qpが増大すると圧力P3は、第2図右方の弁装置
1bの弁開度Xが図示状態に保持されているとす
れば、上昇しそれにより主回路6から押込み回路
7への環戻流量Q2も増大する。更に吐出流量Qp
が増大すると圧力P3も増大し、所定の設定圧力
(例えば流体モータ4を駆動可能な圧力或はそれ
よりも多少低い圧力)になると、弁装置1bにお
いてスプリング28の押圧力及び圧力P3によつ
て弁体26を押圧する力の和がばね29の押圧力
及び圧力P1によつて弁体26を押圧する力の和
より上回ると弁体26に作用している力の均合が
崩れ、弁体26は第2図示左方へ変位し弁開度X
が減少し遂に弁頭25が弁座17に当接係合して
主回路6から弁位置1bを過て押込み回路7への
環戻流量Q2は零となる。而して圧力P3は流体モ
ータ4を駆動するに十分な圧力となり流体モータ
4が回転を始め例えば車輌の車輪が回転され車輌
が発進する。この時の主回路6内の圧力P3は、
負荷即ち車輌を走行させるに必要な力に対応した
ものとなる。
Next, the discharge flow rate to the main circuit 6 is increased by increasing the rotational speed of the prime mover 2 or by operating the displacement changing means 3a of the fluid pump 3, or by performing both operations simultaneously.
As Qp increases, the pressure P3 increases, assuming that the valve opening X of the valve device 1b on the right side of FIG. The flow rate Q 2 also increases. Furthermore, the discharge flow rate Qp
When the pressure increases, the pressure P3 also increases, and when a predetermined set pressure (for example, a pressure that can drive the fluid motor 4 or a pressure slightly lower than that) is reached, the pressing force of the spring 28 and the pressure P3 in the valve device 1b are increased. Therefore, if the sum of the forces pressing the valve body 26 exceeds the sum of the forces pressing the valve body 26 due to the pressing force of the spring 29 and the pressure P1 , the balance of the forces acting on the valve body 26 will be lost. , the valve body 26 is displaced to the left in the second figure, and the valve opening degree X
decreases, the valve head 25 finally comes into abutting engagement with the valve seat 17, and the flow rate Q 2 flowing back from the main circuit 6 to the pushing circuit 7 through the valve position 1b becomes zero. The pressure P3 becomes sufficient to drive the fluid motor 4, and the fluid motor 4 begins to rotate, for example, the wheels of the vehicle rotate, and the vehicle starts moving. At this time, the pressure P 3 in the main circuit 6 is:
It corresponds to the load, that is, the force required to drive the vehicle.

一方主回路5内の圧力P2は、流体ポンプ3が
主回路5内の流体を主回路6へ吐出し、その吐出
流量Qpが増大することにより、初期値より低下
し押込み回路7内の圧力P1との差が生じ前記吐
出流量Qpの増大につれその差も大となる。(但し
弁装置1aの弁開度Xが第2図示状態に保持され
ており変化しないと仮定する。)この結果押込み
回路7から弁装置1aを過て主回路5への押込流
量Q1が増大する。この押込流量Q1は、流体ポン
プ3、流体モータ4及び弁装置1a,1bの内部
洩れが無いとすれば、環戻流量Q2と同じになる。
この状態で圧力P2と圧力P1との差が所定値にな
ると、弁装置1aに於てスプリング28の押圧力
及び圧力P2によつて弁体26を押圧する力の和
がスプリング29の押圧力及び圧力P1によつて
弁体26を押圧する力の和より小さくなり、弁体
26は第2図示左方へ変位し弁開度Xが増大す
る。これにより押込流量Q1は増大する。而して、
弁装置1bが前述した如く弁開度Xを閉じ環戻流
量Q2が零となると押込流量Q1も零となり、主回
路5内の圧力P2は押込回路7内の圧力P1と略同
一となる。若し、流体ポンプ3、流体モータ4及
び弁装置1a,1bの内部洩れが有る場合は、そ
の洩れ分だけ押込回路7から弁装置1aを過て主
回路5へ流体が補給される。
On the other hand, the fluid pump 3 discharges the fluid in the main circuit 5 to the main circuit 6, and the discharge flow rate Qp increases, so that the pressure P 2 in the main circuit 5 decreases from the initial value, and the pressure in the pushing circuit 7 decreases. P1 , and the difference becomes larger as the discharge flow rate Qp increases. (However, it is assumed that the valve opening degree X of the valve device 1a is maintained at the state shown in the second diagram and does not change.) As a result, the pushing flow rate Q1 from the pushing circuit 7 to the main circuit 5 through the valve device 1a increases. do. If there is no internal leakage in the fluid pump 3, fluid motor 4, and valve devices 1a and 1b, this push - in flow rate Q1 will be the same as the return flow rate Q2 .
In this state, when the difference between the pressure P 2 and the pressure P 1 reaches a predetermined value, the sum of the pressing force of the spring 28 and the force pressing the valve body 26 due to the pressure P 2 in the valve device 1a becomes the force of the spring 29. The pressing force and the pressure P1 become smaller than the sum of the forces pressing the valve body 26, and the valve body 26 is displaced to the left in the second figure, and the valve opening degree X increases. This increases the pushing flow rate Q1 . Then,
As described above, when the valve device 1b closes the valve opening X and the return flow rate Q2 becomes zero, the push-in flow rate Q1 also becomes zero, and the pressure P2 in the main circuit 5 is approximately the same as the pressure P1 in the push-in circuit 7. becomes. If there is internal leakage from the fluid pump 3, fluid motor 4, and valve devices 1a and 1b, fluid is replenished from the push circuit 7 to the main circuit 5 through the valve device 1a by the leakage amount.

以上説明した状態変化のうちの流量変化につい
てみてみると第4図の如く表わされる。この時系
列図に於て、環戻流量Q2が減少はじめるときの
流量Qnは、前述の弁装置1bの説明から理解さ
れるように、部品の製作誤差、流体ポンプの押の
け容積変化手段を操作するリンク系の遊隙等によ
る中立位置の偏位量に対応したポンプ吐出流量を
考慮して、弁装置のばね28,29の取付荷重及
びスプリング定数、弁体26の円錐頂角2φ、寸
法d2、弁開度及び通孔の径d1等を適宜に定めるこ
とにより、決定される。
Among the state changes described above, the flow rate change is expressed as shown in FIG. 4. In this time-series diagram, the flow rate Qn when the recirculation flow rate Q2 starts to decrease is determined by manufacturing errors of parts, displacement change means of the fluid pump, as understood from the above explanation of the valve device 1b. Considering the pump discharge flow rate corresponding to the amount of deviation of the neutral position due to play in the link system that operates It is determined by appropriately determining the dimension d2, the valve opening degree, the diameter d1 of the through hole, etc.

以上は、第1図に於て流体ポンプ3が主回路5
から6へ流体を吐出した場合を仮定した時の弁装
置1a,1bの作動を説明したが、逆に主回路6
から5へ流体を吐出する場合は、弁装置1a,1
bの作動が逆になるだけであり容易に理解される
ので説明を省く。車輌に適用した場合等にみられ
るエンジンブレーキ状態でも弁装置1a,1bの
作動が逆転する。
In the above, the fluid pump 3 is connected to the main circuit 5 in FIG.
The operation of the valve devices 1a and 1b has been explained assuming that fluid is discharged from the main circuit 6 to the main circuit 6.
When discharging fluid from to 5, valve devices 1a, 1
Since the operation of b is simply reversed and is easily understood, the explanation will be omitted. The operation of the valve devices 1a and 1b is reversed even in an engine braking state such as when applied to a vehicle.

次に弁装置1a,1dの特性について説明す
る。
Next, the characteristics of the valve devices 1a and 1d will be explained.

チエツク弁特性:押込側通口→主回路側通口
への押込流量Q1と圧力P1,P2の関係。
Check valve characteristics: Relationship between push flow rate Q 1 from push-in side port to main circuit side port and pressures P 1 and P 2 .

第2図に於て、弁装置1aが前述した作動を
していると仮定し、弁開度Xの初期設定値(取
付状態)をX0とし流体の流出角を弁頭25の
円錐頂角2φの半分とすれば、押込流量Q1は次
のように表わされる。
In FIG. 2, assuming that the valve device 1a operates as described above, the initial setting value (installed state) of the valve opening degree X is set to If it is half of 2φ, the pushing flow rate Q 1 is expressed as follows.

又、弁体26に働く力の釣り合は次のように
表わされる。
Further, the balance of forces acting on the valve body 26 is expressed as follows.

ここに、 Ca:流量係数、d1:弁座口の直径〔cm〕、
φ:流体の流出角〔deg〕、X′:弁開度変位
〔cm〕、X0:初期設定弁開度〔cm〕、ρ:流体の
密度〔Kg・s2/cm4〕、ΔP1:差圧(P1−P2
〔Kg/cm2〕、A:弁の受圧面積(πd1 2/4)
〔cm2〕、k1:ばね28のスプリング定数〔Kg/
cm〕、k2:ばね29のスプリング定数〔Kg/cm〕 である。これらから(1)式を(2)式に代入して ΔP1=X′・(k1+k2)/A−Ca・π・d
1・(X0+X′)・sin2φ(3) となる。以上の関係を図に示すと第5図の如くな
る。
Where, Ca: flow coefficient, d 1 : diameter of valve seat opening [cm],
φ: Fluid outflow angle [deg], X′: Valve opening displacement [cm], X 0 : Initial setting valve opening [cm], ρ: Fluid density [Kg・s 2 /cm 4 ], ΔP 1 : Differential pressure (P 1 − P 2 )
[Kg/cm 2 ], A: Pressure receiving area of the valve (πd 1 2 /4)
[cm 2 ], k 1 : Spring constant of spring 28 [Kg/
cm], k 2 : Spring constant of the spring 29 [Kg/cm]. Substituting equation (1) into equation (2) from these, ΔP 1 = X′・(k 1 +k 2 )/A−Ca・π・d
1・(X 0 +X′)・sin2φ(3). The above relationship is illustrated in FIG. 5.

中立弁特性:主回路側通口→押込側通口への
環戻流量Q2と圧力P3,P1の関係。
Neutral valve characteristics: Relationship between the return flow rate Q 2 from the main circuit side port to the push side port and the pressures P 3 and P 1 .

第2図に於て、弁装置1bが前述した作動を
していると仮定し、弁開度Xの初期設定値(取
付状態)をX0とし流体の流入角を弁頭25の
円錐頂角2φの半分とすれば、環戻流量Q2は次
のように表わされる。
In FIG. 2, assuming that the valve device 1b operates as described above, the initial setting value (installed state) of the valve opening degree X is set to If it is half of 2φ, the recirculation flow rate Q 2 is expressed as follows.

又、弁体26に働く力の釣り合は次のように
表わされる。
Further, the balance of forces acting on the valve body 26 is expressed as follows.

ここに、 Cb:流量係数、d1:弁座口の直径〔cm〕、
φ:流体の流入角〔deg〕、X′:弁開度変位
〔cm〕、X0:初期設定弁開度〔cm〕、ρ:流体の
密度〔Kg・s2/cm4〕、ΔP2:差圧(P3−P1
〔Kg/cm2〕、A:弁の受圧面積(πd1 2/4)
〔cm2〕、k1:ばね28のスプリング定数〔Kg/
cm〕、k2:ばね29のスプリング定数〔Kg/cm〕 である。これらから(4)式を(5)式に代入して ΔP2=−X′・(k1+k2)/A−Cb・π
・d1・(X0+X′)・sin2φ となる。以上の関係を図示すと第6図の如くな
る。これから明らかなように差圧が所定値以上に
なると環戻流量Q2が減小してついには零となり、
弁装置1bが弁開度を閉じることが理解される。
Where, Cb: Flow coefficient, d 1 : Diameter of valve seat opening [cm],
φ: Fluid inflow angle [deg], X′: Valve opening displacement [cm], X 0 : Initial setting valve opening [cm], ρ: Fluid density [Kg・s 2 /cm 4 ], ΔP 2 : Differential pressure (P 3 − P 1 )
[Kg/cm 2 ], A: Pressure receiving area of the valve (πd 1 2 /4)
[cm 2 ], k 1 : Spring constant of spring 28 [Kg/
cm], k 2 : Spring constant of the spring 29 [Kg/cm]. Substituting equation (4) into equation (5) from these, ΔP 2 = −X′・(k 1 +k 2 )/A−Cb・π
・d 1・(X 0 +X′)・sin2φ. The above relationship is illustrated in FIG. 6. As is clear from this, when the differential pressure exceeds a predetermined value, the recirculation flow rate Q 2 decreases and finally reaches zero.
It is understood that the valve device 1b closes the valve opening.

次に第7図及び第8図により、本発明の他の実
施例について説明する。第7図は、本発明による
チエツク弁兼用中立弁100を組込んだ流体圧伝
動装置を示すものであり、第1図に示したものと
同一あるいは均等部分については第1図と同一の
付号で示してあり詳細な説明は省く。チエツク弁
兼用中立弁100は、ブロツク部材110中にチ
エツク弁兼用中立弁装置100a,100bが対
向的に配置されている。この弁装置100a,1
00bは、第2図示の弁装置1a,1bと一部構
成が異るのみであり、以下違い点についてのみ説
明する。第2図示の弁装置1a,1bと同一又は
均等部分については第2図と同一の付号とし、特
に付番については100を加えた番号として示し
てある。押込側通口111は、弁装置100a,
100bの通孔116,116の共通通口となつ
ている。この通孔116,116は略同一軸心上
に穿孔されている。弁装置100a,100bは
対向的に配設された弁体126,126の弁頭1
25,125から延びた延出部27,27の夫々
の先端面が当接可能であり、弁頭125,125
を弁座117,117に各々押圧するスプリング
128,128の付勢力の均合により図示常態を
呈している。この場合、弁座117,117間の
寸法Sを考慮して延出部27,27の夫々の先端
面の弁頭125,125からの長さを決定するこ
とにより弁開度X,Xが設定出来る。(但し、弁
頭125,125の円錐頂角2φは一定とした場
合。)このような構成に於て、弁装置100aの
弁体126を基準としてみれば図示左方のスプリ
ング128が第1弾撥部材となり、右方のスプリ
ング128が第2スプリングとなる。又、弁装置
100bの弁体126を基準とした場合には逆に
図示右方のスプリング128が第1スプリングと
なり、左方のスプリング128が第2スプリング
となる。以上の構成に於ける作用については、前
述の第1図及至第6図の説明から理解されるので
省略する。尚、弁装置100a或は100bがチ
エツク弁として機能する場合は、互いに相対する
弁体の延出部の先端面が離間し得る。又、弁装置
100a及び100bが中立弁として機能する場
合、例えば弁装置100bが差圧により弁体が変
位して弁開度Xが零になると、もう一方の弁装置
100aの弁開度は圧力P1とP2との差圧には関
係なく少くとも(x+X)に開く。
Next, another embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 shows a fluid pressure transmission device incorporating a check valve/neutral valve 100 according to the present invention, and parts that are the same as or equivalent to those shown in FIG. 1 are designated by the same reference numbers as in FIG. The detailed explanation will be omitted. In the check valve/neutral valve 100, check valve/neutral valve devices 100a and 100b are disposed facing each other in a block member 110. This valve device 100a, 1
00b differs from the valve devices 1a and 1b shown in the second diagram only in a part of the configuration, and only the differences will be described below. Parts that are the same as or equivalent to the valve devices 1a and 1b shown in FIG. 2 are numbered the same as in FIG. 2, and in particular, the numbers are increased by 100. The push-in side port 111 has a valve device 100a,
It serves as a common port for the through holes 116, 116 of 100b. The through holes 116, 116 are bored approximately on the same axis. The valve devices 100a and 100b have valve heads 1 of valve bodies 126 and 126 arranged oppositely.
The end surfaces of the extending portions 27, 27 extending from the valve heads 125, 125 can come into contact with each other, and the valve heads 125, 125
The normal state shown in the figure is achieved by balancing the biasing forces of the springs 128 and 128 that press the valve seats 117 and 117, respectively. In this case, the valve openings X, X are set by determining the lengths of the end surfaces of the extensions 27, 27 from the valve heads 125, 125, taking into consideration the dimension S between the valve seats 117, 117. I can do it. (However, this assumes that the conical apex angle 2φ of the valve heads 125, 125 is constant.) In such a configuration, when looking at the valve body 126 of the valve device 100a as a reference, the spring 128 on the left side in the figure is the first spring. It becomes a repellent member, and the right spring 128 becomes a second spring. Moreover, when the valve body 126 of the valve device 100b is used as a reference, the spring 128 on the right side in the figure becomes the first spring, and the spring 128 on the left side becomes the second spring. The operation of the above configuration will be understood from the explanation of FIGS. 1 to 6 above, and will therefore be omitted. Note that when the valve device 100a or 100b functions as a check valve, the end surfaces of the extending portions of the valve bodies facing each other may be separated from each other. Further, when the valve devices 100a and 100b function as neutral valves, for example, when the valve body of the valve device 100b is displaced due to a pressure difference and the valve opening X becomes zero, the valve opening of the other valve device 100a becomes equal to the pressure. It opens at least to (x+X) regardless of the differential pressure between P 1 and P 2 .

第9図は、第8図に示す実施例の変形例を示す
ものであり、第8図の弁装置100a,100b
の弁頭125,125から延出した延出部27,
27に代えてプランジヤ30,30を付設したも
のである。プランジヤ部材30,30は、夫夫そ
の軸方向中間部にストツパ用鍔31,31を備え
ており、プランジヤ部32,32が弁頭225,
225内に穿孔されたシリンダ35,35に摺動
可能に嵌合している。このシリンダ35,35の
開口端部は各々の弁装置200a,200bの弁
孔222,222側の室に連通している。従つ
て、このチエツク弁兼用中立弁200を第7図示
の流体圧伝動装置に適用した場合、主回路5或は
6の圧力P2或はP3が高くなると、弁体226,
226が変位し一方が弁開度を閉じ他方が弁開度
をより開くそして更にプランジヤ30が弁頭22
5に対し相対的に突出変位して他方のプランジヤ
30を押圧変位する為の弁開度は更に開く。この
点が第2図及び第8図示のものと相違しており、
その他の作用については前述の作用説明から理解
されるので省略する。尚、第2図示の弁装置1
a,1bと同一又は均等部分については第2図と
同一の付号とし、特に付番については200を加
えた番号として示してある。
FIG. 9 shows a modification of the embodiment shown in FIG. 8, in which the valve devices 100a and 100b in FIG.
Extending portions 27 extending from the valve heads 125, 125,
27 is replaced with plungers 30, 30. The plunger members 30, 30 are provided with stopper flanges 31, 31 at their axially intermediate portions.
It is slidably fitted into cylinders 35, 35 bored in 225. The open ends of the cylinders 35, 35 communicate with the chambers on the valve holes 222, 222 side of the respective valve devices 200a, 200b. Therefore, when this check valve / neutral valve 200 is applied to the fluid pressure transmission device shown in FIG.
226 is displaced, one closes the valve opening, the other opens the valve further, and the plunger 30 further opens the valve head 22.
The valve opening degree for projecting and displacing the other plunger 30 relative to 5 is further opened. This point is different from those shown in Figures 2 and 8,
Other functions will be understood from the above description of the functions, and will therefore be omitted. In addition, the valve device 1 shown in the second figure
Parts that are the same as or equivalent to a and 1b are numbered the same as in FIG. 2, and in particular, 200 is added to the number.

第10図は、第8図に示す実施例の別な変形例
を示すものであり、第8図の弁装置100a,1
00bの背部に夫々リリーフ弁装置50a,66
0aを付設したものである。このリリーフ弁装置
50a,60aは同一のものであり以下図示右方
の60aについて説明する。リリーフ弁装置60
aはバランスドピストン形リリーフ弁であり、ブ
ロツク部材310に螺着されたスリーブ部材32
0内に弁装置300bとともに組込まれている。
弁孔322の図示右方の奥に設けられた弁孔61
に摺動可能に主弁62が嵌合されており、この主
弁62にはオリフイス63が設けられている。主
弁62の右方には主弁用ばね64が弾装されてお
り、主弁62の左方への突出を規制する為にスト
ツパ64か止め輪65により装着されている。又
弁孔61にはドレーンポート66が開口されてお
り通孔67を介して押込回路7に連通される。弁
孔61に形成された室68はオリフイス69を介
して室70に連通されており、室70にはパイロ
ツト弁71がスプリング72によりオリフイス6
9を塞ぐよう配設されている。室70は逃し通路
73を介して押込み回路に連通している。74は
ばね72の荷重を調整するアジヤスタであり、7
5はロツクナツトである。尚、76,77はシー
ル部材である。その他の構成については第8図示
のものと略同一である。付号については、第2図
示の部材と同一又は均等部分については第2図の
付号とし、特に付番については300を加えた番
号として示してある。このような構成装置の作用
については前述の第2図の説明から容易に理解さ
れるので省略する。尚、参考として第10図示装
置の実験結果添付する。
FIG. 10 shows another modification of the embodiment shown in FIG. 8, in which the valve devices 100a, 1 of FIG.
Relief valve devices 50a and 66 are installed on the back of 00b, respectively.
0a is added. The relief valve devices 50a and 60a are the same, and the right side 60a in the figure will be described below. Relief valve device 60
a is a balanced piston type relief valve, which includes a sleeve member 32 screwed onto a block member 310;
0 together with the valve device 300b.
Valve hole 61 provided at the back of the valve hole 322 on the right side in the figure
A main valve 62 is slidably fitted into the main valve 62, and an orifice 63 is provided in the main valve 62. A main valve spring 64 is elastically mounted on the right side of the main valve 62, and is attached by a stopper 64 or a retaining ring 65 to restrict the leftward protrusion of the main valve 62. A drain port 66 is opened in the valve hole 61 and communicates with the push-in circuit 7 via a through hole 67. A chamber 68 formed in the valve hole 61 is communicated with a chamber 70 via an orifice 69, and a pilot valve 71 is connected to the orifice 6 by a spring 72 in the chamber 70.
It is arranged to block 9. The chamber 70 communicates with the push-in circuit via a relief passage 73. 74 is an adjuster for adjusting the load of the spring 72;
5 is a rock nut. Note that 76 and 77 are seal members. The other configurations are substantially the same as those shown in FIG. Regarding the numbering, parts that are the same as or equivalent to the members shown in the second figure are numbered as shown in FIG. 2, and in particular, 300 is added to the numbering. The operation of such a component device will be easily understood from the above-mentioned explanation of FIG. 2, and will therefore be omitted. For reference, the experimental results of the apparatus shown in FIG. 10 are attached.

第11図はチエツク弁特性の実験結果を示す図
であり、第12図示の如き状態で測定した結果で
ある。条件として、作動油:エツソヌトー
HP32、油温(θ):30〜39℃、d1:1.0cm、x+
X:0.4cm、2φ:40deg、スプリング定数:0.2
Kg/mm、スプリングの初期(図示状態)タワミ:
13mm、とした。
FIG. 11 is a diagram showing the experimental results of check valve characteristics, which were measured under the conditions shown in FIG. 12. As a condition, hydraulic oil: Etsonutoh
HP32, oil temperature (θ): 30-39℃, d 1 : 1.0cm, x+
X: 0.4cm, 2φ: 40deg, spring constant: 0.2
Kg/mm, spring initial (as shown) deflection:
It was set to 13mm.

第13図は中立弁特性の実験結果を示す図であ
り、第14図示の如き状態で測定した結果であ
る。条件として、作動油:エツソヌトーHP32、
油温(θ):29:33℃、d1:1.0cm、x=X:0.2
cm、2φ:40deg、スプリング定数:0.2Kg/mm、
スプリングの初期(図示状態)タワミ:6.5mmと
し、流量Q2は重量法により測定した。
FIG. 13 is a diagram showing the experimental results of the neutral valve characteristics, which were measured under the condition shown in FIG. 14. As a condition, hydraulic oil: Etsu Nutoh HP32,
Oil temperature (θ): 29: 33℃, d 1 : 1.0cm, x=X: 0.2
cm, 2φ: 40deg, spring constant: 0.2Kg/mm,
The initial deflection of the spring (as shown) was 6.5 mm, and the flow rate Q 2 was measured by gravimetry.

以上詳細に説明した如く、本発明によれば流体
伝動装置等の主回路に連通される弁孔、この弁孔
に対し同心的に形成され弁座を有し流体伝動装置
等の押込み回路に連通される通孔、弁孔内に滑動
可能に配設されており通孔に形成された弁座に係
合する円錐状の弁頭を有する弁体、この弁体を弁
座方向に押圧する第1スプリング、及びこの第1
スプリングに対して対向的に弁体を押圧する第2
スプリングを設け、この2つのスプリングの力の
釣合により弁頭を弁座から所定量だけ離すように
したことにより、押込回路から主回路へ流体を押
込む場合に回路を連通させるチエツク弁機能と、
流体ポンプの中立状態に於ける吐出流量を主回路
から押込回路へ環戻して所謂車輌の引ずりを防止
する為の中立弁機能とを併せもたせることができ
る。又、2つのスプリングのスプリング定数、或
は取付時の初期たわみ、初期弁開度を適宜設定す
ることにより、中立弁特性の弁閉塞時機を流体ポ
ンプの中立状態の不良都合に合せて容易に設定出
来る。更に中立弁の弁閉塞が押込み圧力と主回路
圧との差圧力変化に対応して自動的に行われる
為、リンク機構を全く必要とせず車輌の発進を良
好に行わせることが出来る等の勝れた効果を奏す
る。
As explained in detail above, according to the present invention, there is a valve hole that communicates with the main circuit of a fluid transmission device, etc., a valve seat formed concentrically with the valve hole, and a valve seat that communicates with a push-in circuit of the fluid transmission device, etc. a conical valve head that is slidably disposed within the valve hole and engages with a valve seat formed in the through hole; and a valve body that presses the valve body toward the valve seat. 1 spring, and this first
A second valve that presses the valve body oppositely to the spring.
By installing a spring and separating the valve head from the valve seat by a predetermined amount by balancing the forces of these two springs, a check valve function that connects the circuit when pushing fluid from the push circuit to the main circuit can be achieved. ,
It is also possible to provide a neutral valve function for preventing so-called vehicle dragging by circulating the discharge flow rate of the fluid pump in its neutral state from the main circuit to the pushing circuit. In addition, by appropriately setting the spring constants of the two springs, the initial deflection at the time of installation, and the initial valve opening degree, the valve closing timing of the neutral valve characteristic can be easily set to suit the unfavorable circumstances of the fluid pump's neutral state. I can do it. Furthermore, since the neutral valve is automatically closed in response to changes in the differential pressure between the push-in pressure and the main circuit pressure, there are other advantages such as the ability to start the vehicle smoothly without the need for any linkage mechanism. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるチエツク弁兼用中立弁装
置を適用しうる流体伝動装置の回路図、第2図は
本発明の一実施例を示す断面図、第3図は第2図
の線−断面図、第4図は時系列図、第5図は
チエツク弁特性図、第6図は中立弁特性図、第7
図は本発明の他の実施を適用しうる流体伝動装置
の回路図、第8図は本発明の他の実施例を示す断
面図、第9図は本発明の変形例を示す断面図、第
10図は本発明の別の変形例を示す断面図、第1
1図はチエツク弁特性の実験結果を示す特性図、
第12図はその方法装置を示す状態図、第13図
は中立弁特性の実験結果を示す特性図、及び第1
4図は実験方法装置を示す状態図である。 22:弁孔、16:通孔、26:弁体、28:
第1スプリング、29:第2スプリング。
Fig. 1 is a circuit diagram of a fluid transmission device to which the check valve/neutral valve device according to the present invention can be applied, Fig. 2 is a cross-sectional view showing an embodiment of the present invention, and Fig. 3 is a cross-sectional view taken along the line of Fig. 2. Figure 4 is a time series diagram, Figure 5 is a check valve characteristic diagram, Figure 6 is a neutral valve characteristic diagram, and Figure 7 is a time series diagram.
8 is a sectional view showing another embodiment of the invention, FIG. 9 is a sectional view showing a modification of the invention, and FIG. FIG. 10 is a sectional view showing another modification of the present invention, the first
Figure 1 is a characteristic diagram showing the experimental results of check valve characteristics.
FIG. 12 is a state diagram showing the method and apparatus, FIG. 13 is a characteristic diagram showing the experimental results of the neutral valve characteristics, and
FIG. 4 is a state diagram showing the experimental method apparatus. 22: Valve hole, 16: Through hole, 26: Valve body, 28:
1st spring, 29: 2nd spring.

Claims (1)

【特許請求の範囲】 1 流体ポンプ及び流体モータを流体閉主回路で
接続し、且つ該主回路へ流体を供給する押込み回
路を配設した流体伝導装置等に備えられるチエツ
ク弁機能を兼ね備えた2つの弁装置を有する中立
弁装置において、弁装置に嵌挿されたスリーブ部
材に形成され流体圧伝動装置等の主回路に連通す
る弁孔、該弁孔に対して同心的に形成され前記弁
孔の径より小さい径であり角部が弁座を呈する流
体圧伝動装置等の押込み回路に連通する油圧回路
用ブロツク部材に孔設された通孔、前記通孔に摺
動可能に嵌合され前記弁座に当接係合可能であり
前記主回路および前記押込み回路との連通を遮断
する截頭円錐状の弁頭を有する弁体、該弁体を弁
座方向に付勢するようにスリーブ部材および弁体
間に縮設された第1スプリング、および該第1ス
プリングに対向して前記弁体を前記第1スプリン
グ方向に付勢するように弁体および油圧回路用ブ
ロツク部材間に縮設された第2スプリングを有
し、第1および第2スプリングそれぞれの付勢力
の釣合いにより前記弁頭が前記弁座から所定量だ
け離れ主回路および押込み回路とが連通された常
態に弁体が位置することを特徴とするチエツク弁
兼用中立弁装置。 2 一方の弁装置は、流体を押込み側通路より導
入し主回路側へ導出させることを特徴とした、特
許請求の範囲第1項記載のチエツク弁兼用中立弁
装置。 3 他方の弁装置は、流体を主回路側より導入し
て押込み回路側へ導出させることを特徴とした、
特許請求の範囲第1項記載のチエツク弁兼用中立
弁装置。
[Scope of Claims] 1. A fluid pump and a fluid motor are connected through a closed fluid main circuit, and 2. It also has a check valve function provided in a fluid transmission device, etc., which is provided with a push-in circuit that supplies fluid to the main circuit. In a neutral valve device having two valve devices, a valve hole formed in a sleeve member fitted into the valve device and communicating with a main circuit of a fluid pressure transmission device, etc.; A through hole is formed in a block member for a hydraulic circuit that communicates with a push-in circuit of a fluid pressure transmission device, etc., and has a diameter smaller than the diameter of the valve seat, and a corner portion thereof serves as a valve seat. a valve body having a truncated conical valve head that is capable of abutting engagement with the valve seat and interrupting communication with the main circuit and the pushing circuit; a sleeve member that biases the valve body toward the valve seat; and a first spring compressed between the valve body, and a first spring compressed between the valve body and a hydraulic circuit block member so as to oppose the first spring and bias the valve body in the direction of the first spring. The valve head is separated from the valve seat by a predetermined amount by a balance between the biasing forces of the first and second springs, and the valve body is positioned in a normal state where the main circuit and the push-in circuit are communicated with each other. A neutral valve device that also serves as a check valve. 2. The check valve/neutral valve device according to claim 1, wherein one of the valve devices introduces fluid from the push-in side passage and leads it out to the main circuit side. 3. The other valve device is characterized in that the fluid is introduced from the main circuit side and led out to the push circuit side,
A check valve/neutral valve device according to claim 1.
JP414181A 1981-01-14 1981-01-14 Combined check and neutral valve Granted JPS57116964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP414181A JPS57116964A (en) 1981-01-14 1981-01-14 Combined check and neutral valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP414181A JPS57116964A (en) 1981-01-14 1981-01-14 Combined check and neutral valve

Publications (2)

Publication Number Publication Date
JPS57116964A JPS57116964A (en) 1982-07-21
JPH0115740B2 true JPH0115740B2 (en) 1989-03-20

Family

ID=11576493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP414181A Granted JPS57116964A (en) 1981-01-14 1981-01-14 Combined check and neutral valve

Country Status (1)

Country Link
JP (1) JPS57116964A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101569A (en) * 1986-10-20 1988-05-06 Kayaba Ind Co Ltd Hydraulic driven control device
JPH0685961U (en) * 1993-05-27 1994-12-13 内田油圧機器工業株式会社 Hydrostatic transmission
JP2752328B2 (en) * 1994-12-05 1998-05-18 カヤバ工業株式会社 Hydraulic drive control device

Also Published As

Publication number Publication date
JPS57116964A (en) 1982-07-21

Similar Documents

Publication Publication Date Title
KR19990037212A (en) Hydraulic Control Valve System with Non-Shuttle Pressure Compensator
US5666808A (en) Operating valve assembly with pressure compensation valve
EP0056230B1 (en) Hydraulic drive system for single rod cylinder
EP0287573B1 (en) Ratio valve to control unloading of modulating relief valve
JPH0419411A (en) Operation valve equipped with pressure compensation valve
EP0059406A1 (en) Flushing valve system in closed circuit hydrostatic power transmission
US4903727A (en) Safety valve
JPH0115740B2 (en)
EP0088406B1 (en) Control valve for double-acting piston and cylinder assembly
US2994346A (en) Control valve
JPS6234963B2 (en)
US4920861A (en) Load piston reset control mechanism
JP2002357276A (en) Counter balance valve
US5485864A (en) Pressure compensation valve
JPH0614114Y2 (en) Hydraulic control device for vehicle hydraulic transmission
JPH0614112Y2 (en) Hydraulic control device for vehicle hydraulic transmission
US5518091A (en) Slide valve for controlling a bridging clutch in an automatic transmission
JPS6127624B2 (en)
EP0103349A1 (en) Variable pressure control valve
JP2561717Y2 (en) Two-way relief valve
JPS605121Y2 (en) fluid equipment
JP3816758B2 (en) Drain mechanism of hydraulic power transmission joint
JPH10297509A (en) Flow control valve for hydraulic power steering device
JP2583862Y2 (en) Flow control valve with relief function
JPH063245Y2 (en) Poppet valve