JPH01156662A - Non-destractive inspection method for fiber reinforced piston - Google Patents

Non-destractive inspection method for fiber reinforced piston

Info

Publication number
JPH01156662A
JPH01156662A JP62317700A JP31770087A JPH01156662A JP H01156662 A JPH01156662 A JP H01156662A JP 62317700 A JP62317700 A JP 62317700A JP 31770087 A JP31770087 A JP 31770087A JP H01156662 A JPH01156662 A JP H01156662A
Authority
JP
Japan
Prior art keywords
piston
fiber
reinforced
waveguide plate
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317700A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kajikawa
義明 梶川
Atsuo Tanaka
淳夫 田中
Norio Sato
紀夫 佐藤
Norio Kurauchi
紀雄 倉内
Shigetoshi Sugiyama
杉山 繁利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP62317700A priority Critical patent/JPH01156662A/en
Publication of JPH01156662A publication Critical patent/JPH01156662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the accuracy for an inspection by detecting an acoustic emission in a temperature variation process of a fiber reinforced piston by using a waveguide plate. CONSTITUTION:To one end of a plate-like stainless steel waveguide plate 20, an acoustic emission (AE) sensor 22 is attached, and on the other end, a fiber reinforced piston 10 taken out of a casting metallic mold is placed. In such a way, an AE generated from the piston 10 is transmitted through the waveguide plate 20 and can be detected by the AE sensor 22, but heat does not reach the vicinity of the AE sensor 22, and the AE sensor 22 can be used without being subjected to a thermal load. A transfer loss of the AE extending from the piston 10 to the waveguide plate 20 and a transfer loss by the waveguide plate 20 are only a little, therefore, the AE generated from the piston 10 can be detected with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はAEセンサを利用した繊維強化ピストンの非破
壊検査方法、特にその精度の改浮に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for non-destructive testing of fiber-reinforced pistons using an AE sensor, and particularly to improving the accuracy thereof.

[従来の技術] 自動車等のエンジンの低騒音化を目的として、ピストン
の一部を炭素、炭化ケイ素、アルミナ等の繊維で強化し
たピストンの開発が進められている。例えば第11図に
示すように、ピストン10の円筒部10aの一部に円筒
部10aと同軸的に強化繊維からなる円環状の繊維強化
部12を配置する。このような繊維強化ピストンでは、
ピストン10の円筒部10aの径方向の熱膨張係数が小
さくなるため、ピストン10の円筒部10aの外径と、
対応するシリンダーライナーの内径の差を小さく設計す
ることが可能となり、エンジン始動時のピストン10の
首振り運動が抑制されてエンジン振動音が低減される。
[Prior Art] With the aim of reducing the noise of engines for automobiles and the like, the development of pistons in which a portion of the piston is reinforced with fibers such as carbon, silicon carbide, and alumina is underway. For example, as shown in FIG. 11, an annular fiber-reinforced part 12 made of reinforcing fibers is disposed coaxially with a part of the cylindrical part 10a of the piston 10. In such a fiber-reinforced piston,
Since the radial coefficient of thermal expansion of the cylindrical portion 10a of the piston 10 becomes small, the outer diameter of the cylindrical portion 10a of the piston 10 and
It becomes possible to design a small difference in the inner diameter of the corresponding cylinder liners, and the swinging motion of the piston 10 at the time of engine startup is suppressed, thereby reducing engine vibration noise.

このような繊維強化ピストンを装造するにあたっては、
円環状に賦形した繊維束を鋳造用金型の所定の位置に配
置し、しかる後例えばアルミ湯を注型し高圧処理して繊
維束内にアルミ湯を含浸させると同時にピストン10全
体を一体的に鋳造し、ピストン10の円筒部10aの一
部を同軸的に繊維強化した繊維強化ピストンを製造する
When installing such a fiber-reinforced piston,
The fiber bundle shaped into an annular shape is placed in a predetermined position in a casting mold, and then, for example, aluminum hot water is poured into the mold and treated under high pressure to impregnate the fiber bundle with the aluminum hot water, and at the same time, the entire piston 10 is integrated. A fiber-reinforced piston is produced in which a part of the cylindrical portion 10a of the piston 10 is coaxially reinforced with fibers.

ところが、鋳造圧が適当でない場合には、繊維強化部1
2におけるアルミ湯の含浸不良が生じ、鋳造金型からピ
ストン10を取り出し冷却する際に第12図に示すよう
に含浸不良部Aからクラックが発生することがある。ま
た、鋳造圧が適正で含浸不良がない場合でも、第12図
に示すように、鋳造したピストン10が冷却する際、座
屈破壊Bあるいは層間剥離破壊Cを生じる場合がある。
However, if the casting pressure is not appropriate, the fiber reinforced part 1
Poor impregnation of the aluminum hot water in No. 2 occurs, and when the piston 10 is taken out from the casting mold and cooled, cracks may occur from the defective impregnation area A as shown in FIG. 12. Furthermore, even if the casting pressure is appropriate and there is no impregnation defect, buckling failure B or delamination failure C may occur when the cast piston 10 cools, as shown in FIG.

これは、繊維強化部12の熱膨張率が繊維強化部12を
囲むアルミ単体部のそれよりも小さいために、繊維強化
部12に圧縮応力fが発生し、そのため、繊維強化部1
2の繊維の含有量、あるいは繊維の種類によっては、繊
維強化部12の圧縮強度より発生する圧縮応力fの方が
高くなることがあるからである。
This is because the coefficient of thermal expansion of the fiber-reinforced portion 12 is smaller than that of the single aluminum portion surrounding the fiber-reinforced portion 12, so compressive stress f is generated in the fiber-reinforced portion 12.
This is because the compressive stress f generated may be higher than the compressive strength of the fiber-reinforced portion 12 depending on the content of fibers No. 2 or the type of fibers.

また、一般に、ピストン10の鋳造後、それを熱処理し
て、アルミの組織を発現させて、ピストン10の表面硬
度及び熱変形性を改善するが、その熱処理の際にも、上
記の熱応力によって繊維強化部12にクラックが発生す
る場合がある。
Generally, after the piston 10 is cast, it is heat treated to develop an aluminum structure and improve the surface hardness and thermal deformability of the piston 10. Cracks may occur in the fiber reinforced portion 12.

このような欠陥を持つピストンは、前述したように、ピ
ストン10の径方向の熱膨脹の抑制効果が少なくそのた
め、騒音低減の所期の目標が達せられないばかりでな(
、仮に欠陥をもつピストンに熱膨脹の抑制効果が発現し
ても、エンジンを繰り返し使用することによってピスト
ン10に熱負荷が作用し、ピストン10の繊維強化部の
クラックが進展しピストンの破壊につながる場合も考え
られる。従って、製造時に発生する欠陥を事前に検出す
ることは品質保証の観点から非富に重要である。
As mentioned above, a piston with such a defect has little effect in suppressing the thermal expansion in the radial direction of the piston 10, and as a result, the intended goal of noise reduction cannot be achieved.
Even if a piston with a defect exhibits an effect of suppressing thermal expansion, repeated use of the engine will cause a thermal load to act on the piston 10, and cracks in the fiber-reinforced portion of the piston 10 will develop, leading to destruction of the piston. can also be considered. Therefore, it is extremely important to detect defects that occur during manufacturing in advance from the perspective of quality assurance.

しかるに、上記欠陥の非破壊的検出方法として、X線法
、超音波探傷法、熱膨張測定等が考えられるが、いずれ
も、精度が十分でなく、また、検査に長時間を要し実用
的ではない。そこで、繊維強化ピストンの実用化に際し
、上記欠陥を精度よくかつ短時間で検出できる非破壊検
査方法の確率が課題となっていた。
However, the X-ray method, ultrasonic flaw detection method, thermal expansion measurement, etc. can be considered as non-destructive detection methods for the above defects, but none of them have sufficient accuracy and require a long time for inspection, making them impractical. isn't it. Therefore, when putting fiber-reinforced pistons into practical use, the probability of a non-destructive testing method that can detect the above-mentioned defects accurately and in a short period of time has become an issue.

なお、金属、FRP材料の一般的な破壊検査において、
アコースティックエミッション(以下、AEという)を
検出することは、例えば特開昭60−135861号公
報、特開昭61−184456号公報、「口本慢合材料
学会誌、10.3(1984)、p102〜106」な
どに示されている。
In addition, in general destructive inspection of metal and FRP materials,
Acoustic emission (hereinafter referred to as AE) can be detected, for example, in JP-A-60-135861, JP-A-61-184456, "Kuchihon Hakusei Materials Society Journal, 10.3 (1984), p. 102. ~106''.

発明の目的 本発明は、上記技術的な課題を解決し、繊維強化ピスト
ンの温度変化過程におけるAEを導波板を利用して検出
することによって繊維強化ピストンの製造時に発生する
欠陥を精度よく迅速に検出する非破壊検査方法を提供す
るものである。
Purpose of the Invention The present invention solves the above-mentioned technical problems, and detects AE during the temperature change process of the fiber-reinforced piston using a waveguide plate, thereby accurately and quickly detecting defects that occur during the manufacturing of the fiber-reinforced piston. This provides a non-destructive testing method for detecting

[問題点を解決するための手段] この発明の繊維強化ピストンの非破壊検査方法は、板状
の導波板と、この導波板の一端に取付けられ、アコース
ティックエミッションを検出するAEセンサと、を有し
、 上記導波板の他端を無機質の連続繊維又は短繊維からな
る円環状の繊維強化部を内蔵する金属製ピストンに接触
させ、このピストンの温度変化過程において発せられる
アコースティックエミッションを」−記導波板を介し上
記AEセンサによって計測することによって、上記ピス
トン内の欠陥を検出することを特徴とする。
[Means for Solving the Problems] The non-destructive testing method for fiber-reinforced pistons of the present invention includes: a plate-shaped waveguide plate; an AE sensor attached to one end of the waveguide plate to detect acoustic emissions; The other end of the waveguide plate is brought into contact with a metal piston containing a circular fiber-reinforced part made of inorganic continuous fibers or short fibers, and the acoustic emission emitted during the temperature change process of this piston is - A defect in the piston is detected by measuring with the AE sensor via the waveguide plate.

[作用] 上記のような本発明の検査方法において検出できる欠陥
は、次のようなものである。
[Operation] The defects that can be detected by the above-mentioned inspection method of the present invention are as follows.

まず、鋳造時における鋳造圧力不足あるいは円環状に賦
形した繊維束の予備加熱が不十分等の理由によってアル
ミ湯が繊維束内に十分に含浸しないために生じる含浸不
良、また含浸が十分であっても、繊維強化部とそれを囲
り巻くアルミ単体部の熱膨張係数が大きく異なるために
、製造冷却時あるいは熱処理時に繊維強化部に大きな圧
縮応力が作用し、そのために繊維強化部に生じる破壊(
座屈破壊あるいは繊維間の層間破壊)等である。
First, impregnation failure occurs due to the aluminum hot water not being sufficiently impregnated into the fiber bundle due to insufficient casting pressure during casting or insufficient preheating of the fiber bundle shaped into an annular shape, or insufficient impregnation. However, because the coefficient of thermal expansion of the fiber-reinforced part and the single aluminum part that surrounds it is significantly different, large compressive stress is applied to the fiber-reinforced part during manufacturing cooling or heat treatment, resulting in damage to the fiber-reinforced part. (
(buckling failure or interlaminar failure between fibers).

この繊維強化部の破壊は、繊維強化部の力学特性、すな
わち弾性率、熱膨張率、圧縮強さ、繊維とアルミの接着
強さ等に依存し、これらは繊維強化部の繊維素a率、繊
維の集束状態、また繊維種類及び表面状態に関係する。
The destruction of this fiber-reinforced part depends on the mechanical properties of the fiber-reinforced part, such as elastic modulus, thermal expansion coefficient, compressive strength, adhesive strength between fiber and aluminum, etc., and these depend on the cellulose a ratio of the fiber-reinforced part, It is related to the bundled state of the fibers, as well as the type and surface condition of the fibers.

本発明ではこれらの欠陥をピストンの温度変化過程、例
えば鋳造時の冷却過程、及び熱処理の加熱、冷却過程に
発生するAEによって検出するものであるが、このAE
の発生原理は次の様なものと考えられる。すなわち、一
つは応力によって材料にクラックが発生し、そのために
、クラック周辺に存在した応力が一度に解放され、それ
が弾性波となってAEになるものであり、これを“クラ
ックAE″と名付ける。他の一つは、すでに存在する欠
陥面が熱負荷によって欠陥面が変形し、欠陥面が互いに
擦られることによって、AEが発生するものであり、こ
れを“摩擦AE“と名付ける。
In the present invention, these defects are detected by AE generated during the temperature change process of the piston, for example, the cooling process during casting, and the heating and cooling process during heat treatment.
The principle of occurrence is thought to be as follows. In other words, one is when a crack occurs in the material due to stress, and as a result, the stress that existed around the crack is released all at once, which becomes an elastic wave and becomes AE. This is called "crack AE". Name it. The other type of AE occurs when the defective surfaces that already exist are deformed by heat load and the defective surfaces rub against each other, and this is called "friction AE."

このように名付けると繊維強化ピストンの製造時に生ず
るAEはこのクラックAEと摩擦AEの二種の機構によ
って発生しているといえる。
Named in this manner, it can be said that the AE that occurs during the manufacture of fiber-reinforced pistons is caused by two types of mechanisms: crack AE and friction AE.

繊維強化ピストンにおいて、円環状の繊維強化部の熱膨
張係数は非常に小さく、その繊維強化部をとり巻くアル
ミ部との熱膨張係数の差が大きいために、繊維強化ピス
トンを鋳造成形し、鋳造金型から取り出し自然冷却する
際には、繊維強化部には圧縮応力が発生し、その圧縮応
力が繊維強化部の圧縮強度を越える場合には、繊維強化
部に座屈破壊あるいは層間剥離破壊が発生し、その際先
に述べたクラックAEが発生する。従って、鋳造冷却時
のAEを計測することによって、その際発生する繊維強
化部の破壊(クラック)を検出することができる。
In fiber-reinforced pistons, the annular fiber-reinforced part has a very small coefficient of thermal expansion, and the difference in coefficient of thermal expansion between the fiber-reinforced part and the aluminum part surrounding it is large. When taken out from the mold and allowed to cool naturally, compressive stress is generated in the fiber-reinforced part, and if the compressive stress exceeds the compressive strength of the fiber-reinforced part, buckling failure or delamination failure may occur in the fiber-reinforced part. At that time, the above-mentioned crack AE occurs. Therefore, by measuring the AE during cooling of the casting, it is possible to detect the destruction (cracks) of the fiber-reinforced portion that occurs at that time.

また、繊維強化ピストンの製造時に鋳造圧力が不足した
り、また、アルミ湯の含浸をよくするために鋳造前に円
環状に賦形した繊維束を予備加熱するが、その加熱が不
十分であった場合には、アルミ湯を注型して鋳造する際
に、繊維強化部に含浸不良が生じる場合がある。このピ
ストンを鋳造金型から取り出し冷却すると、先に述べた
圧縮応力が繊維強化部に発生し含浸不良部からクラック
が発生し、その際クラックAEが発生する。また、クラ
ックが発生しなくても、熱応力によって含浸不良部が変
形し、その際含浸不良部内で擦れが生じ、先に述べた摩
擦AEが発生する。従って、鋳造冷却時のAEを計測す
ることによって鋳造時の含浸不良の有無を検出すること
ができる。
In addition, when manufacturing fiber-reinforced pistons, the casting pressure may be insufficient, or the fiber bundle formed into an annular shape before casting is preheated to improve impregnation with aluminum hot water, but the heating is insufficient. In such a case, poor impregnation may occur in the fiber-reinforced portion when aluminum hot water is poured and cast. When this piston is taken out of the casting mold and cooled, the compressive stress mentioned above is generated in the fiber-reinforced portion, causing cracks to occur from the defective impregnation portions, and at this time, cracks AE occur. Furthermore, even if no cracks occur, the defective impregnation portion is deformed by thermal stress, and at this time, rubbing occurs within the defective impregnation portion, causing the aforementioned friction AE. Therefore, by measuring the AE during casting cooling, it is possible to detect the presence or absence of poor impregnation during casting.

また、ピストンを鋳造金型から取り出し、自然冷却させ
ていくと、繊維強化部に熱応力が発生し、そのために繊
維強化部に層間破壊あるいは座屈破壊が生じ、その結果
、クラックAEが発生する。
Furthermore, when the piston is taken out of the casting mold and allowed to cool naturally, thermal stress is generated in the fiber-reinforced part, which causes interlaminar failure or buckling failure in the fiber-reinforced part, and as a result, cracks AE occur. .

従って、鋳造冷却時のAEを計測することによって、鋳
造冷却時に生じる層間破壊及び座屈破壊を検出すること
ができる。
Therefore, by measuring the AE during cooling of the casting, it is possible to detect interlaminar fractures and buckling failures that occur during cooling of the casting.

更に、通常鋳造されたピストンは熱処理を受けるが、そ
の際、鋳造時に繊維強化部に含浸不良が生じたピストン
あるいは鋳造時熱応力によって繊維強化部にクラックが
生じたピストンを加熱すると、含浸不良部内あるいはす
でに存在するクラック内で熱負荷による変形による擦れ
が生じ、摩擦AEが発生する。従って、熱処理時のAE
を計測することによって含浸不良及び鋳造冷却にクラッ
りが生じたピストンを選別することができる。
Furthermore, normally cast pistons are subjected to heat treatment, but at that time, if a piston with poor impregnation in the fiber-reinforced part during casting or a piston with cracks in the fiber-reinforced part due to thermal stress during casting is heated, the inside of the defective impregnation part may occur. Alternatively, friction occurs due to deformation due to thermal load within an already existing crack, causing friction AE. Therefore, the AE during heat treatment
By measuring this, pistons with poor impregnation and cracks in casting cooling can be selected.

また、熱処理の冷却過程では、繊維強化部に鋳造冷却時
と同様に熱応力が発生するため、それによって、繊維強
化部に含浸不良部があったり、また、繊維の種類及び含
を量が適正でない場合には、新たなりラックが発生し、
そのためクラックAEか発生する。従って、熱処理の冷
却過程でのAEを計Al11することによってこれらの
欠陥を持つピストンを選別することが可能となる。
In addition, during the cooling process of heat treatment, thermal stress is generated in the fiber-reinforced part in the same way as during casting cooling, so this may cause poor impregnation in the fiber-reinforced part, or the type and amount of fibers may be incorrect. If not, a new rack will be generated,
Therefore, crack AE occurs. Therefore, by measuring the AE during the cooling process of heat treatment Al11, it is possible to select pistons having these defects.

以上のように、鋳造冷却時及び熱処理時の加熱、冷却過
程のような温度変化過程でのAEを;目P1することに
よって欠陥の発生の検出及び欠陥をもつピストンの選別
が可能となる。
As described above, by checking the AE during the temperature change process such as the heating and cooling process during casting cooling and heat treatment, it is possible to detect the occurrence of defects and to select pistons with defects.

次に、AEの測定方法であるが、AEは一般にAEセン
サー、増幅器、カウンターより構成されており、すべて
市販品を使用することが可能である。AEセンサーは試
験体この場合は繊維強化ピストンであるが、その表面に
配置することが望ましいが、鋳造直後のピストンの表面
温度は約300℃であり、また熱処理時には500℃近
くにも加熱される。この様な高温領域で使用できるセン
サーは非常に少ない。そこで、例えば第1図に示す様に
、板状の導波板であるステンレス板20の一端にAEセ
ンサー22を取り付は他端に鋳造金型から取り出したピ
ストン10をのせてAE計測することが可能である。こ
の様にすると、ピストン10から発生するAEはステン
レス板20を伝わりAEセンサー22によって検出され
る。一方、ピストン10の熱がステンレス板20に伝達
されるが、ステンレスは熱伝導率が小さいために、熱は
AEセンサー22近傍には至らず、AEセンサー22は
熱負荷を受けることなく使用できる。ピストン10から
ステンレス板20へのAEの伝達損失及びステンレス板
での伝達損失も無視できる程僅かであり、ピストン10
から発生するAEを精度よく検出することができる。
Next, regarding the method for measuring AE, AE generally consists of an AE sensor, an amplifier, and a counter, all of which can be commercially available. It is desirable to place the AE sensor on the surface of the test object, which in this case is a fiber-reinforced piston, but the surface temperature of the piston immediately after casting is approximately 300°C, and during heat treatment it is heated to nearly 500°C. . There are very few sensors that can be used in such high temperature areas. Therefore, for example, as shown in FIG. 1, an AE sensor 22 is attached to one end of a stainless steel plate 20, which is a plate-shaped waveguide plate, and a piston 10 taken out from a casting mold is placed on the other end to measure AE. is possible. In this way, the AE generated from the piston 10 is transmitted through the stainless steel plate 20 and detected by the AE sensor 22. On the other hand, the heat of the piston 10 is transferred to the stainless steel plate 20, but since stainless steel has a low thermal conductivity, the heat does not reach the vicinity of the AE sensor 22, and the AE sensor 22 can be used without being subjected to a heat load. The transmission loss of AE from the piston 10 to the stainless steel plate 20 and the transmission loss at the stainless steel plate are negligible, and the piston 10
It is possible to accurately detect AE generated from

なお、ステンレス板20は、雑音を拾わないようにゴム
板24を介し、台26上に載置した。またAEセンサ2
2の計測結果は増幅器28を介し、カウンター30によ
って計数される。
Note that the stainless steel plate 20 was placed on a stand 26 with a rubber plate 24 in between so as not to pick up noise. Also, AE sensor 2
The measurement results of step 2 are counted by a counter 30 via an amplifier 28.

また、熱処理における計測の例を第2図に示す。Further, an example of measurement during heat treatment is shown in FIG.

この場合も電気炉32内にステンレス板20を挿入し、
それにピストン10を載せ、電気炉32外の他端にAE
センサー22を取り付けて熱処理時に発生するAEを計
測することができる。
In this case as well, insert the stainless steel plate 20 into the electric furnace 32,
The piston 10 is placed on it, and the AE
A sensor 22 can be attached to measure AE generated during heat treatment.

なお、AE計測と同時に、ピストンの温度も計測すれば
、どの温度で欠陥が発生しやすいかも知ることができる
Note that by measuring the temperature of the piston at the same time as the AE measurement, it is possible to know at what temperature defects are likely to occur.

[効果] 繊維強化ピストンは騒音の低減に大きな効果がある。し
かし、製造時に、繊維強化部に含浸不良が生じたりある
いは熱応力等によって繊維強化部にクラックが発生する
と、騒音の低減を望めないばかりでなく、ピストンの連
続使用によってクラックが進展し、そのためピストンの
機能を満たさない場合も生じる。従って、ピストンの品
質管理として事前にこれらの欠陥を検出することは非常
に重要となる。
[Effect] Fiber-reinforced pistons are highly effective in reducing noise. However, if poor impregnation occurs in the fiber-reinforced part during manufacturing or cracks occur in the fiber-reinforced part due to thermal stress, etc., not only will noise reduction not be possible, but the cracks will develop due to continuous use of the piston, resulting in There may also be cases where the functions of the above are not met. Therefore, it is very important to detect these defects in advance for piston quality control.

本発明で提案する欠陥の検出方法は、測定のための新た
な工程を設けることなく、鋳造の冷却時及び熱処理時に
同時に実施可能であり、かつ、繊維−本一本の破断ちの
がすことなく精度よく欠陥を検出することができる。
The defect detection method proposed in the present invention can be carried out simultaneously during cooling and heat treatment of casting without creating a new process for measurement, and can be carried out simultaneously during cooling and heat treatment of casting, and without missing a single fiber. Defects can be detected with high accuracy.

また、従来は、繊維強化部を切断して、内部の欠陥の状
態を観察したか、本発明では欠陥の発生を非破壊的に検
出することができ、これをすべてのピストンに適用する
ことによって欠陥をもつピストンだけを精度よく選別す
ることができる。
In addition, conventionally, the fiber-reinforced part was cut and the state of internal defects was observed, but the present invention can detect the occurrence of defects non-destructively, and by applying this to all pistons. It is possible to accurately select only pistons with defects.

また、本発明は単に欠陥の検出だけに応用するのではな
く、欠陥の発生しない様な繊維強化部を構成するにはど
うすべきかの検討、例えば、鋳造圧の適正化、強化繊維
の選定、繊維含有量の決定、繊維強化部の配置等の検討
にも利用でき、繊維強化ピストンの開発そのものにも役
立てることができる。
In addition, the present invention is not only applied to detecting defects, but also considers how to construct a fiber-reinforced part that does not cause defects, such as optimization of casting pressure, selection of reinforcing fibers, It can also be used to determine the fiber content, consider the placement of fiber-reinforced parts, and can also be useful in the development of fiber-reinforced pistons.

[実施例] 以下、実施例に基づいて本発明の繊維強化ピストンの非
破壊検査方法を説明する。
[Example] Hereinafter, the method for non-destructive testing of fiber-reinforced pistons of the present invention will be described based on Examples.

実施例1 第1図に示す構成において、幅150ffla+長さ5
00ff1m厚さ5Illfilのステンレス阪20を
ゴム板24の上に試せ、ステンレス板20の一端にシリ
コングリースを介してAEセンサー22(共振周波数1
40kllz)を取り付けAEセンサー22からの信号
をまずプリアンプ(100kllzのバイパスフィルタ
ー付き)で40dB増幅し、更にメインアンプで55d
I3増幅して、増幅後の信号でその増幅値がIVの閾値
を越えた信号が単位時間(1秒間)に発生する数を、カ
ウンター30にて計数できる計71pr系(Duncg
an /rEndaveo )を利用して、鋳造冷却時
のAEを計7111シた。
Example 1 In the configuration shown in FIG. 1, width 150ffla + length 5
Place a stainless steel plate 20 with a thickness of 0ff1m and 5Illfil on the rubber plate 24, and connect the AE sensor 22 (resonance frequency 1) to one end of the stainless steel plate 20 through silicone grease.
40kllz) is installed, and the signal from the AE sensor 22 is first amplified by 40dB with a preamplifier (with a 100kllz bypass filter), and then further amplified by 55dB with the main amplifier.
A total of 71pr systems (Duncg
A total of 7111 AEs were obtained during cooling of the casting using the following method.

実施例1では、鋳造圧力が適正な場合(1200kg/
 cd )と、鋳造圧力が適性値の半分の場合([10
0kg /c+#)のピストン10の鋳造直後の鋳造品
を、ステンレス板に載せ、冷却する過程のAEを比較し
た。
In Example 1, when the casting pressure is appropriate (1200 kg/
cd ) and when the casting pressure is half the optimum value ([10
A cast product of the piston 10 (0 kg/c+#) immediately after casting was placed on a stainless steel plate, and the AE during the cooling process was compared.

なお、強化繊維には炭素繊維(「東し製M30J)を使
用した。また、ピストンのlhJ度は、表面温度計にて
計測した。
Note that carbon fiber (M30J manufactured by Toshi) was used as the reinforcing fiber. The lhJ degree of the piston was measured using a surface thermometer.

結果を第3図及び第4図に示す。鋳造圧力が適正な場合
は、AEの発生が非常に少ないのに対し、鋳造圧力が適
正値の半分の場合は、冷却過程で多くのAEが発生した
。冷却後、両ピストンの繊維強化部を切断して、その断
面を観察したところ、鋳造圧が適正なピストンでは全く
含浸不良が観察されなかったのに対し、鋳造圧力が適正
値の半分の値で製造したピストンでは、含浸不良箇所が
数箇所存在した。以上の結果から本非破壊検査方法によ
り繊維強化ピストンの欠陥(含浸不良)の検出を行える
ことが明らかである。
The results are shown in FIGS. 3 and 4. When the casting pressure was appropriate, very little AE was generated, whereas when the casting pressure was half of the appropriate value, a large amount of AE was generated during the cooling process. After cooling, we cut the fiber-reinforced parts of both pistons and observed their cross-sections, and found that no poor impregnation was observed in the pistons with the proper casting pressure, but in the case of the pistons with the casting pressure half of the proper value. In the manufactured piston, there were several locations with poor impregnation. From the above results, it is clear that defects (poor impregnation) in fiber-reinforced pistons can be detected by the present non-destructive testing method.

実施例2 実施例2では、鋳造冷却時に発生するクラックの検出に
適用した。AEの計a11方法の構成は実施例1と全く
同じであるが、ここでは、実施例1とは異なる繊維(炭
素繊維[東し製M40J )を用いて適正な鋳造圧で繊
維強化ピストンを鋳造した。
Example 2 In Example 2, the present invention was applied to detecting cracks that occur during casting cooling. The configuration of the AE method is exactly the same as in Example 1, but here, a fiber-reinforced piston was cast using a different fiber (carbon fiber [Toshi M40J]) at an appropriate casting pressure. did.

第5図は鋳造冷却過程の計測結果であるが、冷却過程に
非常に多くのAEが発生した。測定後、このピストンの
断面を観察したところ、繊維強化部に座屈破壊箇所が数
多く観察された。
FIG. 5 shows the measurement results of the casting cooling process, and a large amount of AE was generated during the cooling process. After the measurement, when the cross section of this piston was observed, many buckling failure points were observed in the fiber reinforced portion.

以上の結果より本非破壊検査方法により、繊維強化ピス
トンの欠陥(クラック)の検出が行えることが明らかで
ある。
From the above results, it is clear that defects (cracks) in fiber-reinforced pistons can be detected by the present non-destructive testing method.

実施例3 実施例3においても鋳造冷却時に発生するクラックの検
出に適用した。AEの計al11方法は実施例1と全く
同じであるが、ここでは実施例1と同一繊維であるが、
繊維量を実施例1の断面積で半分にして鋳造金型に設置
し、適正な鋳造圧で繊維強化化ピストンを鋳造した。第
6図は鋳造冷却過程の計測結果であるが、冷却過程に非
常に多くのAEが発生した。測定後、このピストンの断
面を観察したところ、繊維の充填量が少ないために熱応
力によって繊維強化部に多くのクラックが観察された。
Example 3 Example 3 was also applied to the detection of cracks that occur during casting cooling. The AE method is exactly the same as in Example 1, but here the same fiber as in Example 1,
The amount of fiber was halved based on the cross-sectional area of Example 1 and placed in a casting mold, and a fiber-reinforced piston was cast at an appropriate casting pressure. FIG. 6 shows the measurement results of the casting cooling process, and a large amount of AE was generated during the cooling process. After the measurement, when the cross section of this piston was observed, many cracks were observed in the fiber-reinforced portion due to thermal stress due to the small amount of fiber filling.

以上の結果より本非破壊検査方法によって繊維強化ピス
トンの欠陥(クラック)の検出が行えることが明らかで
ある。
From the above results, it is clear that defects (cracks) in fiber-reinforced pistons can be detected by the present non-destructive testing method.

実施例4 第2図に示すように幅150mm長さ500a+n+厚
さ5mmのステンレス板20の一端をそのステンレス板
を挿入できる程度の窓をもつ電気炉32内に挿入し、他
端を電気炉32の外側になる様にステンレス板20を配
置し、ステンレス板の電気炉32の外側に位置する端部
にシリコングリースを介してAEセンサー22を取り付
け、AEセンサー22からの信号をまずプリアンプで4
0dB増幅し、更にメインアンプで55dB増幅して、
増幅後の信号でその振幅値が1vの閾値を越えた信号が
単位時間に発生する数をカウンター30にて計数できる
計測系を利用して、鋳造後のピストンを電気炉32内の
ステンレス板20に載せ、熱処理する際に発生するAE
を計測した。
Embodiment 4 As shown in FIG. 2, one end of a stainless steel plate 20 with a width of 150 mm, a length of 500 a+n, and a thickness of 5 mm is inserted into an electric furnace 32 having a window large enough to insert the stainless steel plate, and the other end is inserted into the electric furnace 32. Arrange the stainless steel plate 20 so that it is outside the electric furnace 32, attach the AE sensor 22 to the end of the stainless steel plate located outside the electric furnace 32 via silicone grease, and first output the signal from the AE sensor 22 to the preamplifier.
Amplify by 0dB and further amplify by 55dB with the main amplifier,
Using a measurement system that can count the number of amplified signals whose amplitude value exceeds a threshold of 1 V generated per unit time using a counter 30, the piston after casting is placed on a stainless steel plate 20 in an electric furnace 32. AE generated during heat treatment
was measured.

この実施例4では実施例1と同様、鋳造圧力が適正な条
件で鋳造したピストンと、鋳造圧力が適正圧の半分で鋳
造したピストンの熱処理時のAEの発生状況を比較した
。本実施例では熱処理条件として5℃/minで300
°Cまで加熱し1時間保持した後、5℃/minで冷却
した。結果を第7.8図に示す。適正な鋳造圧で鋳造し
たピストンは熱処理においてもAEの発生は非常に少な
いのに対し、鋳造圧が不足したピストンでは実施例1で
述べた様に、鋳造冷却時にも多くのAEが発生するが更
にその熱処理の加熱過程に多くのAEが発生した。特に
、熱処理の加熱過程に多く発生する。
In this Example 4, as in Example 1, the occurrence of AE during heat treatment was compared between a piston cast under appropriate casting pressure conditions and a piston cast under half the appropriate casting pressure. In this example, the heat treatment conditions were 5°C/min and 300°C.
After heating to °C and holding for 1 hour, it was cooled at 5 °C/min. The results are shown in Figure 7.8. Pistons cast with proper casting pressure generate very little AE even during heat treatment, whereas pistons with insufficient casting pressure generate a lot of AE even during casting cooling, as described in Example 1. Furthermore, a large amount of AE was generated during the heating process of the heat treatment. In particular, it often occurs during the heating process of heat treatment.

これは鋳造圧が不足したために生じた含浸不良部あるい
は鋳造冷却時に発生したクラックが熱負荷によって擦ら
れる摩擦AE機措によるものと考えられる。また冷却時
に発生するAEは熱処理の冷却によって発生する熱応力
によって含浸不良部から更にクラックが進展するために
生じたと考えられる。
This is thought to be due to the friction AE mechanism in which poor impregnation caused by insufficient casting pressure or cracks generated during casting cooling are rubbed by the heat load. Further, it is considered that the AE generated during cooling is caused by the further propagation of cracks from the defective impregnation area due to thermal stress generated by cooling during heat treatment.

以上の結果から熱処理時における本非破壊検査方法によ
り繊維強化ピストンの欠陥(含浸不良)の検出が行える
ことが明らかである。
From the above results, it is clear that defects (poor impregnation) in fiber-reinforced pistons can be detected by the present non-destructive testing method during heat treatment.

実施例5 実施例5では熱処理時に発生するクラックの検出に適用
した。AEの計測方法は、実施例4と全く同じであるが
、ここでは、実施例2と同様、適正な繊維種とは異なる
繊維(炭素繊維「東し製M40」)を用いて適正な鋳造
圧で鋳造したビスi・ンの熱処理時のAEを計測した。
Example 5 In Example 5, the present invention was applied to the detection of cracks that occur during heat treatment. The method for measuring AE is exactly the same as in Example 4, but here, as in Example 2, a fiber different from the appropriate fiber type (carbon fiber "M40 manufactured by Toshi") was used to obtain an appropriate casting pressure. The AE during heat treatment of the bis-i-n cast in the following manner was measured.

結果を第9図に示す。このピストンでは鋳造冷却時にも
AEが発生したが、更にそれを熱処理すると加熱過程・
冷却過程(時効処理時)共に多くのAEが発生した。
The results are shown in Figure 9. This piston also generated AE during casting cooling, but when it was further heat treated, the heating process
Many AEs occurred during the cooling process (during aging treatment).

熱処理後ピストンの断面を観察したところ、繊維強化部
には実施例2で観察した以上に座屈破壊箇所が数多く観
察された。従って、加熱過程に発生するAEは鋳造冷却
時に発生したクラックが熱負荷によって擦られる摩擦A
E機構によるものであり、冷却時に発生するAEは熱応
力によるクラックAEであると考えられる。
When the cross section of the piston was observed after the heat treatment, more buckling failure points than those observed in Example 2 were observed in the fiber-reinforced portion. Therefore, the AE generated during the heating process is the friction A caused by the heat load rubbing the cracks generated during the cooling of the casting.
This is due to the E mechanism, and the AE generated during cooling is considered to be crack AE due to thermal stress.

以」二の結果より熱処理時における本非破壊検査方法に
より繊維強化ピストンの欠陥(クラック)の検出が行え
ることが明らかである。
From the above two results, it is clear that defects (cracks) in fiber-reinforced pistons can be detected by this non-destructive testing method during heat treatment.

実施例6 実施例6では、熱処理時に発生するAEによってクラッ
クの存在を検出した。AEの計測は実施例4と全く同じ
であるが、ここでは、実施例3と同様繊維は適正なもの
(炭素繊維「東し製M30J)を使用したが、その充填
量が適正値よりも不足した状態で鋳造したピストンを熱
処理(時効処理)した際のAEを計測した。第10図は
熱処理時のAEの発生状況を示すが、加熱過程に多くの
AEが発生し冷却過程には比較的少ない。
Example 6 In Example 6, the presence of cracks was detected by AE generated during heat treatment. The AE measurement is exactly the same as in Example 4, but here, as in Example 3, an appropriate fiber (carbon fiber "Toshi M30J") was used, but the filling amount was less than the appropriate value. The AE was measured when the piston was heat treated (aging treatment), which had been cast in this state.Figure 10 shows the occurrence of AE during heat treatment, and a large amount of AE was generated during the heating process, and relatively little during the cooling process. few.

この加熱過程のAEは鋳造冷却時に発生したクラックが
熱処理時の熱負荷によって擦られる摩擦AEによるもの
であると考えられる。
It is thought that the AE during this heating process is due to frictional AE caused by the cracks generated during casting cooling being rubbed by the heat load during heat treatment.

以上の結果より熱処理時における本非破壊検査方法によ
って繊維強化ピストンの欠陥(クラック)の検出が行え
ることが明らかである。
From the above results, it is clear that defects (cracks) in fiber-reinforced pistons can be detected by this non-destructive testing method during heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る繊維強化ピストンの非破壊検査方
法の一実施例を適用したシステムの構成図、 第2図は他の実施例を適用したシステムの構成図、 第3図、第4図、第5図、第6図、第7図、第8図、第
9図、第10図は本発明の実施例における温度変化とA
E発生率の関係を示す特性図、第11図はピストン10
の構成を示す水平および垂直断面図、 第12図はピストン10の欠陥を説明するための水平断
面図である。 10 ・・・ ピストン 12 ・・・ 繊維強化部 20 ・・・ ステンレス板(導波板)22 ・・・ 
AEセンサ
FIG. 1 is a configuration diagram of a system to which one embodiment of the non-destructive testing method for fiber-reinforced pistons according to the present invention is applied. FIG. 2 is a configuration diagram of a system to which another embodiment is applied. 5, 6, 7, 8, 9, and 10 show temperature changes and A in the embodiments of the present invention.
A characteristic diagram showing the relationship between the E occurrence rate, Fig. 11 is for the piston 10.
12 is a horizontal and vertical sectional view showing the structure of the piston 10. FIG. 12 is a horizontal sectional view illustrating a defect in the piston 10. 10... Piston 12... Fiber reinforced part 20... Stainless steel plate (waveguide plate) 22...
AE sensor

Claims (5)

【特許請求の範囲】[Claims] (1)板状の導波板と、 この導波板の一端に取付けられ、アコースティックエミ
ッションを検出するAEセンサと、を有し、 上記導波板の他端を無機質の連続繊維又は短繊維からな
る円環状の繊維強化部を内蔵する金属製ピストンに接触
させ、このピストンの温度変化過程において発せられる
アコースティックエミッションを上記導波板を介し上記
AEセンサによって計測することによって、上記ピスト
ン内の欠陥を検出することを特徴とする繊維強化ピスト
ンの非破壊検査方法。
(1) It has a plate-shaped waveguide plate, and an AE sensor attached to one end of the waveguide plate to detect acoustic emissions, and the other end of the waveguide plate is made of inorganic continuous fibers or short fibers. By contacting a metal piston with a built-in annular fiber-reinforced part and measuring the acoustic emissions emitted during the temperature change process of the piston with the AE sensor via the waveguide plate, defects in the piston can be detected. A method for non-destructive testing of fiber-reinforced pistons.
(2)特許請求の範囲第1項記載の方法において、上記
温度変化過程は、上記ピストン鋳造後の冷却過程である
ことを特徴とする繊維強化ピストンの非破壊検査方法。
(2) A non-destructive testing method for a fiber-reinforced piston according to claim 1, wherein the temperature change process is a cooling process after the piston is cast.
(3)特許請求の範囲第1項記載の方法において、上記
温度変化過程は上記ピストンを熱処理した際の加熱過程
であることを特徴とする繊維強化ピストンの非破壊検査
方法。
(3) A non-destructive testing method for a fiber-reinforced piston according to claim 1, wherein the temperature change process is a heating process when the piston is heat-treated.
(4)特許請求の範囲第1項記載の方法において、上記
温度変化過程は上記ピストンを熱処理した際の冷却過程
であることを特徴とする繊維強化ピストンの非破壊検査
方法。
(4) A non-destructive testing method for a fiber-reinforced piston according to claim 1, wherein the temperature change process is a cooling process when the piston is heat-treated.
(5)特許請求の範囲第1項から第4項いずれかに記載
の方法において、上記導波板及びピストンは両者とも平
坦面を有し、上記導波板とピストンの接触は導波板上に
ピストンを上記平坦面が接触するように載置することに
よって行うことを特徴とする繊維強化ピストンの非破壊
検査方法。
(5) In the method according to any one of claims 1 to 4, the waveguide plate and the piston both have flat surfaces, and the contact between the waveguide plate and the piston is on the waveguide plate. 1. A non-destructive testing method for a fiber-reinforced piston, characterized in that the piston is placed on the piston so that the flat surfaces thereof are in contact with each other.
JP62317700A 1987-12-15 1987-12-15 Non-destractive inspection method for fiber reinforced piston Pending JPH01156662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317700A JPH01156662A (en) 1987-12-15 1987-12-15 Non-destractive inspection method for fiber reinforced piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317700A JPH01156662A (en) 1987-12-15 1987-12-15 Non-destractive inspection method for fiber reinforced piston

Publications (1)

Publication Number Publication Date
JPH01156662A true JPH01156662A (en) 1989-06-20

Family

ID=18091050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317700A Pending JPH01156662A (en) 1987-12-15 1987-12-15 Non-destractive inspection method for fiber reinforced piston

Country Status (1)

Country Link
JP (1) JPH01156662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271093A (en) * 2009-05-20 2010-12-02 Jfe Steel Corp Paneling strength measuring method and paneling strength measuring device of can body
JP2015215979A (en) * 2014-05-08 2015-12-03 大阪瓦斯株式会社 Device and method for inspecting solid oxide fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271093A (en) * 2009-05-20 2010-12-02 Jfe Steel Corp Paneling strength measuring method and paneling strength measuring device of can body
JP2015215979A (en) * 2014-05-08 2015-12-03 大阪瓦斯株式会社 Device and method for inspecting solid oxide fuel cell

Similar Documents

Publication Publication Date Title
US11639915B2 (en) Identifying structural defect geometric features from acoustic emission waveforms
RILEM Technical Committee (Masayasu Ohtsu)** Ohtsu@ gpo. kumamoto-u. ac. jp Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete* Test method for damage qualification of reinforced concrete beams by acoustic emission
Maillet et al. Waveform-based selection of acoustic emission events generated by damage in composite materials
US20060186585A1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
JP5923923B2 (en) Cryogenic ultrasonic fatigue nondestructive test evaluation device and analysis / evaluation method
Kordatos et al. In-situ monitoring of damage evolution in glass matrix composites during cyclic loading using nondestructive techniques
JP2013140185A (en) Cryogenic temperature ultrasonic fatigue nondestructive test evaluation apparatus
Gyekenyesi et al. In situ monitoring of damage in SiC/SiC composites using acousto-ultrasonics
JPH01156662A (en) Non-destractive inspection method for fiber reinforced piston
Sato et al. Detection of damage in composite materials by thermo-acoustic emission measurement
Shannon et al. Optimizing reformer tube life through advanced inspection and remaining life assessment
Hedayatrasa et al. Sweep vibrothermography and thermal response derivative spectroscopy for identification of local defect resonance frequencies of impacted CFRP
Guo et al. Development of the stiffness damage test (SDT) for characterisation of thermally loaded concrete
Morscher Modal acoustic emission of damage accummulation in woven SiC/SiC at elevated temperatures
Reji John et al. Characterization of damage progression in ceramic matrix composites using an integrated NDE/mechanical testing system
Maillet et al. Determination of acoustic emission sources energy and application towards lifetime prediction of ceramic matrix composites
JP3344126B2 (en) High temperature hardness tester
Fong et al. Guided wave testing (GWT) of high temperature piping
Konovalov et al. Use of natural vibrations in flaw detection of heat-stressed equipment
JPS58146834A (en) Method for presuming condition of refractory material of furnace body
Juengert et al. Monitoring of CMC-Jacketed Pipes for High-Temperature Applications
US8302465B2 (en) Transducer assembly
Shannon et al. Assessing the Condition and Estimating the Remaining Lives of Pressure Components in a Methanol Plant Reformer: Part 1—NDE
Whittaker et al. Detection of Impact Damage in Composite Bi-Axial Test Specimens by Use of Thermally-Activated Acoustic Emission
Popkov et al. Study of press joints using strain gauges at low loads