JPH01156429A - Method for cooling continuously annealed and cold-rolled steel sheet - Google Patents

Method for cooling continuously annealed and cold-rolled steel sheet

Info

Publication number
JPH01156429A
JPH01156429A JP62313256A JP31325687A JPH01156429A JP H01156429 A JPH01156429 A JP H01156429A JP 62313256 A JP62313256 A JP 62313256A JP 31325687 A JP31325687 A JP 31325687A JP H01156429 A JPH01156429 A JP H01156429A
Authority
JP
Japan
Prior art keywords
acid
steel sheet
cooling
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62313256A
Other languages
Japanese (ja)
Other versions
JPH0527692B2 (en
Inventor
Yukio Matsuda
行雄 松田
Seiki Hori
堀 清貴
Akito Sakota
章人 迫田
Akio Shinjo
新城 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62313256A priority Critical patent/JPH01156429A/en
Publication of JPH01156429A publication Critical patent/JPH01156429A/en
Publication of JPH0527692B2 publication Critical patent/JPH0527692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To enhance the susceptibility of a cold-rolled steel sheet to chemical conversion treatment by bringing a high-temp. cold-rolled steel sheet into contact with the aq. org. acid soln. having a specified concn. and then with the aq. soln. added with a soluble reducing agent in the continuous annealing process. CONSTITUTION:When the high-temp. cold-rolled steel sheet is cooled in the continuous annealing process, a primary coolant contg. 1-30wt.% aq. soln. of an org. acid (formic acid, oxalic acid, etc.) or an inorg. acid (hydrochloric acid, nitric acid, etc.) or their salts (ammonium salts, etc.) is brought into contact with the steel sheet to cool the steel sheet. A secondary coolant obtained by adding a soluble reducing agent (hypophosphorous acid, phosphorous acid, etc.) to the primary coolant is then brought into contact with the steel sheet to cool the steel sheet. By this method, the steel sheet can be quenched without being oxidized, the concd. layer on the surface can be removed, and further the residue detrimental to the chemical conversion treatment can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続焼鈍冷延鋼板の冷却処理方法に係り、特
に塗装下地処理としてのリン酸塩化成処理の劣る連続焼
鈍冷延鋼板の表面を、冷却処理過程において改質し、化
成処理性を高めるための冷却処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling treatment method for continuously annealed cold rolled steel sheets, and particularly for cooling the surface of continuously annealed cold rolled steel sheets which is inferior in phosphate chemical treatment as a base treatment for painting. The present invention relates to a cooling treatment method for improving chemical conversion treatment properties by modifying in a cooling treatment process.

〔従来の技術〕[Conventional technology]

鋼板は自然界に於いては発錆しやすく、その最終使用状
態に於いては塗装やめっき等何等かの表面処理を施して
使用される。塗装される場合には、塗装に先立ち、いわ
ゆる塗装性とともに耐食性を高めるために鋼板にはリン
酸塩処理が施されるのが通例であり、このリン酸塩処理
によって形成されるリン酸塩処理皮膜の品質が塗装後の
塗膜耐久性を大きく支配することは周知である。
Steel plates are prone to rust in the natural world, and in their final use, they are subjected to some kind of surface treatment such as painting or plating. When painted, the steel plate is usually treated with phosphate prior to painting to improve paintability and corrosion resistance, and the phosphate treatment formed by this phosphate treatment It is well known that the quality of the coating greatly controls the durability of the coating after painting.

ところで、冷間圧延により得られた鋼帯は、従来、箱型
焼鈍法により650〜750℃に数時間〜10数時間均
熱され焼鈍されていたが、近年では、連続焼鈍法の発達
によりその多くが連続焼鈍処理されるようになり、均熱
時間が数10秒に短縮されるようになった。しかしなが
ら、かかる短時間焼鈍方式の発展は、鋼板表面特性を下
記の如く大きく変化させた。
By the way, steel strips obtained by cold rolling have traditionally been annealed by soaking at 650 to 750°C for several hours to over 10 hours using a box annealing method, but in recent years, with the development of continuous annealing methods, Many products are now subjected to continuous annealing, and the soaking time has been shortened to several tens of seconds. However, the development of such short-time annealing methods has significantly changed the surface properties of steel sheets as described below.

■焼鈍時間の著しい短縮は、鋼中成分の表面への濃化に
より形成される、リン酸塩処理に有効な表面濃化層の形
成を妨げることになった。
(2) A significant shortening of the annealing time hindered the formation of a surface enriched layer, which is effective for phosphate treatment and is formed by the concentration of components in the steel on the surface.

■焼鈍効率を高めるため連続焼鈍法でも採用が拡大しつ
つある直火式加熱法は、雰囲気をいかにコントロールし
ても鋼帯表面にオングストローム単位の厚さの酸化膜の
形成をもたらし、この酸化膜の存在はリン酸塩処理性の
低下をもたらす。
■The direct-fire heating method, which is increasingly being adopted as a continuous annealing method to improve annealing efficiency, results in the formation of an angstrom-thick oxide film on the steel strip surface no matter how the atmosphere is controlled. The presence of leads to a decrease in phosphatability.

■底形性を賦与するために添加されるTiやNb、また
高抗張力を賦与するために添加されるMnやStは特に
上記■の傾向が著しい。
(2) Ti and Nb, which are added to provide bottom shape properties, and Mn and St, which are added to provide high tensile strength, exhibit the above-mentioned tendency (2).

したがって、連続焼鈍プロセスの普及に伴って、連続焼
鈍冷延鋼板の化成処理性の改善が急務となっている。
Therefore, with the spread of continuous annealing processes, there is an urgent need to improve the chemical conversion properties of continuously annealed cold rolled steel sheets.

他方、連続焼鈍における冷却方法として、−船釣には、
−ガスジェット冷却、ロール冷却、気水冷却、水焼入冷
却等の方法が採用されているけれども、この種の一般的
な冷却方法では、化成処理に適するように表面改質を行
うことはできない。むしろ、気水冷却や水焼入冷却法で
は、鋼板表面に数千人程度の酸化被膜(Fed、 Fe
zOz、 FezOa等)を生じ、逆に著しく化成処理
性を損うものであった。
On the other hand, as a cooling method for continuous annealing, - for boat fishing,
- Although methods such as gas jet cooling, roll cooling, air/water cooling, and water quenching cooling have been adopted, these types of general cooling methods cannot modify the surface to make it suitable for chemical conversion treatment. . Rather, air-water cooling and water quenching cooling methods create several thousand oxide films (Fed, Fe, etc.) on the surface of the steel sheet.
zOz, FezOa, etc.), and conversely, the chemical conversion treatment properties were significantly impaired.

そこで化成処理性の改善に一見効果のあるとみられる方
法が提案されている。
Therefore, methods that appear to be effective in improving chemical conversion treatment properties have been proposed.

(11特公昭61−15132号公報では、ギ酸含有水
により冷却する方法を、(2)特公昭59−38285
号公報では、10〜90重量%のアルコール含有水によ
る冷却方法を、(3)特開昭61−201737号公報
では、α−アミノ酸含有水溶液による冷却方法を、(4
)特開昭49−122435号公報では塩酸を発生する
が如き塩類を接触させる方法を、(5)特公昭55−2
2534号公報および特開昭56−156778号公報
では、リン酸塩化合物含有水により冷却する方法を、そ
れぞれ提案している。
(11 Japanese Patent Publication No. 61-15132 discloses a method of cooling with formic acid-containing water, (2) Japanese Patent Publication No. 59-38285
(3) In JP-A-61-201737, a cooling method using an aqueous solution containing α-amino acids is described (4).
) JP-A-49-122435 discloses a method of contacting salts that generate hydrochloric acid, (5) JP-A-55-2
No. 2534 and Japanese Unexamined Patent Publication No. 156778/1987 each propose a cooling method using water containing a phosphate compound.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記(1)の方法では、冷却処理後、十分なリ
ンスを行っても、鋼板表面に黄褐色状の錆を生じ、化成
処理性が悪化することを本発明者らは確認している。
However, the present inventors have confirmed that in the method (1) above, even if sufficient rinsing is performed after cooling treatment, yellow-brown rust occurs on the surface of the steel sheet, deteriorating chemical conversion treatability. .

(2)の方法では、無酸化冷却には有効であるとしても
、酸を使用する場合でのエツチング効果は全くなく、表
面改質を行うことができない。また、先に触れたように
、高抗張力材等のMn+  Sr SLP等の成分元素
を多く含む鋼種においては、焼鈍時に表面濃化層の生成
を招き、見映えおよび化成処理性の悪化を招くが、(2
)の方法では、エツチング効果が無いので、表面濃化層
の除去を行うことができない。
Although method (2) is effective for non-oxidation cooling, it has no etching effect when using acid and cannot perform surface modification. In addition, as mentioned earlier, in steel types containing high component elements such as Mn+Sr SLP, which are high tensile strength materials, a surface concentration layer is formed during annealing, leading to deterioration in appearance and chemical conversion treatment properties. ,(2
) method does not have an etching effect, so the surface concentrated layer cannot be removed.

(3)および(4)の方法では、(1)の方法と同様の
結果を招き、化成処理性が悪化する。
Methods (3) and (4) lead to the same results as method (1), resulting in poor chemical conversion properties.

さらに、(5)の方法では、リン酸塩化合物のみでは化
成処理性改善効果は不充分である。
Furthermore, in the method (5), the effect of improving chemical conversion treatment properties is insufficient if only the phosphate compound is used.

そこで、本発明の主たる目的は、無酸化冷却ができると
ともに表面濃化層の除去ができ、さらに化成処理性に有
害な残渣分の除去を行い得る冷却処理方法を提供するこ
とにある。
SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a cooling treatment method that allows non-oxidation cooling, removes surface concentrated layers, and removes residues that are harmful to chemical conversion properties.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点を解決するための本発明は、連続焼鈍過程で
高温の冷延鋼板を冷却する方法において;水に有機また
は無機酸あるいはそれらの塩が1〜30重景%含有した
1次冷却剤を鋼板に接触させ冷却し、 その後、上記1次冷却剤に可溶性の還元剤を含む2次冷
却剤を鋼板に接触させ冷却することを特徴とするもので
ある。
In order to solve the above problems, the present invention provides a method for cooling a high-temperature cold-rolled steel sheet during continuous annealing; is brought into contact with a steel plate and cooled, and then a secondary coolant containing a reducing agent soluble in the primary coolant is brought into contact with the steel plate and cooled.

なお、上記「可溶性」とは、水または有機溶媒に可溶と
いう意味である。
In addition, the above-mentioned "soluble" means soluble in water or an organic solvent.

〔作 用〕[For production]

本発明では、1次冷却剤として、酸または酸塩を含有す
る水を用いているので、酸化膜および表面濃化層を除去
しながらの無酸化冷却を行うことができ また、2次冷却剤として、1次冷却剤に可溶な還元剤を
含む液を用いているので、1次冷却処理において残った
酸や、錆等の腐食生成物を除去できる。しかも、この還
元剤の酸化生成物が表面吸着し、それを核としてリン酸
塩被膜の結晶核数が多くなる結果、緻密な化成被膜が形
成され、化成処理性が向上する。
In the present invention, since water containing an acid or an acid salt is used as the primary coolant, non-oxidation cooling can be performed while removing the oxide film and surface concentration layer. Since a liquid containing a soluble reducing agent is used as the primary coolant, acid remaining in the primary cooling process and corrosion products such as rust can be removed. Moreover, the oxidation products of the reducing agent are adsorbed on the surface, and the number of crystal nuclei in the phosphate coating increases using them as nuclei, resulting in the formation of a dense chemical conversion coating and improved chemical conversion treatment properties.

〔発明の具体的構成〕[Specific structure of the invention]

以下、本発明をさらに詳説する。 The present invention will be explained in further detail below.

本発明では、1次冷却剤として、有機もしくは無機の酸
またはそれらの塩が用いられ、その含有量としては、1
〜30重量%(以下%は全て重量%)、望ましくは3〜
10%とされる。酸の含有量が少ないと、酸化膜および
表面濃化層の除去効果が小さく、他方あまりにも多いと
、金属材を逆に腐食させる危険性があるからである。
In the present invention, an organic or inorganic acid or a salt thereof is used as the primary coolant, and the content thereof is 1
~30% by weight (all percentages below are by weight), preferably 3~
It is said to be 10%. This is because if the acid content is small, the effect of removing the oxide film and the surface concentration layer will be small, while if the acid content is too large, there is a risk of corroding the metal material.

本発明における有機酸としては、水に対する溶解性の点
からは、C数が6以下が望ましく、その例として、ギ酸
、酢酸、アロン酸、ピロピオン酸、酪酸、ペンタン酸、
ヘキナン酸等の脂肪族モノカルボン酸、シュウ酸、マレ
イン酸、コハク酸、グルタル酸、アジピン酸、1,2.
4−ブタントリカルボン酸−2−ホスホネート、エチレ
ンジアミンテトラ酢酸、ニトリロトリ酢酸等の脂肪族多
価カルボン酸、オキシ酢酸、グルコン酸、クエン酸、乳
酸、酒石酸、リンゴ酸、没食子酸、タンニン酸等のオキ
シカルボン酸、石炭酸などを例示できる。上記例のギ酸
は、100〜900’C程度の高温冷延鋼板と接触した
とき、沸騰状態となりCOガスを発生し、金属材の還元
効果も大きいので優れる。また、上述の有機酸のアンモ
ニウム塩も使用できる。この有機酸のアンモニウム塩は
、酸による金属の腐食を抑制でき、好適である。
The organic acid used in the present invention preferably has a carbon number of 6 or less from the viewpoint of solubility in water, and examples thereof include formic acid, acetic acid, allonic acid, pyropionic acid, butyric acid, pentanoic acid,
Aliphatic monocarboxylic acids such as hequinic acid, oxalic acid, maleic acid, succinic acid, glutaric acid, adipic acid, 1,2.
Aliphatic polycarboxylic acids such as 4-butanetricarboxylic acid-2-phosphonate, ethylenediaminetetraacetic acid, and nitrilotriacetic acid, oxycarboxylic acids such as oxyacetic acid, gluconic acid, citric acid, lactic acid, tartaric acid, malic acid, gallic acid, and tannic acid. Examples include acid and carbolic acid. The formic acid in the above example is excellent because it becomes boiling and generates CO gas when it comes into contact with a high-temperature cold-rolled steel sheet at a temperature of about 100 to 900'C, and has a large reduction effect on metal materials. Also, ammonium salts of the above-mentioned organic acids can be used. This ammonium salt of an organic acid is suitable because it can suppress the corrosion of metals caused by acids.

無機酸としては、水可溶性の酸で、例えば塩酸、硝酸、
硫酸、リン酸等を例示できる。これらの酸は、勿論併用
してもよい。
Inorganic acids include water-soluble acids such as hydrochloric acid, nitric acid,
Examples include sulfuric acid and phosphoric acid. Of course, these acids may be used in combination.

また、無機酸のアンモニウム塩やナトリウム塩、たとえ
ばリン酸ナトリウム、塩化アンモニウム等も使用でき、
NH4C1は高温金属材と接触したときH2ガスを発生
し、金属材の還元効果も大きいので、ギ酸同様に、性能
的に優れるものである。
Ammonium and sodium salts of inorganic acids, such as sodium phosphate and ammonium chloride, can also be used.
NH4C1 generates H2 gas when it comes into contact with high-temperature metal materials, and has a large reduction effect on metal materials, so it is excellent in performance, like formic acid.

上記のように、還元ガスを発生する酸を使用する場合、
界面活性剤、特にノニオン系のものを用いると、界面活
性剤の吸着効果によって、還元ガスの蒸気膜冷却を長時
間かつムラなく行うことができ、有効である。
As mentioned above, when using acids that generate reducing gases,
The use of a surfactant, particularly a nonionic one, is effective because the vapor film cooling of the reducing gas can be performed evenly for a long time due to the adsorption effect of the surfactant.

界面活性剤は、公知の界面活性剤を全て使用できるが、
その添加量はO,1〜10%が好ましい。
All known surfactants can be used as the surfactant, but
The amount of O added is preferably 1 to 10%.

界面活性剤の量が少ないと、還元ガスの蒸気膜の金属表
面における保持効果が少く、10%を越えてもその効果
の増大は望めず、コスト的に不利となるからである。
This is because if the amount of surfactant is small, the effect of retaining the vapor film of the reducing gas on the metal surface will be small, and even if it exceeds 10%, no increase in the effect can be expected, resulting in a cost disadvantage.

使用できる界面活性剤は、カルボン酸塩、スルホン酸塩
、硫酸エステル塩等のアニオン系界面活性剤、エーテル
型、エーテルエステル型、エステル型、含窒素型のノニ
オン系界面活性剤、アミン塩、第4級アンモニウム塩の
カチオン系界面活性剤、アミノ酸型、ベタイン型、イミ
ダシリン型の両性界面活性剤が使用できる。界面活性剤
の二種以上を併用してもよい。
Surfactants that can be used include anionic surfactants such as carboxylates, sulfonates, and sulfuric acid ester salts; ether type, ether ester type, ester type, and nitrogen-containing nonionic surfactants; amine salts; Cationic surfactants such as quaternary ammonium salts, amino acid type, betaine type, and imidacilline type amphoteric surfactants can be used. Two or more surfactants may be used in combination.

蒸気膜冷却に当って、使用する酸から発生する還元ガス
に頼ることなく、外部から与えるようにしてもよく、こ
の還元ガスとしては、−酸化炭素、水素、水性ガス、変
性ガス、発生炉ガス、あるいは当業者に知られたDX、
NX、HNX、RX。
For steam film cooling, instead of relying on the reducing gas generated from the acid used, it may be supplied externally, and this reducing gas may include carbon oxide, hydrogen, water gas, modified gas, generator gas, etc. , or DX known to those skilled in the art,
NX, HNX, RX.

AX、ASRX、SAXまたはこれらガスの混合ガスが
用いられる。この還元ガスは、たとえば、上記冷却剤を
収容している槽内に金属材を通す過程で、金属材表面に
向けて、ノズルから吹付けることによって、金属材に接
触させることができる。
AX, ASRX, SAX or a mixture of these gases is used. This reducing gas can be brought into contact with the metal material by, for example, spraying it from a nozzle toward the surface of the metal material during the process of passing the metal material into a tank containing the coolant.

他方、上記1次冷却剤と鋼板との接触後、鋼板表面の残
留物の除去等のために接触させる2次冷却剤としては、
1次冷却剤に可溶性の還元剤が用いられ、これは液の濃
度管理、安定性の面から、鋼板温度が150℃以下の比
較的低温域で用いる方が好ましい。この還元剤としては
、次亜リン酸、亜リン酸、水素化ホウ素化合物であるナ
トリウムボロンハイドライド(NaBH4) 、および
その誘導体であるジメチルアミンボラン((CH:l)
 JHBH3)等がある。上記2次冷却剤には金属塩を
添加することも可能であり、この場合、上記還元剤によ
り、この金属塩から微量の金属が析出し、化成処理性の
向上を促進する。
On the other hand, the secondary coolant that is brought into contact with the steel plate to remove residues on the surface of the steel plate after contacting the above-mentioned primary coolant with the steel plate is as follows:
A soluble reducing agent is used as the primary coolant, and from the viewpoint of liquid concentration control and stability, it is preferable to use this at a relatively low temperature range where the steel plate temperature is 150° C. or lower. Examples of this reducing agent include hypophosphorous acid, phosphorous acid, sodium boron hydride (NaBH4), a boron hydride compound, and dimethylamine borane ((CH:l)
JHBH3) etc. It is also possible to add a metal salt to the secondary coolant, and in this case, the reducing agent causes a trace amount of metal to precipitate from the metal salt, promoting improvement in chemical conversion treatment properties.

本発明において、鋼板と各冷却剤とを接触させる方法と
しては、冷却剤を鋼板へスプレー等により吹き付けたり
、冷却剤の収容槽中に鋼板を通すなどの方法がある。
In the present invention, methods for bringing the steel plate into contact with each coolant include methods such as spraying the coolant onto the steel plate or passing the steel plate through a coolant storage tank.

また、各冷却剤の使用のタイミングは、連続焼鈍設備の
第1次冷却帯において、順次行ってもよいし、第1次冷
却帯において1次冷却剤を適用し、過時効処理後の第2
次冷却帯以降で2次冷却剤を適用するようにしてもよい
。さらに第1次冷却帯においては、−船釣な冷却法によ
った後、第2次冷却帯以降で第1及び第2冷却剤を適用
してもよい。
In addition, the timing of using each coolant may be sequentially performed in the first cooling zone of the continuous annealing equipment, or the first coolant is applied in the first cooling zone and the second coolant is used after overaging treatment.
A secondary coolant may be applied after the next cooling zone. Further, in the first cooling zone, after using a boat cooling method, the first and second coolants may be applied in the second cooling zone and thereafter.

〔実施例〕〔Example〕

次に実施例を比較例と共に示す。 Next, examples will be shown together with comparative examples.

板厚0.8鶴、板幅1000mmの冷間圧延された極低
炭素鋼板(C= 0.0015%)を、ストリップ走行
速度150mρmの連続焼鈍ラインにて、加熱、冷却処
理テストを行った。まず、850℃迄加熱後均熱保持し
た。その後、ガスジェット冷却により450℃まで冷却
し、3分間の過時効処理を行った。その後の冷却プロセ
スに本発明を適用し、第1表に示される如く、各種液の
組合せで、1次冷却(冷却剤A)はスプレ一方式で11
0℃迄、2次冷却(冷却剤B)は浸漬方式で110℃か
ら常温迄冷却した。その後、1.0%圧下率の調質圧延
をし、最終製品を得た。
A cold-rolled ultra-low carbon steel plate (C = 0.0015%) with a plate thickness of 0.8 mm and a plate width of 1000 mm was subjected to heating and cooling treatment tests on a continuous annealing line with a strip running speed of 150 mρm. First, it was heated to 850°C and then kept soaked. Thereafter, it was cooled to 450° C. by gas jet cooling, and over-aged for 3 minutes. The present invention was applied to the subsequent cooling process, and as shown in Table 1, the primary cooling (coolant A) was performed by spraying 11
The secondary cooling (coolant B) was carried out by an immersion method from 110°C to room temperature. Thereafter, temper rolling was performed at a rolling reduction of 1.0% to obtain a final product.

かかる工程にて製造された各種鋼板をサンプリングし化
成処理性を調査した。その結果を第1表に示す。
Various steel sheets manufactured through this process were sampled and their chemical conversion properties were investigated. The results are shown in Table 1.

なお、試験NIA〜GのいずれのケースもN=10コイ
ル(0,8龍厚、1000龍板幅、1コイル当り23ト
ン)の平均値であり、信頼度の高いものである。
In addition, all cases of tests NIA to G are average values of N=10 coils (0.8 dragon thickness, 1000 dragon plate width, 23 tons per coil), and are highly reliable.

ただし、化成処理条件は次の通りである。However, the chemical conversion treatment conditions are as follows.

(1)脱脂=[ファインクリーナー4826TJ  (
商品名)を用い、50℃で2分間処理 (2)表面調整:「パーコレンZTj  (商品名)を
用い、20秒間処理 (3)  リン酸塩処理=「ボンデライト3030」(
商品名)を用い、50℃で2分間浸漬処理また、化成処
理性については、次の(イ)〜(ハ)により、評価した
(1) Degreasing = [Fine Cleaner 4826TJ (
(trade name) for 2 minutes at 50°C (2) Surface conditioning: "Percolene ZTj (trade name) for 20 seconds (3) Phosphate treatment = "Bonderite 3030" (
(trade name) at 50° C. for 2 minutes.The chemical conversion treatment properties were evaluated according to the following (a) to (c).

(イ)化成被膜のフォスフオフイライト(P)と、ホパ
イ) (H)との比P/ (P + H)をX線回折か
ら求めた。
(a) The ratio P/(P + H) between phosphofluorite (P) and hopai (H) of the chemical conversion coating was determined from X-ray diffraction.

(ロ)走査型電子顕微鏡により、結晶の大きさを求めた
(b) The size of the crystal was determined using a scanning electron microscope.

(ハ)化成被膜の付着量を重量法により求めた。(c) The amount of attached chemical conversion film was determined by gravimetric method.

〔発明の効果) 以上の通り、本発明によれば、無酸化急冷ができるとと
もに表面濃化層の除去ができ、さらに化成処理性に有害
な残渣分の除去を行い得る冷却処理方法を提供すること
ができる。
[Effects of the Invention] As described above, the present invention provides a cooling treatment method that can perform oxidation-free quenching, remove surface concentrated layers, and further remove residues harmful to chemical conversion properties. be able to.

Claims (1)

【特許請求の範囲】[Claims] (1)連続焼鈍過程で高温の冷延鋼板を冷却する方法に
おいて; 水に有機または無機酸あるいはそれらの塩が1〜30重
量%含有した1次冷却剤を鋼板に接触させ冷却し、 その後、上記1次冷却剤に可溶性の還元剤を含む2次冷
却剤を鋼板に接触させ、冷却する、ことを特徴とする連
続焼鈍冷延鋼板の冷却処理方法。
(1) In a method of cooling a high-temperature cold-rolled steel sheet during a continuous annealing process; a primary coolant containing 1 to 30% by weight of an organic or inorganic acid or a salt thereof in water is brought into contact with the steel sheet, and then cooled. A method for cooling a continuously annealed cold-rolled steel sheet, comprising bringing a secondary coolant containing a reducing agent soluble in the primary coolant into contact with the steel sheet to cool the steel sheet.
JP62313256A 1987-12-11 1987-12-11 Method for cooling continuously annealed and cold-rolled steel sheet Granted JPH01156429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62313256A JPH01156429A (en) 1987-12-11 1987-12-11 Method for cooling continuously annealed and cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62313256A JPH01156429A (en) 1987-12-11 1987-12-11 Method for cooling continuously annealed and cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH01156429A true JPH01156429A (en) 1989-06-20
JPH0527692B2 JPH0527692B2 (en) 1993-04-22

Family

ID=18039009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62313256A Granted JPH01156429A (en) 1987-12-11 1987-12-11 Method for cooling continuously annealed and cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JPH01156429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233450A1 (en) * 2022-05-30 2023-12-07 Primetals Technologies Japan株式会社 Cooling liquid and steel sheet cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233450A1 (en) * 2022-05-30 2023-12-07 Primetals Technologies Japan株式会社 Cooling liquid and steel sheet cooling method

Also Published As

Publication number Publication date
JPH0527692B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
KR20150051840A (en) HOT DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET HAVING EXCELLENT FORMABILITY AND ADHESION PROPERTY AND METHOD FOR MANUFACTURING THE SAME
JP5282459B2 (en) Method for producing Si-containing steel sheet
EP0523809B1 (en) Method for hot-dip coating chromium-bearing steel
JP4335737B2 (en) Method for producing Si-containing steel sheet
JPH01156429A (en) Method for cooling continuously annealed and cold-rolled steel sheet
JPH02170925A (en) Manufacture of continuously annealed cold rolled steel sheet
KR100342310B1 (en) Method for manufacturing hot dip galvanized steel sheets with excellent plating adhesion and corrosion resistance
JP3014530B2 (en) Manufacturing method of high strength galvanized steel sheet
JPH01139728A (en) Cooling treatment for continuously annealed cold-rolled steel sheet
JP2005307283A (en) Method for producing cold rolled steel sheet comprising easily oxidizable component
US11773490B2 (en) Method for producing oriented electrical steel sheet with ultra-low iron loss
US20210054472A1 (en) Method for producing oriented electrical steel sheet with ultra-low iron loss
JP4221984B2 (en) Martensitic stainless steel cold rolled-annealed-pickled steel strip with extremely good surface gloss
JP4028014B2 (en) Pickling accelerator, pickling composition containing pickling accelerator, and metal pickling method using the same
JP3133189B2 (en) Method for producing hot-dip galvanized steel strip
JP7126104B1 (en) Manufacturing method of annealed and pickled steel sheet
WO2022201686A1 (en) Method for producing annealed and pickled steel sheet
JP2007138212A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and manufacturing method therefor
JPH03126879A (en) Production of cold rolled steel sheet excellent in chemical conversion treating property
JP3063010B2 (en) Method for producing hot-rolled Zn-based hot-dip steel sheet having excellent plating surface properties and plating adhesion
JPS5933171B2 (en) Continuous annealing method for cold rolled steel sheets
JPH04232297A (en) Manufacture of stainless cold rolled steel strip excellent in luster and corrosion resistance
JPH02270969A (en) Production of cold rolled steel sheet having superior chemical convertibility
CN116078816A (en) Cold rolling method for cold-rolled common carbon substrate for food-grade metal packaging
JPS5933172B2 (en) Continuous annealing treatment method for cold rolled steel sheets