JPH01155295A - Self-actuating nuclear reactor shut-off mechanism - Google Patents

Self-actuating nuclear reactor shut-off mechanism

Info

Publication number
JPH01155295A
JPH01155295A JP62315886A JP31588687A JPH01155295A JP H01155295 A JPH01155295 A JP H01155295A JP 62315886 A JP62315886 A JP 62315886A JP 31588687 A JP31588687 A JP 31588687A JP H01155295 A JPH01155295 A JP H01155295A
Authority
JP
Japan
Prior art keywords
armature
electromagnet
temperature
magnetic
control rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62315886A
Other languages
Japanese (ja)
Other versions
JP2510228B2 (en
Inventor
Genji Arashida
嵐田 源二
Satoshi Itooka
聡 糸岡
Atsushi Otsuki
大月 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62315886A priority Critical patent/JP2510228B2/en
Publication of JPH01155295A publication Critical patent/JPH01155295A/en
Application granted granted Critical
Publication of JP2510228B2 publication Critical patent/JP2510228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE:To prevent a malfunction of a mechanism, by providing a plurality of grooves through which a reactor core coolant flows, at peripheries of an armature or an electromagnet or both, to get a large difference of an electromagnetic coercive force between a normal operating condition and an abnormal one. CONSTITUTION:An armature 4 of a nuclear reactor shut-off mechanism is composed of a magnetic material having its Curie point to be the same temperature to which a sodium flow temperature rises at an abnormal operating condition, and with a phenomena which a sodium temperature at an outlet of a fuel assembly 9 in the abnormal operating condition rises and the temperature of the armature 4 reaches to the Curie point, a magnetic attraction between the armature and an electromagnet 8 is weakened. Therewith, the armature 4 is separated from the electromagnet 8 and a control rod 3 falls into a reactor core. In case that numerous grooves are provided at peripheries of not only the armature 4 but also a magnetic core 33 of the electromagnet 8, the sodium 10 touches the whole part where lines of magnetic force 17 run in the armature 4. Therefore, a thermal transfer to the armature 4 is improved and a difference in electromagnetic coercive force between a standard rate operation and an abnormal condition can be set with rather large amount of value and therewith a possibility of a malfunction is much more lessened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉停止系に係り、特にATWS (異常
な温度変化時のスクラム失敗)の発生を防止するのに好
適な電磁石型の5ASS (自己作動型炉停止機構)に
関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to a nuclear reactor shutdown system, and particularly relates to an electromagnetic type 5ASS suitable for preventing the occurrence of ATWS (scram failure during abnormal temperature change). (Self-actuated reactor shutdown mechanism).

[従来の技術] 高速増殖炉の合理化を行う上で、仮想炉心崩壊事故(H
CDA)を設計基準外事象とすることは国際的なすう勢
どなって来ている。HCDAに至る事故シーケンスは幾
つか存在するが、その中で最も重要視されているシーケ
ンスとしてATWSがある。このためATWSの発生を
防止する方法として、原子炉停止系の信頼性を向上させ
ATWSの発生確率を無視しうるほと小さくすることが
考えられている。
[Prior art] When rationalizing fast breeder reactors, a hypothetical core collapse accident (H
There is a growing international trend to treat CDA as a non-design basis event. There are several accident sequences that lead to HCDA, but the most important sequence among them is ATWS. Therefore, as a method of preventing the occurrence of ATWS, it is considered to improve the reliability of the nuclear reactor shutdown system and reduce the probability of occurrence of ATWS to a negligible value.

しかし、にahl炉(西独)での定検中におけるほとん
ど全てのスクラムリレーの故障の発見(1985年) 
、Browns Ferry−3号機(米国)の半数の
制御棒の挿入失敗(1980年)、及びSalem−1
号機のトリップ時のトリップしゃ断器の不作動(198
3年)などが発生しており、これらは、多重性を持たせ
た機器が同様の原因で同時に故障する共通原因故障の一
種である。
However, during regular inspections at the AHL reactor (West Germany), almost all scram relays were found to be malfunctioning (1985).
, failure to insert half of the control rods in Browns Ferry-3 (USA) (1980), and Salem-1
Failure of trip breaker during unit trip (198
3 years ago), and these are a type of common cause failure in which redundant equipment fails simultaneously due to the same cause.

このような共通原因故障を防止し炉停止系の信頼性を向
上させるために、従来の方法とは異なり、炉心に生じた
物理現象を原子炉スクラム信号を介さずに直接捉えて制
御棒を挿入する自己作動型炉停止機構(SASS)が考
えられている。5ASSのタイプとしては、異常が発生
した時に炉心部の出口ナトリウム温度が上昇することを
捉える磁性体のキュリー点を利用したもの(特開昭56
−137271号参照)、流体の圧力を利用したもの、
溶融金属を利用したもの等がある。
In order to prevent such common cause failures and improve the reliability of the reactor shutdown system, unlike conventional methods, control rods can be inserted by directly detecting physical phenomena occurring in the reactor core without relying on reactor scram signals. A self-actuated reactor shutdown system (SASS) is being considered. The 5ASS type uses the Curie point of a magnetic material that detects the rise in sodium temperature at the outlet of the reactor core when an abnormality occurs (Japanese Patent Laid-Open No. 56
-137271), those that utilize fluid pressure,
There are some that use molten metal.

上記の磁性体キュリー点を利用した5ASSの従来例を
第2図に示す、高速増殖炉の炉心内に設けられた下部案
内管1内には、中性子吸収体を内蔵する制御棒3が挿入
されるようになっている。制御棒3の上端部には温度範
囲600℃ないし800℃にキュリー点を有する磁性体
よりなるアーマチュア4が設けられ、このアーマチュア
4はキュリー点において磁力が減少するようになってい
る。下部案内管1の直上位置には、内部に吊下管2が配
置されている炉心上部案内管6が支持されている。
A conventional example of 5ASS using the Curie point of the magnetic material mentioned above is shown in Fig. 2.A control rod 3 containing a neutron absorber is inserted into a lower guide tube 1 provided in the core of a fast breeder reactor. It has become so. An armature 4 made of a magnetic material having a Curie point in a temperature range of 600° C. to 800° C. is provided at the upper end of the control rod 3, and the magnetic force of this armature 4 decreases at the Curie point. Directly above the lower guide tube 1 is supported a core upper guide tube 6 in which a hanging tube 2 is disposed.

吊下管2の下端部には、アーマチュア4を吸着する電磁
石8が固着されている。通常運転時には制御棒3が炉心
から上方に引抜かれた状態にあるが、異常により炉心燃
料9の温度が上昇した場合、アーマチュア4は高温冷却
材によりキュリー点に到達し、磁力が減少して制御棒3
は自重で落下し原子炉は停止する。
An electromagnet 8 that attracts the armature 4 is fixed to the lower end of the hanging tube 2. During normal operation, the control rods 3 are pulled upward from the core, but if the temperature of the core fuel 9 rises due to an abnormality, the armature 4 reaches the Curie point due to the high-temperature coolant, and the magnetic force decreases, causing control. stick 3
will fall under its own weight and the reactor will shut down.

[発明が解決しようとする問題点] しかし、原子炉プラントに上記のような5ASS構造を
導入した場合には、誤動作等により通常運転中制御棒が
落下してプラント運転に影響を与えるという事がないよ
うに、その誤動作を防止する必要がある。そのためには
、通常運転中での電磁石の保持力と異常時の作動温度で
の電磁石の保持力との差を大きく取ることが重要であり
、そのためには、前記アーマチュアへの炉心冷却材から
の熱伝達効果を向上させ、通常時のアーマチュア温度と
異常時の炉心冷却材温度上昇によるアーマチュア上昇温
度との差を大きくすることが必要となる。従来技術は、
この事について格別の工夫がなされていなかった。
[Problems to be solved by the invention] However, when the above-mentioned 5ASS structure is introduced into a nuclear reactor plant, there is a possibility that control rods may fall during normal operation due to malfunction etc., affecting plant operation. It is necessary to prevent such malfunctions. To this end, it is important to maintain a large difference between the holding force of the electromagnet during normal operation and the holding force of the electromagnet at abnormal operating temperatures. It is necessary to improve the heat transfer effect and increase the difference between the armature temperature under normal conditions and the armature temperature increase due to the rise in core coolant temperature during abnormal conditions. The conventional technology is
No special efforts were made regarding this matter.

本発明は、キュリー点を有する磁性体を利用した電磁石
型の自己作動型原子炉停止機構において、該磁性体への
炉心冷却材からの熱伝達効果を高め、通常時゛の電磁石
の保持力と異常時のそれとの差を大きくとることを可能
に、以て、誤動作を防止することを可能にした改良を提
供することを目的とする。
The present invention is an electromagnet-type self-actuated nuclear reactor shutdown mechanism that utilizes a magnetic material having a Curie point, which improves the heat transfer effect from the core coolant to the magnetic material, and improves the holding force of the electromagnet during normal operation. It is an object of the present invention to provide an improvement that makes it possible to make a large difference from that in an abnormal state, thereby preventing malfunctions.

[問題点を解決するための手段] 本発明による自己作動型の原子炉停止機構は、制御棒の
上部に取り付けられた磁性体のアーマチュアと該アーマ
チュアを磁気的に吸着する電磁石とよりなり、該アーマ
チュアもしくは電磁石の磁心またはその双方が異常時に
おける原子炉炉心冷却材の上昇温度に相当するキュリー
点を有し、該アーマチュアもしくは該電磁石またはその
双方の周部に、原子炉炉心冷却材の流過する複数の溝を
設けたことを特徴とする。
[Means for Solving the Problems] The self-actuating nuclear reactor shutdown mechanism according to the present invention includes a magnetic armature attached to the upper part of a control rod and an electromagnet that magnetically attracts the armature. The armature or the magnetic core of the electromagnet, or both, has a Curie point corresponding to the temperature rise of the reactor core coolant during an abnormality, and the reactor core coolant flows around the armature, the electromagnet, or both. It is characterized by having a plurality of grooves.

[作   用] 前記の溝を設けたことにより、炉心冷却材は該溝を流れ
るので、該冷却材からアーマチュアや電磁石への熱伝達
が向上し、これにより、通常時と異常時とにおけるその
温度の差を大きくでき、以て、通常時と異常時の電磁石
の保持力の差を大きくし、誤動作の発生を防止できる。
[Function] By providing the above-mentioned grooves, the core coolant flows through the grooves, so heat transfer from the coolant to the armature and electromagnets is improved, thereby reducing the temperature during normal and abnormal conditions. Therefore, the difference in holding force of the electromagnet between normal and abnormal conditions can be increased, and malfunctions can be prevented.

[実 施 例] 本発明を高速増殖炉に適用した実施例を以下に述べる。[Example] An example in which the present invention is applied to a fast breeder reactor will be described below.

高速増殖炉における制御棒の一例を第3図に示す。第3
図(a)に、示すような中性子吸収材ベレット14を内
包した制御棒要素15の複数本を集めて構成される制御
棒3は、第3図(b)の如く、制御棒3を炉心部゛に挿
入する通路となる下部案内管1に挿入されるようになっ
ている。5は制御棒連結管である。
Figure 3 shows an example of a control rod in a fast breeder reactor. Third
As shown in FIG. 3(b), the control rod 3 is constructed by collecting a plurality of control rod elements 15 containing neutron absorbing material pellets 14 as shown in FIG. 3(b). It is designed to be inserted into a lower guide tube 1 which serves as a passage for insertion into the lower guide tube 1. 5 is a control rod connecting pipe.

第4図は、原子炉内の配置の断面図であって、3は上記
の下部案内管に挿入された制御棒、5は制御棒連結管、
9は制御棒3の周りに配置された燃料集合体、13は燃
料集合体導入管、30は上部案内管、8は制御棒吊下管
31の下端に設けられた電磁石、4は制御棒の連結管5
の上端に取り付けられたアーマチュアである。制御棒3
の周りに存在する燃料集合体9から燃料集合体導入管1
3に集められた熱い液体ナトリウムの流れ10の一部は
電磁石8へ矢印の如く導かれる。制御棒3は、常時はア
ーマチュア4が電磁石8に磁力で吸着されていることに
よって吊下げられており、原子炉の通常運転時には炉心
の上部に引き上げられている。原子炉を緊急停止すると
きには、電磁石8の励磁を止めれば、アーマチュア4は
電磁石8から離れ、制御棒3を炉心に落下させることが
できる。制御棒の落下のffl!Iを緩和するために、
第3図(b)のように、下部案内管1の下部に緩衝器1
6が設けられている。
FIG. 4 is a cross-sectional view of the arrangement inside the reactor, in which 3 is a control rod inserted into the lower guide tube, 5 is a control rod connecting pipe,
9 is a fuel assembly arranged around the control rod 3, 13 is a fuel assembly introduction pipe, 30 is an upper guide pipe, 8 is an electromagnet provided at the lower end of the control rod suspension pipe 31, and 4 is a fuel assembly arranged around the control rod 3. Connecting pipe 5
It is an armature attached to the upper end of the control rod 3
From the fuel assembly 9 existing around the fuel assembly introduction pipe 1
A portion of the hot liquid sodium stream 10 collected at 3 is directed to an electromagnet 8 as shown by the arrow. The control rod 3 is normally suspended by the armature 4 being magnetically attracted to the electromagnet 8, and is pulled up to the upper part of the reactor core during normal operation of the reactor. When making an emergency shutdown of the reactor, by stopping the excitation of the electromagnet 8, the armature 4 is separated from the electromagnet 8, and the control rod 3 can be dropped into the reactor core. Control rod falling ffl! In order to alleviate I,
As shown in FIG. 3(b), a shock absorber 1 is installed at the bottom of the lower guide pipe 1.
6 is provided.

アーマチュア4は、異常時にナトリウムの流れ10の温
度が上昇したときの温度をキュリー点とする磁性体で構
成され、異常時に燃料集合体9の出口ナトリウムの温度
が上昇してアーマチュア4の温度がキュリー点に達する
ことにより電磁石8との磁気的吸着力が弱まり、アーマ
チュア4が電磁石8から離れ、制御棒3は炉心に落下す
る。
The armature 4 is made of a magnetic material whose Curie point is the temperature at which the temperature of the sodium flow 10 rises during an abnormality, and when the temperature of the outlet sodium of the fuel assembly 9 rises during an abnormality, the temperature of the armature 4 rises to the Curie point. By reaching this point, the magnetic adsorption force with the electromagnet 8 weakens, the armature 4 separates from the electromagnet 8, and the control rod 3 falls into the reactor core.

さて、上記の構成において、本発明に基づき、上記のキ
ュリー点を有するアーマチュア4および電磁石8の幾つ
かの実施例を以下説明する。
Now, in the above configuration, several embodiments of the armature 4 and electromagnet 8 having the above-mentioned Curie point will be described below based on the present invention.

第5図は、その−例を示すもので、32は電磁石8の巻
線、33はその磁心、17は磁束を示す。アーマチュア
4には、その周部に上下方向の複数の溝11が設けてあ
り、これにより、燃料集合体9から導かれたナトリウム
10は図示矢印のように流れ、その温度が効果的にアー
マチュア4に伝わるようにする。このようにすることに
より通常運転時におけるアーマチュア4の温度と異常時
に生じる燃料集合体9出ロナトリウムの温度上昇時のア
ーマチュア4の温度との差を大きくでき、通常時と異常
時の電磁石8の保持力の差が大きくなり、誤動作の発生
の可能性を小さくすることができる。
FIG. 5 shows an example of this, where 32 is the winding of the electromagnet 8, 33 is its magnetic core, and 17 is the magnetic flux. The armature 4 is provided with a plurality of vertical grooves 11 around its circumference, so that the sodium 10 led from the fuel assembly 9 flows as shown by the arrow in the figure, and its temperature is effectively controlled by the armature 4. Make sure that it is conveyed to the people. By doing this, it is possible to increase the difference between the temperature of the armature 4 during normal operation and the temperature of the armature 4 when the temperature of the sodium fuel assembly 9 rises during an abnormality, and the temperature of the electromagnet 8 during normal operation and abnormality can be increased. The difference in holding force increases, and the possibility of malfunction can be reduced.

しかし、第5図に示されるようにアーマチュア4のみに
溝11を設けた実施例では、出口ナトリウム10が途中
で外にそれるため電磁石8付近のアーマチュア4の部分
の温度上昇が小さくなる。
However, in the embodiment in which the groove 11 is provided only in the armature 4 as shown in FIG. 5, the outlet sodium 10 is deflected to the outside midway, so that the temperature rise in the portion of the armature 4 near the electromagnet 8 is reduced.

このため、異常時に対応して適切に落下させるためには
、定格運転時の温度からそれほど温度上昇がない内に落
下させなければならず、定格運転時の保持力と落下させ
るべき保持力の差が小さくなり、定格運転時の誤動作の
可能性を残すことになる。
Therefore, in order to properly drop the product in response to an abnormality, it must be dropped before the temperature rises much from the temperature at rated operation, and the difference between the holding force at rated operation and the holding force at which the drop should be made is necessary. becomes smaller, leaving the possibility of malfunction during rated operation.

そこで、第1図に示す実施例では、アーマチュア4だけ
でなく電磁石8の磁心33にも周部に多数の溝11を設
けである。このようにすると、ナトリウム10はアーマ
チュア4中で磁力線17が通る部分全体に触れるのでア
ーマチュア4への温度伝達が良好になり、定格運転時と
異常時の保持力の差を大きく取ることが出来、誤勤差の
可能性をより小さくすることが出来る。
Therefore, in the embodiment shown in FIG. 1, not only the armature 4 but also the magnetic core 33 of the electromagnet 8 are provided with a large number of grooves 11 around the circumference. In this way, the sodium 10 touches the entire part of the armature 4 where the lines of magnetic force 17 pass, so the temperature is transferred to the armature 4 well, and the difference in holding force during rated operation and abnormality can be made large. The possibility of errors in attendance can be further reduced.

ところで、電磁石8とアーマチュア4の両者に溝11を
設けた場合、両者の溝11同志が一致するように両者を
接触させないと、接触面積が減少して保持力が小さくな
り、誤動作の可能性が残る。そこで、第6図〜第8図に
示す実施例では、電磁石8とアーマチュア4とに溝11
を設けるとともに、両者の溝11同志が常に一致するよ
うに電磁石8側に突起18を設け、アーマチュア4に凹
み12を設けた構造とし、これらを嵌め合せるようにし
たものである。なお、アーマチュア4側には、電磁□石
8側の姿勢に常に対応できるよう制御棒連結管5との間
に回転接手構造19を設け、常に電磁石8側の溝11に
アーマチュア4が対応できるようにする。第7図は上記
電磁石8の下面図、第8図はアーマチュア4の上面図で
ある。電磁石8とアーマチュア4を互に近づけてやると
、突起18が凹み12に嵌まり、アーマチュア4は回転
接手19のために自然に回転して両者の溝11同志が一
致する角度をとって両者は吸着される。なお、センター
を合せるため突起18の中心部には凸部を、凹み12の
中心部には凹部を設ける。
By the way, when the grooves 11 are provided in both the electromagnet 8 and the armature 4, if the two grooves 11 are not brought into contact with each other so that they match, the contact area will be reduced, the holding force will be reduced, and there is a possibility of malfunction. remain. Therefore, in the embodiment shown in FIGS. 6 to 8, a groove 11 is formed between the electromagnet 8 and the armature 4.
In addition, a protrusion 18 is provided on the electromagnet 8 side so that the grooves 11 of both are always aligned, and a recess 12 is provided in the armature 4, so that these can be fitted together. In addition, a rotary joint structure 19 is provided between the armature 4 side and the control rod connecting pipe 5 so that it can always correspond to the attitude of the electromagnet 8 side, so that the armature 4 can always correspond to the groove 11 on the electromagnet 8 side. Make it. FIG. 7 is a bottom view of the electromagnet 8, and FIG. 8 is a top view of the armature 4. When the electromagnet 8 and the armature 4 are brought close to each other, the protrusion 18 fits into the recess 12, and the armature 4 naturally rotates due to the rotary joint 19, and the grooves 11 of both sides are at an angle that coincides with each other. It is adsorbed. In addition, in order to align the centers, a convex portion is provided at the center of the protrusion 18 and a recessed portion is provided at the center of the recess 12.

以上の各実施例では、制御棒に付属したアーマチュア4
がキュリー点を有する磁性体であったが、電磁石8の磁
心にキュリー点を有する磁性体を用いてもよく、又は、
アーマチュア4および電磁石8の両者にキュリー点を有
する磁性体を用いてもよい。また本発明は高速増殖炉に
限らず、−般に原子炉に適用できる。
In each of the above embodiments, the armature 4 attached to the control rod
is a magnetic material having a Curie point, but a magnetic material having a Curie point may be used for the magnetic core of the electromagnet 8, or
A magnetic material having a Curie point may be used for both the armature 4 and the electromagnet 8. Furthermore, the present invention is applicable not only to fast breeder reactors but also to nuclear reactors in general.

[発明の効果] 本発明によれば、異常時における原子炉心出口冷却材の
温度上昇を捉えるキュリー点を有する磁性体を利用した
電磁石型5ASSの磁性体に該冷却材の温度が良好に伝
達でき、定格運転時と異常時の3磁石の保持力の差を大
きくとることができ、誤1動差が少なく、異常時に確実
に作動する信頼性の高いATWS防止手段を提供するこ
とができる。
[Effects of the Invention] According to the present invention, the temperature of the coolant at the exit of the reactor core can be well transmitted to the magnetic body of the electromagnetic type 5ASS that utilizes a magnetic body having a Curie point that captures the temperature rise of the coolant at the exit of the reactor core in the event of an abnormality. Therefore, it is possible to provide a highly reliable ATWS prevention means that can provide a large difference in the holding force of the three magnets during rated operation and during abnormal operation, has a small error one-motion difference, and operates reliably during abnormal conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は従来例を
示す図、第3図(a)は制御棒要素を示す図、第3図(
b)は下部案内管に挿入された制御棒を示す図、第4図
は本発明実施例の高速増殖炉内での配置を示す図、第5
図は本発明の他の実施例を示す図、第6図は本発明の更
に他の実施例を示す図、第7図および第8図は夫々第6
図における電磁石の下面図およびアーマチュアの上面図
である。 1・・・下部案内管    3・・・制御棒4・・・ア
ーマチュア   5・・・連結管9・・・燃料集合体 10・・・(出口)ナトリウム 1100.溝       12・・・凹み13・・・
燃料集合体導入管 14・・・吸収材ベレット 15・・・制御棒要素16
・・・)Jt衝器     18・・・突起19・・・
回転接手    32・・・巻線33・・・磁心 第1図 4−・アーマチュア 第3図 (b)(α) 慨6図
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows a conventional example, Fig. 3(a) shows a control rod element, and Fig. 3(a) shows a control rod element.
b) is a diagram showing the control rod inserted into the lower guide tube, FIG. 4 is a diagram showing the arrangement in the fast breeder reactor according to the embodiment of the present invention, and FIG.
6 is a diagram showing still another embodiment of the present invention, and FIGS. 7 and 8 are diagrams showing another embodiment of the present invention, respectively.
FIG. 3 is a bottom view of the electromagnet and a top view of the armature in the figure. 1... Lower guide pipe 3... Control rod 4... Armature 5... Connecting pipe 9... Fuel assembly 10... (Outlet) Sodium 1100. Groove 12...Dent 13...
Fuel assembly introduction pipe 14...Absorber pellet 15...Control rod element 16
...) Jt impactor 18... protrusion 19...
Rotating joint 32...Winding 33...Magnetic core Fig. 1 4--Armature Fig. 3 (b) (α) Outline Fig. 6

Claims (1)

【特許請求の範囲】 1 制御棒の上部に取り付けられた磁性体のアーマチュ
アと該アーマチュアを磁気的に吸着する電磁石とよりな
り、該アーマチュアもしくは電磁石の磁心またはその双
方が異常時における原子炉炉心冷却材の上昇温度に相当
するキュリー点を有し、該アーマチュアもしくは該電磁
石またはその双方の周部に、原子炉炉心冷却材の流過す
る複数の溝を設けたことを特徴とする自己作動型原子炉
停止機構。 2 前記溝がアーマチュアと電磁石の双方に設けられて
おり、両者の溝の位置を合わせるための位置決め用嵌合
手段を該電磁石およびアーマチュアに設けた特許請求の
範囲第1項記載の自己作動型原子炉停止機構。 3 アーマチュアと制御棒の間に回転接手を設けた特許
請求の範囲第1項記載の自己作動型原子炉停止機構。
[Scope of Claims] 1. Consisting of a magnetic armature attached to the upper part of a control rod and an electromagnet that magnetically attracts the armature, the armature, the magnetic core of the electromagnet, or both are capable of cooling the reactor core in the event of an abnormality. A self-actuated atom having a Curie point corresponding to the temperature rise of the nuclear reactor, and characterized in that a plurality of grooves are provided around the armature, the electromagnet, or both, through which a reactor core coolant flows. Furnace shutdown mechanism. 2. The self-actuating atom according to claim 1, wherein the groove is provided on both the armature and the electromagnet, and the electromagnet and the armature are provided with positioning fitting means for aligning the grooves of both. Furnace shutdown mechanism. 3. A self-actuating nuclear reactor shutdown mechanism according to claim 1, wherein a rotating joint is provided between the armature and the control rod.
JP62315886A 1987-12-14 1987-12-14 Self-acting reactor shutdown mechanism Expired - Lifetime JP2510228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62315886A JP2510228B2 (en) 1987-12-14 1987-12-14 Self-acting reactor shutdown mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62315886A JP2510228B2 (en) 1987-12-14 1987-12-14 Self-acting reactor shutdown mechanism

Publications (2)

Publication Number Publication Date
JPH01155295A true JPH01155295A (en) 1989-06-19
JP2510228B2 JP2510228B2 (en) 1996-06-26

Family

ID=18070786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62315886A Expired - Lifetime JP2510228B2 (en) 1987-12-14 1987-12-14 Self-acting reactor shutdown mechanism

Country Status (1)

Country Link
JP (1) JP2510228B2 (en)

Also Published As

Publication number Publication date
JP2510228B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
EP0024783B1 (en) Nuclear reactor shutdown system
JPH01155295A (en) Self-actuating nuclear reactor shut-off mechanism
CA1252230A (en) Device for displacing and latching a cluster of control elements in a nuclear reactor
JPH02271296A (en) Shutdown device for nuclear reactor
Millington The EFR reactor protection system and third shutdown system for risk minimisation
EP0197291A1 (en) An automatic system and a method for reactivity control in a nuclear reactor
JPH0422231B2 (en)
Strawbridge et al. Exclusion of core disruptive accidents from the design basis accident envelope in crbrp
JPH08297185A (en) Fuel assembly and core
JPS6247586A (en) Fuel aggregate with advanced type reactor stop mechanism
JPS62169080A (en) Stop device for nuclear reactor
US20030194043A1 (en) Nuclear reactor system and method for automatically scramming the same
JPS62124493A (en) Self-operation type nuclear-reactor stop device
JPH0718943B2 (en) Self-acting reactor shutdown mechanism
JPS63259495A (en) Advanced reactor stop mechanism
JPS58214883A (en) Reactor shutdown device
JPS6247585A (en) Fuel aggregate
JPS6319593A (en) Self-operation type control-rod drive mechanism
BABU et al. Tamil Nadu, India
Ivens et al. Safety aspects of the operation experience with the AVR Experimental Power Station
JP2845927B2 (en) Reactor control rod support device
JPH0290097A (en) Atomic rod holding mechanism in atomic reactor
JP2869106B2 (en) Reactor shutdown device for fast breeder reactor
JPH01288799A (en) Holding mechanism of nuclear reactor control rod
JPS60127493A (en) Automatic stop device for nuclear reactor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12