JPH01155250A - Nondestructive inspection for wire and cable - Google Patents

Nondestructive inspection for wire and cable

Info

Publication number
JPH01155250A
JPH01155250A JP62314403A JP31440387A JPH01155250A JP H01155250 A JPH01155250 A JP H01155250A JP 62314403 A JP62314403 A JP 62314403A JP 31440387 A JP31440387 A JP 31440387A JP H01155250 A JPH01155250 A JP H01155250A
Authority
JP
Japan
Prior art keywords
insulator
cable
running
radiation
cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62314403A
Other languages
Japanese (ja)
Other versions
JPH088021B2 (en
Inventor
Masayuki Tan
丹 正之
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62314403A priority Critical patent/JPH088021B2/en
Publication of JPH01155250A publication Critical patent/JPH01155250A/en
Publication of JPH088021B2 publication Critical patent/JPH088021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To increase the reliability of a product without providing a specific inspection process and to prevent a wasteful production after the occurrence of a fault, by a method wherein an extraneous substance or the like in an insulator is detected simultaneously with manufacture of a wire or a cable by using a CT device. CONSTITUTION:A conductor 2 from a conductor feeder 1 passes along a running loop and is coated with a polyethylene insulator 5 in sections of an inner-layer extruder 3 and an outer-layer extruder 4. Then, it passes through a heating crosslinking tube 6, a cooling tube 7 and a caterpillar 8 and is wound up as a product by a winder 9. In this case, a radiation applying element 22 which rotates while moving in the direction of running of a cable C coated with the insulator 5 and running, and a radiation detecting element 23 detecting a radiation transmitted through the insulator 5, are provided. By this constitution, a radiographic section signal of the insulator 5 can be taken through the full length of the running cable C, and the presence of an extraneous substance in the insulator 5 can be detected directly by processing this signal.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電線・ケーブルを製造しながら、非破壊で絶
縁体中の異物等を検査する電線・ケーブルの非破壊検査
方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for non-destructively inspecting electric wires and cables for non-destructively inspecting foreign substances in insulators while manufacturing electric wires and cables. .

〈従来の技術〉 従来、電線・ケーブル、例えばCvケーブル等の場合、
品質管理として、同芯率、外径異常、外傷異常等、さら
に絶縁体中の異物やボイド(気泡)、傷等の検査を行っ
ているが、上記絶縁体の検査にあっては、製造ライン途
中で行うわけではなく、一般には、出来あがった製品に
ついて、別工程である検査工程で行っている。
<Conventional technology> Conventionally, in the case of electric wires and cables, such as Cv cables,
For quality control, we inspect for concentricity, outer diameter abnormalities, external damage abnormalities, etc., as well as foreign objects, voids (bubbles), scratches, etc. in the insulators. This is not done midway through the process, but is generally done in a separate inspection process for the finished product.

そして、その方法としては、例えば、製品のサンプルを
取り出して、耐電圧試験やコロナ放電試験等で絶縁体特
性のチエツクを行っている。
One way to do this is, for example, by taking a sample of the product and checking its insulator properties through a withstand voltage test, a corona discharge test, and the like.

〈発明が解決しようとする問題点〉 ところが、上記のような検査方法では、不十分な面があ
った。
<Problems to be Solved by the Invention> However, the above-mentioned inspection methods have some insufficiencies.

というのは、上記耐電圧試験やコロナ放電試験等では絶
縁体中の具体的な微小の異物や、ボイド、傷等の存在は
判らず、見逃してしまうことが多いからである。
This is because the above-mentioned withstand voltage test, corona discharge test, etc. do not detect the presence of specific minute foreign objects, voids, scratches, etc. in the insulator, and they are often overlooked.

しかし、Cvケーブル等の場合、−度布設されると、そ
の使用期間は30年程にも及ぶため、微小の異物や、ボ
イド、傷等が長時間の課電により、放電の原因になる等
の懸念が十分にあり、最悪の場合には、絶縁破壊に至る
恐れがあった。
However, in the case of Cv cables, etc., once they are installed, they can be used for about 30 years, so minute foreign objects, voids, scratches, etc. can cause discharge due to long-term energization. There was considerable concern that this could lead to dielectric breakdown in the worst case.

本発明は、このような従来の問題点に鑑みてなされたも
のであり、その特徴とする点は、電線・ケーブルの製造
装置中の絶縁体被覆後の工程中に、CT装置(CTスキ
ャナ)を設置して、電線・ケーブルを製造しながら同時
に、絶縁体中の異物や、ボイド、傷等の検出を行う、電
線・ケーブルの非破壊検査方法を提供せんとするもので
ある。
The present invention has been made in view of such conventional problems, and its characteristic point is that a CT device (CT scanner) The purpose of the present invention is to provide a method for non-destructive testing of electric wires and cables, which detects foreign objects, voids, flaws, etc. in the insulation at the same time as manufacturing electric wires and cables.

く問題点を解決するための手段及びその作用〉か\る本
発明をより具体的に示すと、本発明は、電線・ケーブル
の製造装置において、絶縁体被覆後の走行電線・ケーブ
ルの周囲に、密閉された放射線遮蔽室と、該遮蔽室内に
組み込まれ、電線・ケーブルの軸方向に対して、互いに
直行状に対峙し、かつ電線・ケーブルの走行方向に移動
゛しながら回転する放射線照射部と放射線検出部とを備
えたCT装置を設置し、電線・ケーブルを製造しながら
絶縁体中の異物等を同時に検出する電線・ケーブルの非
破壊検査方法にある。
To explain the present invention more specifically, the present invention provides an electric wire/cable manufacturing apparatus in which the surroundings of running electric wires/cables are coated with an insulator. , a sealed radiation shielding chamber, and a radiation irradiation unit built into the shielding chamber, facing each other perpendicularly to the axial direction of the electric wires/cables, and rotating while moving in the running direction of the electric wires/cables. The present invention provides a non-destructive inspection method for electric wires and cables, in which a CT device equipped with a radiation detector and a radiation detector is installed to simultaneously detect foreign objects in an insulator while manufacturing electric wires and cables.

つまり、本発明によると、絶縁体中の異物や、ボイド、
傷等を直接、かつ電線・ケーブルの全長に渡って、検査
することができる。
In other words, according to the present invention, foreign matter in the insulator, voids,
It is possible to inspect for flaws directly and over the entire length of electric wires and cables.

〈実施例〉 第1図は本発明方法を実施するための電線・ケーブルの
製造装置系の一例を示したものである。
<Example> FIG. 1 shows an example of an electric wire/cable manufacturing apparatus system for carrying out the method of the present invention.

この製造装置系においては、導体送出機1から送り出さ
れた撚線等の導体2は、走行ループを通って、2連の内
層押出機3および外層押出機4部分で、例えば、架橋剤
入りのポリエチレン絶縁体5が被覆され、この後、架橋
筒6に導かれ、加熱架橋され、さらに、冷却筒7に導か
れて、冷却され、テンションキャタピラ8を通って、巻
取機9により、製品として巻き取られる。
In this manufacturing equipment system, a conductor 2 such as a stranded wire sent out from a conductor feeder 1 passes through a running loop and is passed through two sets of an inner layer extruder 3 and an outer layer extruder 4. A polyethylene insulator 5 is coated, then guided to a cross-linking tube 6, cross-linked by heating, further guided to a cooling tube 7, cooled, passed through a tension caterpillar 8, and wound by a winder 9 as a product. It is wound up.

なお、上記架橋筒6での加熱は架橋用電熱ヒータ10と
熱循環用高温ポンプ11により行われ、また、上記冷却
筒7での冷却は熱交換器12と熱交換用低温ポンプ13
で行われる。
Heating in the bridging cylinder 6 is performed by a bridging electric heater 10 and a high temperature pump 11 for heat circulation, and cooling in the cooling cylinder 7 is performed by a heat exchanger 12 and a low temperature pump 13 for heat exchange.
It will be held in

このような電線・ケーブルの製造装置系において、本発
明方法では、絶縁体検査のための、CT装置Aを、図示
の3箇所(■冷却摘出ロ〜テンシゴンキャタピラ間、■
テンションキャタピラ〜巻取機、■冷却筒途中、)のう
ち、少なくとも一箇所に設置するものとする。その際の
CT装置への設置個数および区間の組み合わせは、適宜
選択すればよい。
In such an electric wire/cable manufacturing equipment system, in the method of the present invention, the CT device A for insulator inspection is installed at the three locations shown in the figure (■ between the cooling extraction hole and the tensigon caterpillar;
It shall be installed at at least one location between the tension caterpillar and the winding machine (in the middle of the cooling cylinder). The number of units installed in the CT apparatus and the combination of sections may be selected as appropriate.

第2図は上記CT装WAの具体的な設置方法の一例を示
したものである。
FIG. 2 shows an example of a specific method of installing the CT equipment WA.

つまり、この場合は、絶縁体5の被覆された走行するケ
ーブルCの周囲に鉛製等の密閉された放射線遮蔽室21
を設け、そして、この内部に、ケーブルCの軸方向に対
して、互いに直行状に対峙し、ケーブルCの走行方向に
移動しながら回転する、X線等の放射線照射部22と、
絶縁体5中の透過放射線を検出する放射線検出部23と
を配置して構成しである。
In other words, in this case, a radiation shielding chamber 21 made of lead or the like is sealed around the running cable C coated with the insulator 5.
A radiation irradiation unit 22 such as an X-ray radiation irradiation unit 22 is provided therein, which faces each other perpendicularly to the axial direction of the cable C and rotates while moving in the running direction of the cable C.
A radiation detection section 23 for detecting radiation transmitted through the insulator 5 is arranged.

ここで、一対の放射線照射部22と放射線検出部23の
移動速度は、ケーブルCの走行速度と同一に設定し、ケ
ーブルCの周りを360m回転したとき、ケーブル絶縁
体5の同一部分を周回するようにする。勿論、360°
の一回転が終わったら、元の位置に戻るように設定する
。なお、この一対の放射線照射部22と放射線検出部2
3は、同図では、模式的に−組みの場合を示しであるが
、実際には、多数対の集合として、検出時間の短縮を図
るようにするとよい。
Here, the moving speed of the pair of radiation irradiation unit 22 and radiation detection unit 23 is set to be the same as the running speed of cable C, and when the cable C is rotated for 360 m, the same part of the cable insulator 5 is orbited. do it like this. Of course, 360°
Set it so that it returns to its original position after completing one rotation. Note that this pair of radiation irradiation section 22 and radiation detection section 2
3 schematically shows the case of - pairs in the same figure, but in reality, it is preferable to shorten the detection time by using a set of many pairs.

この構成により、走行するケーブルCの全長に渡って(
正確には、放射線照射部22と放射線検出部23の移動
ストロークから間欠的に)絶縁体5の断層断面信号(情
報)を採取することができ、この信号の適宜処理により
、絶縁体5中の異物やボイド、傷等の存在を直接検出す
ることができる。
With this configuration, over the entire length of the running cable C (
To be more precise, it is possible to collect tomographic cross-sectional signals (information) of the insulator 5 intermittently from the movement strokes of the radiation irradiation unit 22 and the radiation detection unit 23, and by appropriately processing this signal, the The presence of foreign objects, voids, scratches, etc. can be directly detected.

例えば、CRT等により目視することができる。For example, it can be visually observed using a CRT or the like.

また、コンピータ処理により、異物やボイド、傷等の検
出時、警報信号を発生させ、自動的に製造装置を停止さ
せることも可能である。つまり、異物やボイド、傷等の
存在によるケーブル不良の発生に迅速に対処することが
できる。
Further, through computer processing, it is also possible to generate an alarm signal and automatically stop the manufacturing equipment when foreign objects, voids, scratches, etc. are detected. In other words, it is possible to quickly deal with the occurrence of cable defects due to the presence of foreign objects, voids, scratches, and the like.

第3図は上記CT装置入の設置方法の他の例を示したも
のである。
FIG. 3 shows another example of the method of installing the above-mentioned CT apparatus.

この場合は、2連設置としであるため、ケープルCの同
一箇所における断層断面信号が2回採取したり、あるい
は1連目で検出し残した次の部分を2連目で検出すると
、いうようなことが可能でアル。この2回採取では、検
出精度の向上を図ることができる。また、多連で異なる
検出区域を分担するようにすると、検出区域の拡大を図
ることができ、より完全なケーブル全長検査ができるよ
うになる。勿論、必要により、3連以上とすることも可
能である。
In this case, since two stations are installed, the tomographic cross-section signal at the same location of cable C may be collected twice, or the second station may detect the next part that was left undetected by the first station. That's possible. This two-time sampling can improve detection accuracy. Furthermore, by having multiple cables share different detection areas, the detection area can be expanded and a more complete cable length inspection can be performed. Of course, if necessary, it is also possible to use three or more series.

この多連設置の効果は、上述した複数区間への設置によ
っても、同様にして得られる。
The effect of this multiple installation can be obtained in the same way by installing in multiple sections as described above.

〈発明の効果〉 以上の説明から明らかなように本発明の電線・ケーブル
の非破壊検査方法によれば、電線・ケーブルの製造装置
中の絶縁体被覆後の工程中にCT装置を設置しであるた
め、電線・ケーブルを製造しながら同時に、絶縁体中の
異物や、ボイド、傷等の検出を行うことができるので、
次のような利点が得られる。
<Effects of the Invention> As is clear from the above explanation, according to the method for non-destructive testing of electric wires and cables of the present invention, a CT device can be installed during the process after insulation coating in electric wire and cable manufacturing equipment. Therefore, it is possible to detect foreign objects, voids, scratches, etc. in the insulation at the same time as manufacturing electric wires and cables.
The following advantages can be obtained.

■従来のように絶縁体特性をチエツクするための特別な
検査工程を設ける必要がないこと。
■There is no need to set up a special inspection process to check insulator properties as in the past.

■従来のようなサンプル試験ではなく、ケーブルの全長
に渡ってチエツクできるため、製品の信顛性を格段に高
めることができること。
■Since the entire length of the cable can be checked instead of the conventional sample test, the reliability of the product can be greatly improved.

■従来の耐電圧試験やコロナ放電試験による絶縁体不良
の場合、具体的原因が不明なのに対して、異物や、ボイ
ド、傷等の具体的特定が目視等により可能であるため、
製造工程における不良原因の究明や種々の対処が容易に
できること。
■In the case of insulator failures caused by conventional withstand voltage tests and corona discharge tests, the specific cause is unknown; however, it is possible to specifically identify foreign objects, voids, scratches, etc. by visual inspection.
Easily investigate the cause of defects in the manufacturing process and take various countermeasures.

■異物や、ボイド、傷等の発生により絶縁体不要が検出
されれば、直ちに製造工程を停止させる等の対応ができ
るため、不良発生後の無駄な生産を未然に防止できるこ
と、
■If an unnecessary insulator is detected due to the occurrence of foreign objects, voids, scratches, etc., the manufacturing process can be stopped immediately, so wasteful production after defects can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための電線・ケ=プルの
製造装置系の一例を示した概略説明図、第2図〜第3図
はCT装置の設置方法を示した各概略説明図である。 図中、 A・・・・CT装置、 C・・・・ケーブル、 21・・・放射線遮蔽室、 22・・・放射線照射部、 23・・・放射線検出部、 特許出願人   藤倉電線株式会社 第2図 第3図
Fig. 1 is a schematic explanatory diagram showing an example of a manufacturing equipment system for electric wires and cables for carrying out the method of the present invention, and Figs. 2 and 3 are schematic explanatory diagrams showing how to install a CT device. It is. In the figure, A...CT device, C...cable, 21...radiation shielding room, 22...radiation irradiation section, 23...radiation detection section, patent applicant Fujikura Electric Cable Co., Ltd. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電線・ケーブルの製造装置において、絶縁体被覆後の走
行電線・ケーブルの周囲に、密閉された放射線遮蔽室と
、該遮蔽室内に組み込まれ、電線・ケーブルの軸方向に
対して、互いに直行状に対峙し、かつ電線・ケーブルの
走行方向に移動しながら回転する放射線照射部と放射線
検出部とを備えたCT装置を設置し、電線・ケーブルを
製造しながら絶縁体中の異物等を同時に検出することを
特徴とする電線・ケーブルの非破壊検査方法。
In electric wire/cable manufacturing equipment, there is a sealed radiation shielding chamber around the running electric wire/cable after it has been coated with insulation, and a radiation shielding chamber built into the shielding chamber and arranged perpendicular to each other with respect to the axial direction of the electric wire/cable. A CT device equipped with a radiation irradiation unit and a radiation detection unit that face each other and rotate while moving in the running direction of the wires/cables is installed to simultaneously detect foreign objects in the insulation while manufacturing the wires/cables. A method for non-destructive testing of electric wires and cables.
JP62314403A 1987-12-12 1987-12-12 Non-destructive inspection method for electric wires and cables Expired - Fee Related JPH088021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62314403A JPH088021B2 (en) 1987-12-12 1987-12-12 Non-destructive inspection method for electric wires and cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62314403A JPH088021B2 (en) 1987-12-12 1987-12-12 Non-destructive inspection method for electric wires and cables

Publications (2)

Publication Number Publication Date
JPH01155250A true JPH01155250A (en) 1989-06-19
JPH088021B2 JPH088021B2 (en) 1996-01-29

Family

ID=18052929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62314403A Expired - Fee Related JPH088021B2 (en) 1987-12-12 1987-12-12 Non-destructive inspection method for electric wires and cables

Country Status (1)

Country Link
JP (1) JPH088021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154906A (en) * 2011-01-28 2012-08-16 Sumitomo Electric Ind Ltd Coating state measuring method of resin coated metal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154906A (en) * 2011-01-28 2012-08-16 Sumitomo Electric Ind Ltd Coating state measuring method of resin coated metal member

Also Published As

Publication number Publication date
JPH088021B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
US3096478A (en) Apparatus with conductive gas electrodes for detecting non-uniformity in electrically insulating and electrically semi-conducting materials
EP1315976B1 (en) Thermographic wiring inspection
JP4566407B2 (en) A method for diagnosing insulation degradation in underground cables.
Mor et al. Localization techniques of partial discharges at cable ends in off-line single-sided partial discharge cable measurements
US5760590A (en) Cable integrity tester
US5174160A (en) Method of diagnosing electric wires and cables for deterioration of their polymer-insulation and a measuring apparatus used therefor
US6995565B1 (en) Thermographic wiring inspection
Jabha et al. A new approach for the failure prediction in XLPE power cables using acoustic emission technique
Afia et al. Dielectric spectroscopy of low voltage nuclear power cables under simultaneous thermal and mechanical stresses
JPH01155250A (en) Nondestructive inspection for wire and cable
CN108693185A (en) Support insulator composite jacket uniformity detecting method, apparatus and system
JPH10253694A (en) Method and means for testing cable
US3683682A (en) Method of and an apparatus for determining the bond strength between the metallic sheath and the non-metallic jacket of a cable
JPH0580630B2 (en)
Ahmed et al. Partial discharge measurements in distribution class extruded cables
JPH085586A (en) Defect detection method for rubber-plastic cable
JPH0618604A (en) Diagnostic method for insulation deterioration and defect detecting method for power cable
CN110120037B (en) Image processing and defect detection method, device, equipment and computer storage medium
JPH08233896A (en) Method for diagnosing deterioration of electric wire/ cable
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
JPH0449066B2 (en)
JPS63131079A (en) Inspection for connection of power cable
Lee et al. Field experience of diagnosis techniques for detecting damaged Insulators of overhead distribution line
Hikita et al. Research Trends in Online Partial Discharge Monitoring and Diagnosis Utilizing ICT in Electric Power Equipment
JPH03194460A (en) Deterioration diagnostic method for low voltage electric wire/cable in nuclear energy facility, or the like

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees