JPH01155224A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH01155224A
JPH01155224A JP31495487A JP31495487A JPH01155224A JP H01155224 A JPH01155224 A JP H01155224A JP 31495487 A JP31495487 A JP 31495487A JP 31495487 A JP31495487 A JP 31495487A JP H01155224 A JPH01155224 A JP H01155224A
Authority
JP
Japan
Prior art keywords
magnet
temperature
magnetic body
temp
sensitive magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31495487A
Other languages
Japanese (ja)
Inventor
Tomio Kato
富夫 加藤
Kozo Hirayama
平山 弘三
Shiro Nakagawa
士郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP31495487A priority Critical patent/JPH01155224A/en
Publication of JPH01155224A publication Critical patent/JPH01155224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect accurate temp., by providing an optical detector for detecting the displacement of a movable part varying by the change in the transmitted magnetic flux of a temp.- sensitive magnetic body constituting a magnetic circuit along with a magnet. CONSTITUTION:The change curves of the attraction force F between a magnet 2 and a temp.- sensitive magnetic body 1 to temp. at times when the magnet 2 is present at the position of a solid line (a) (a state wherein the magnet 2 is attracted to the temp.-sensitive magnetic body 1) and a two-dot broken line (a state wherein the magnet is attracted to a magnetic body 3) are F1a, F1b and the curves showing the changes of the attraction force F2 between the magnet 2 and the magnetic body 3 to temp. at times when the magnet 2 is present at the positions of the solid line (a) and two-dot broken line (b) are F2a, F2b. Now, when the magnet 2 is present at the solid line position and T1 corresponding to the intersecting point C of the temp. curves F1a, F2a is exceeded, the attraction force F2 between the magnet 2 and the magnetic body 3 becomes larger than attraction force F1 and, therefore, the magnet 2 is attracted to the magnetic body 3 as shown by the two-dot broken line (b). When temp. is lowered in the b-state to become lower than T2 corresponding to an intersecting point D, the magnet 2 is attracted to the temp.-sensitive magnetic body 1 and no current does not flow to the magnet 2 and the disturbance of a magnetic field is not generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、感温磁性体を使用した温度センサに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a temperature sensor using a temperature-sensitive magnetic material.

(従来の技術) 感温磁性体は、温度がキューリー温度以上になると飽和
磁束密度が急激に低下する特性を有するもので、この特
性を利用した従来の温度センサは、第13図に示すよう
に、°リードスイッチ30の外周部に磁石31と感温磁
性体32とを設け、感温磁性体のキューリー温度より低
い温度においては、磁石31より発生した磁束は、磁性
体′として働く感温磁性体32と、磁性体でなる接触片
33.34を通るため、接触片33は実線で示すように
他方の接触片34に接触し、接点間の状態となり、一方
温魔が前記キューリー温度以上になると、感温磁性体3
2を通る磁束が減少するので、接触片33.s4の弾性
によりこれらは2点鎖線で示すように離れて接点間の状
態となるように構成されている。
(Prior art) Temperature-sensitive magnetic materials have the property that their saturation magnetic flux density drops rapidly when the temperature exceeds the Curie temperature. Conventional temperature sensors that utilize this property are as shown in Figure 13. A magnet 31 and a temperature-sensitive magnetic body 32 are provided on the outer periphery of the reed switch 30, and at a temperature lower than the Curie temperature of the temperature-sensitive magnetic body, the magnetic flux generated by the magnet 31 acts as a magnetic body'. Since it passes through the body 32 and contact pieces 33 and 34 made of magnetic material, the contact piece 33 comes into contact with the other contact piece 34 as shown by the solid line, creating a state between the contacts, while the temperature rises above the Curie temperature. Then, temperature-sensitive magnetic material 3
Since the magnetic flux passing through contact piece 33. Due to the elasticity of s4, these are separated and placed between the contact points as shown by the two-dot chain line.

(発明が解決しようとする問題点) このような従来の感温磁性体を用いた温度センサは、リ
ードスイッチの接触片33.34が接触する際に流れる
電流により発生する磁界によって、磁石31、感温磁性
体32および接触片33.34で構成される磁気回路の
磁場が乱されてチャタリングを起こす等の問題点があっ
た。
(Problems to be Solved by the Invention) In a temperature sensor using such a conventional temperature-sensitive magnetic material, the magnet 31, There was a problem in that the magnetic field of the magnetic circuit composed of the temperature-sensitive magnetic body 32 and the contact pieces 33 and 34 was disturbed, causing chattering.

また、例えば自動車のラジェータの水温調整装置や自動
化された工場に用いられる温度調整装置等のように、温
度検出部位とその信号を受ける制御機器等が離れている
場合には、リードスイッチ30につながるリード線を介
して検出信号が制御機器等に伝達されることになるので
、そのリード線が雑音を拾い、制御機器が誤動作を起こ
すことが娶るという問題点があった。
In addition, if the temperature detection part and the control equipment that receives the signal are far apart, such as in a water temperature adjustment device for an automobile radiator or a temperature adjustment device used in an automated factory, the temperature detection part is connected to the reed switch 30. Since the detection signal is transmitted to the control equipment etc. via the lead wire, there is a problem in that the lead wire picks up noise, which may cause the control equipment to malfunction.

また、前記ラジェータに取付ける温度センサの場合、第
14図に示すように、取付は筒36に温度センサ35を
収容してねじ込み式に容器37に取付けるが、取付はス
ペース等の関係上、容器37の面に対してリードスイッ
チ3oが直角をなすように取付けざるをえないから、感
温磁性体32を収容した部分が容器37内の温度検出対
象である水39から離れ、検出精度を悪化させるという
問題点があつた。
Furthermore, in the case of the temperature sensor to be attached to the radiator, as shown in FIG. Since the reed switch 3o has to be installed at right angles to the surface of the reed switch 3o, the part housing the temperature-sensitive magnetic material 32 is separated from the water 39 in the container 37, which is the object of temperature detection, which deteriorates detection accuracy. There was a problem.

また、リードスイッチ30を用いているので。Also, since the reed switch 30 is used.

接触片33.34の接触、開離についての位置設定が微
妙で、製作困難であるという問題点もあった。
There was also a problem in that the positioning of the contact pieces 33 and 34 for contact and separation was delicate and difficult to manufacture.

(問題点を解決するための手段) 上記問題点を解決するため1本発明は、磁石と、該磁石
と共に磁気回路を構成する感温磁性体と、前記磁気回路
に含まれかつ前記感温磁性体の透過磁束の変化により変
動する可動部の変位を検出する光学検出装置とにより温
度センサを構成したことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention includes: a magnet; a temperature-sensitive magnetic body that constitutes a magnetic circuit together with the magnet; The present invention is characterized in that the temperature sensor is configured with an optical detection device that detects the displacement of the movable part that changes due to changes in the magnetic flux transmitted through the body.

(実施例) 第1図は本発明による温度センサの一実施例を示す構成
図であり、lは感温磁性体であり、感温フェライト、整
磁鋼、アモルファス磁性体等からなり、組成の変化によ
り、キューリー温度が常温ないしは数百度の範囲で任意
に選定されるものである。2はN、Sで示すように着磁
されたフェライトあるいは金属でなる磁石、3は鉄、パ
ーマロイ等の強磁性体であり、感温磁性体1より高いキ
ューリー温度を有するものである。該磁性体3および前
記感温磁性体1は例えば筒体5内に収容し固定する等の
手段で固定することにより、相対距離が所定距離となる
ように構成され、磁石2は感温磁性体lあるいは磁性体
3に対する磁気吸着力の大小により1図面上上下方向に
移動していずれかに吸着しつるように、磁性体3に固着
した非磁性体でなるスペーサ6と、磁石2に固着した反
射板7(この代わりに蒸着、メツキ等により反射膜とし
て形成してもよく、また箔を接着してもよい、)との間
にHに示す間隔が形成される。
(Example) Fig. 1 is a configuration diagram showing an example of a temperature sensor according to the present invention, where l is a temperature-sensitive magnetic material, which is made of temperature-sensitive ferrite, magnetic shunt steel, amorphous magnetic material, etc., and has a composition of Depending on the change, the Curie temperature can be arbitrarily selected from room temperature to several hundred degrees. 2 is a magnet made of magnetized ferrite or metal as shown by N and S, and 3 is a ferromagnetic material such as iron or permalloy, which has a higher Curie temperature than the temperature-sensitive magnetic material 1. The magnetic body 3 and the temperature-sensitive magnetic body 1 are configured such that their relative distance is a predetermined distance by, for example, storing and fixing them in a cylinder 5, and the magnet 2 is a temperature-sensitive magnetic body. A spacer 6 made of a non-magnetic material fixed to the magnetic material 3 and a spacer 6 made of a non-magnetic material fixed to the magnet 2 so as to move vertically in the drawing depending on the magnitude of the magnetic attraction force to the magnetic material 3 and stick to either of them. A distance shown as H is formed between the reflecting plate 7 (which may alternatively be formed as a reflecting film by vapor deposition, plating, etc., or may be bonded with foil).

8は前記反射板7を含む光学検出装置であり。8 is an optical detection device including the reflection plate 7.

発光ダイオード、ランプ等の発光素子9と、該発光素子
9からの光を前記反射板7に向けて照射するように、先
端を前記磁性体3に貫通固定した光ファイバlOと、反
射板7からの光を外部に導くように、先端を前記磁性体
3に貫通固定した光ファイバ11と、該光ファイバ11
から導出された光を受光する受光素子12と、該受光素
子12により変換された電気信号の増幅および基準値と
の比較等の処理を行なうことにより、検出温度が感温磁
性体lのキューリー温度により決定される所定温度以上
に達したか否かを判定する検出回路13とからなる。
A light emitting element 9 such as a light emitting diode or a lamp, an optical fiber lO whose tip is fixed through the magnetic body 3 so as to irradiate light from the light emitting element 9 toward the reflective plate 7, and a light emitting element 9 from the reflective plate 7. an optical fiber 11 whose tip is fixed through the magnetic body 3 so as to guide light to the outside;
The light receiving element 12 receives the light derived from the light receiving element 12, and the electrical signal converted by the light receiving element 12 is amplified and compared with a reference value. and a detection circuit 13 that determines whether or not the temperature has reached a predetermined temperature or higher.

この温度センサの動作の説明を第2図および第3図によ
り説明する。第2図は温度と吸引力との関係図で、  
Fla、 Flbはそれぞれ磁石2が第1図の実線a 
C8石2が感温磁性体lに吸着している状態)、2点鎖
線b(磁石2が磁性体3に吸着している状態)の位置に
ある時の温度に対する磁石2と感温磁性体1との間の吸
引力F1の変化を示す曲線であり、F2a、 F2bは
それぞれ磁石2が第1図の実線a、2点鎖線すの位置に
ある時の温度に対する磁石2と磁性体3との間の吸引力
F2の変化を示す曲線である。いま1m石2が第1図の
実線aに示す位置にあるとき、温度が曲線FlaとF2
aとの交点Cに対応するTIを越えると、磁石2と感温
磁性体lとの間の吸引力Flよりも磁石2と磁性体3と
の間の吸引力F2の方が大(F2>Fl)となるので、
第1図の2点鎖線すに示すように、磁石2が磁性体3に
吸着する。一方、前記すの状態において、温度が低下し
て曲線FibとF2bとの交点りに対応するT2より低
くなると、磁石2と感温磁性体lどの間の吸引力F1が
磁石2と磁性体3との間の吸引力F2よりも大(F2<
Fl)となるので。
The operation of this temperature sensor will be explained with reference to FIGS. 2 and 3. Figure 2 is a diagram showing the relationship between temperature and suction force.
For Fla and Flb, the magnet 2 is connected to the solid line a in Fig. 1.
Magnet 2 and temperature-sensitive magnetic body at the temperature when they are in the position of the two-dot chain line b (the state in which the C8 stone 2 is attracted to the temperature-sensitive magnetic body 1) and the position shown by the two-dot chain line b (the state in which the magnet 2 is attracted to the magnetic body 3) 1, and F2a and F2b are curves showing the changes in the attractive force F1 between the magnet 2 and the magnetic body 3 with respect to the temperature when the magnet 2 is at the positions indicated by the solid line a and the dashed-dotted line in Fig. 1, respectively. It is a curve showing the change in the attraction force F2 during the period. Now, when the 1m stone 2 is at the position shown by the solid line a in Figure 1, the temperature is equal to the curves Fla and F2.
Beyond the TI corresponding to the intersection C with a, the attractive force F2 between the magnet 2 and the magnetic body 3 is larger than the attractive force Fl between the magnet 2 and the temperature-sensitive magnetic body 1 (F2> Fl), so
As shown by the two-dot chain line in FIG. 1, the magnet 2 is attracted to the magnetic body 3. On the other hand, in the above state, when the temperature decreases and becomes lower than T2 corresponding to the intersection of the curves Fib and F2b, the attractive force F1 between the magnet 2 and the temperature-sensitive magnetic body 1 increases. (F2<
Fl).

第1図の実線aに示すように、磁石2が感温磁性体lに
吸着する。
As shown by the solid line a in FIG. 1, the magnet 2 is attracted to the temperature-sensitive magnetic body l.

第3図に示すように、前記磁石2が前記実線aの位置に
ある時には、光ファイバlOから照射されて反射板7で
反射し光フアイバll内に入る光の量は、反射板7が2
点鎖線すに示すように近接した位置における反射光の量
より少ないため、検出回路13において、その光量の変
化によって生じる電気信号の変化から磁石2の位置を検
出することができる。なお、第2図において、検出温度
が72ないしT1の範囲であれば、磁石2が感温磁性体
1に吸着したaの状態と、磁性体3に吸着したbの状態
をとりつるが、この温度範囲は、第1図に示した間隙H
な調整し、これにより第2図の曲線Fla 、 Fib
の距離を変化させることによって調整することができる
。また、磁石2と磁性体3との吸着力F2は、ギャップ
や磁性体3の材質、磁気特性によって調整できる。
As shown in FIG. 3, when the magnet 2 is at the position indicated by the solid line a, the amount of light irradiated from the optical fiber IO, reflected by the reflector 7, and entered into the optical fiber LL is
Since the amount of reflected light is smaller than the amount of reflected light at a nearby position as shown by the dotted chain line, the detection circuit 13 can detect the position of the magnet 2 from the change in the electrical signal caused by the change in the amount of light. In addition, in FIG. 2, if the detected temperature is in the range of 72 to T1, the state a where the magnet 2 is attracted to the temperature-sensitive magnetic body 1 and the state b where the magnet 2 is attracted to the magnetic body 3 are taken. The temperature range is within the gap H shown in Figure 1.
This makes the curves Fla and Fib in Figure 2
It can be adjusted by changing the distance between. Further, the attraction force F2 between the magnet 2 and the magnetic body 3 can be adjusted by adjusting the gap, the material of the magnetic body 3, and the magnetic properties.

また、前記a、bの位置に対応した反射光の処理として
は、第4図に示すように、磁石2が感温磁性体lに吸着
したa状態のときに反射光が受光側の光ファイバ11に
入射され、m石2が磁性体3に吸着したb状態のときに
、光ファイバlOの先端が反射板7に近接するために反
射光が受光側の光ファイバ11には入射されなくなるよ
うに構成することも可能である。また、磁性体3の代わ
りに、磁石2と相互に吸引し合うように着磁された磁石
を用いることができる。
Further, as for the processing of the reflected light corresponding to the positions a and b, as shown in FIG. 11, and in state b where the m stone 2 is attracted to the magnetic body 3, the tip of the optical fiber IO is close to the reflection plate 7, so that the reflected light does not enter the optical fiber 11 on the receiving side. It is also possible to configure Further, instead of the magnetic body 3, a magnet that is magnetized so as to be mutually attracted to the magnet 2 can be used.

このように、可動部(磁石2)に電流を流さない構成と
することによす、従来のリードスイッチ使用のもののよ
うな電流による磁界の乱れが起きず、また、光ファイバ
10.11を信号の伝達に用いることにより、信号線が
雑音を拾うことがない、また、可動部(磁石2)が感温
磁性体lから離れて磁性体3に一旦吸着されると、第2
図における動作点が0点から曲線Fib上に移行するの
で、磁石2と磁性体3との吸引力が増大し1反対に磁石
2と感温磁性体lとの吸引力が減少する。
In this way, by adopting a configuration in which no current flows through the movable part (magnet 2), the disturbance of the magnetic field due to current does not occur as in conventional reed switches, and the optical fiber 10. By using the signal line for transmission of
Since the operating point in the figure shifts from the 0 point to the curve Fib, the attractive force between the magnet 2 and the magnetic body 3 increases, and on the contrary, the attractive force between the magnet 2 and the temperature-sensitive magnetic body 1 decreases.

また、温度低下により動作点がD点からE点に移行する
と、磁石2と感温磁性体lとの吸引力が増大し、磁石2
と磁性体3との吸引力が減少するので、チャタリングを
起こすことなく、安定動作が可能となる。また、使用期
間経過に伴なう金属疲労部分がないので、長期にわたっ
て検出精度を保持することができる。
Furthermore, when the operating point shifts from point D to point E due to a decrease in temperature, the attractive force between the magnet 2 and the temperature-sensitive magnetic material l increases, and the magnet 2
Since the attractive force between the magnetic body 3 and the magnetic body 3 is reduced, stable operation is possible without causing chattering. Furthermore, since there is no metal fatigue part that accompanies use, detection accuracy can be maintained over a long period of time.

第55!Uは本発明の他の実施例であり、円盤状をなす
前記感温磁性体1の中心に円柱形のガイド14を取付け
、該ガイド14に円盤状の磁石2の中心に設けたガイド
穴2aを摺動自在に嵌合し、感温磁性体lおよび円盤状
磁性体3を内部に取付けた筒体5Aとして鉄やパーマロ
イ等の強磁性体を用い、磁石2の外周面と筒体5Aの内
周面との間には常時間隙gが形成されるように構成した
もので、この構成によれば、筒体5Aが磁気回路を構成
することにより、磁石2の感温磁性体l、あるいは磁性
体3に対する大きな吸引力が得られ、確実な動作特性が
得られ、小形化が達成される。
55th! U is another embodiment of the present invention, in which a cylindrical guide 14 is attached to the center of the disc-shaped temperature-sensitive magnetic body 1, and a guide hole 2a is provided in the guide 14 at the center of the disc-shaped magnet 2. A ferromagnetic material such as iron or permalloy is used as the cylinder 5A, in which the temperature-sensitive magnetic material 1 and the disc-shaped magnetic material 3 are attached inside, and the outer circumferential surface of the magnet 2 and the cylinder 5A are fitted in a slidable manner. It is configured such that a gap g is always formed between it and the inner circumferential surface. According to this configuration, the temperature-sensitive magnetic body l of the magnet 2 or A large attractive force to the magnetic body 3 can be obtained, reliable operating characteristics can be obtained, and miniaturization can be achieved.

また、本実施例においては、反射板7の光ファイバ10
.11に対向した面を凹面状に形成することにより、集
光効果が得られるようにしている。
Further, in this embodiment, the optical fiber 10 of the reflection plate 7
.. By forming the surface facing 11 into a concave shape, a light condensing effect can be obtained.

第6図は前記ガイド14を磁石2の中央に設け、ガイド
14を感温磁性体1の中心に設けたガイド穴1aに摺動
自在に嵌合したものであり、第5図と等価機能を発揮で
きる。また、本実施例においては、発光素子15と受光
素子16を反射板7(なお、該反射板7は、光が照射さ
れる面7bを凹状の円錐形に形成して前記同様の集光効
果が得られるようにしている。)に対向するように磁性
体3に樹脂等の取付は体19を介して取付け。
In FIG. 6, the guide 14 is provided in the center of the magnet 2, and the guide 14 is slidably fitted into the guide hole 1a provided in the center of the temperature-sensitive magnetic material 1, and has an equivalent function to that in FIG. I can demonstrate it. In addition, in this embodiment, the light emitting element 15 and the light receiving element 16 are connected to a reflecting plate 7 (the reflecting plate 7 has a surface 7b on which light is irradiated having a concave conical shape to achieve the same light condensing effect as described above). The resin, etc. is attached to the magnetic body 3 through the body 19 so as to face the magnetic body 3.

各素子15.16にリード線17.18を引線したもの
で、温度の測定部位すなわち温度センサの取付は部位と
制御機器の取付は部位が近接し、リード線17.18が
雑音を拾うおそれがない場合に使用するに好適なもので
ある。
Lead wires 17 and 18 are connected to each element 15 and 16, and the temperature measurement site, that is, the temperature sensor installation site and the control equipment installation site are close to each other, and there is a risk that the lead wires 17 and 18 may pick up noise. It is suitable for use when there is no such thing.

上記実施例はいずれも反射板7の変位による反射光の受
光量の変化を検出する例について示したが、第7図に示
すように、磁石2が感温磁性体lに吸着している時に磁
石2と磁性体3との間の間隙部において相互に先端面が
対向するように、前記筒体5Aに発光側光ファイバlO
と受光側光ファイバ11とを取付け、実線aに示すよう
に、磁石2が感温磁性体lに吸着している時には光ファ
イバ10から照射された光は光ファイバ11に入射され
、2点鎖!1llbに示すように、磁石2が磁性体3に
吸着している時には、光ファイバ19から照射された光
は磁石2に遮断されて光ファイバ11には入射しないよ
うにしてもよい、なお、磁石2が磁性体3に吸着してい
る時に磁石2と感温磁性体lどの間の間隙部において相
互に先端面が対向するように、前記筒体5Aに発光側光
ファイバIOAと受光側光ファイバIIAとを取付けて
もよい。たたしこの場合は、光ファイバlOA、IIA
間の光路にガイド14が介在しないようにする。
In the above embodiments, the change in the amount of reflected light received due to the displacement of the reflector plate 7 is detected. However, as shown in FIG. A light-emitting optical fiber lO is attached to the cylinder 5A so that the tip surfaces thereof face each other in the gap between the magnet 2 and the magnetic body 3.
and the light-receiving side optical fiber 11 are attached, and as shown by the solid line a, when the magnet 2 is attracted to the temperature-sensitive magnetic material l, the light irradiated from the optical fiber 10 enters the optical fiber 11, forming a two-point chain. ! As shown in FIG. 1llb, when the magnet 2 is attracted to the magnetic body 3, the light emitted from the optical fiber 19 may be blocked by the magnet 2 and not enter the optical fiber 11. The light-emitting side optical fiber IOA and the light-receiving side optical fiber are attached to the cylindrical body 5A so that when the magnet 2 and the temperature-sensitive magnetic body 2 are attracted to the magnetic body 3, their tip surfaces face each other in the gap between the magnet 2 and the temperature-sensitive magnetic body 3. IIA may also be attached. In this case, optical fibers IOA, IIA
The guide 14 is not interposed in the optical path between the two.

第8図は前記磁石2と一体をなすガイドな兼ねた円柱形
ブロック14Aを磁性体3の中心に設けたガイド穴3a
に摺動自在に貫通して外部に突出させ、外部に相互に対
向するように発光素子15と受光素子16とを配設し、
磁石2の状ma、bに対応し、ブロック14Aが実線C
の位置にあるときは発光素子15からの光が受光素子1
6に入射し、ブロック14Aが2魚類idの位置にある
ときはブロック14Aにより遮断されるようにしたもの
である。このような構造とすれば、発光素子15、受光
素子16(あるいはこれらの代わりに設けられる光ファ
イバ10.11)の配設個所が前記間隔Hの制約を受け
ず、これらの素子等の設置の自由度が増し、設計、製作
が容易となる。
FIG. 8 shows a guide hole 3a in which a cylindrical block 14A, which is integral with the magnet 2 and also serves as a guide, is provided at the center of the magnetic body 3.
A light-emitting element 15 and a light-receiving element 16 are arranged so as to be slidably penetrated and protruded to the outside, and to face each other to the outside.
Corresponding to the shapes ma and b of the magnet 2, the block 14A is a solid line C
When the light emitting element 15 is in the position, the light from the light emitting element 15 reaches the light receiving element 1
6, and when the block 14A is at the position of 2 fish ID, it is blocked by the block 14A. With such a structure, the locations where the light emitting element 15 and the light receiving element 16 (or the optical fibers 10 and 11 provided in place of these) are installed are not restricted by the above-mentioned spacing H, and the installation of these elements, etc. The degree of freedom increases and design and production become easier.

第9図は第8図の変形例であり、光の遮断の有無ではな
く、ブロック14Aに設けた反射板7の変位によって受
光素子16への入光の有無が生じるようにしたものであ
る。すなわち、ブロック14Aが実線位置Cにあるとき
には発光素子15(光ファイバlOでもよい、)から出
た光は反射板7により反射して受光素子16(光ファイ
バllでもよい、)へ入射し、ブロック14Aが2点鎖
線dの位置にあるときには反射光が受光素子16に入射
しないようにしたものである。
FIG. 9 is a modification of FIG. 8, in which the presence or absence of light entering the light-receiving element 16 is determined by the displacement of the reflection plate 7 provided on the block 14A, rather than whether or not the light is blocked. That is, when the block 14A is at the solid line position C, the light emitted from the light emitting element 15 (which may be an optical fiber 10) is reflected by the reflecting plate 7 and enters the light receiving element 16 (which may be an optical fiber 11), When 14A is at the position indicated by the two-dot chain line d, reflected light is prevented from entering the light receiving element 16.

第1O図はコイルばね20を用いた実施例であり、円筒
状筒体5内に、円盤状磁性体3Aと、半割りで図示のよ
うに着磁した2個の半円筒状(円筒状でもよい、)磁石
2Aと1円筒状感温磁性体IAとを固定し、また、感温
磁性体IAに円盤状磁性体3を載置し、その中心に貫通
固定したガイド14を前記円盤状磁性体3Aの中央のガ
イド穴3aに摺動自在に嵌合し、感温磁性体IAと磁性
体3との間にコイルばね20を介在させたものであり、
感温磁性体IAのキューリー温度より低い検出温度で感
温磁性体IAが磁性体として作用している間は磁石2A
からの磁束が感温磁性体1Aft透過するので、磁性体
3が磁石2Aによりコイルばね20の力に抗して吸引さ
れ、実線eの位置にあり、このときには、発光素子15
からの光はガイド14により遮断されずに受光素子16
に入射され、−力検出温度が感温磁性体IAのキューリ
ー温度を越えて感温磁性体IAが磁性を失うと、コイル
ばね20の力により、磁性体3が筒体5に設けたストッ
パ5aに当接する位置まで2点鎖線fに示すように押出
され、発光素子15から受光素子16に照射されていた
光がガイド14により遮断される構成となっている。
Fig. 1O shows an embodiment using a coil spring 20, in which a disk-shaped magnetic body 3A and two semi-cylindrical pieces (even cylindrical ones) are divided in half and magnetized as shown in the figure. Good,) A magnet 2A and a cylindrical temperature-sensitive magnetic body IA are fixed, and a disk-shaped magnetic body 3 is placed on the temperature-sensitive magnetic body IA, and a guide 14 fixed through the center thereof is fixed to the disk-shaped magnetic body IA. It is slidably fitted into the guide hole 3a at the center of the body 3A, and a coil spring 20 is interposed between the temperature-sensitive magnetic body IA and the magnetic body 3.
While the temperature-sensitive magnetic substance IA acts as a magnetic body at a detection temperature lower than the Curie temperature of the temperature-sensitive magnetic substance IA, the magnet 2A
Since the magnetic flux from the temperature-sensitive magnetic body 1Aft is transmitted through the temperature-sensitive magnetic body 1Aft, the magnetic body 3 is attracted by the magnet 2A against the force of the coil spring 20 and is at the position indicated by the solid line e, and at this time, the light emitting element 15
The light from the light receiving element 16 is not blocked by the guide 14.
- When the detected temperature exceeds the Curie temperature of the temperature-sensitive magnetic body IA and the temperature-sensitive magnetic body IA loses its magnetism, the force of the coil spring 20 causes the magnetic body 3 to move against the stopper 5a provided on the cylinder body 5. The light emitting element 15 is pushed out as shown by the two-dot chain line f to a position where it abuts on the light receiving element 16, and the light emitted from the light emitting element 15 to the light receiving element 16 is blocked by the guide 14.

第1θ図において、感温磁性体IAの代わりに磁性体あ
るいはスペーサを設け、磁性体3Aの代わりに感温磁性
体を設けても同様の作用を果たすことができる。
In FIG. 1θ, the same effect can be achieved even if a magnetic body or a spacer is provided in place of the temperature-sensitive magnetic body IA, and a temperature-sensitive magnetic body is provided in place of the magnetic body 3A.

第11図は磁性体でなる板ばね22を使用した例であり
、板ばね22の一端を固定した感温磁性体IBと、該感
温磁性体IHに一端を結合した磁石2Bと、該磁石2B
に結合するか、あるいは該磁石2Bを嵌合して取付けた
板状磁性体3Bと、該板状磁性体3Bにねじ付けして貫
通し、板ばね22との対向間隔調整可能にとした磁性体
てなる調整ねじ21と、板ばね22に傾斜して対面する
ように取付けた発光素子15(前記光ファイバlOでも
よい。)と、受光素子16(前記光ファイバ11でもよ
い。)とにより構成したもので、感温磁性体IBのキュ
ーリー温度より低い温度では感温磁性体IB、磁石2B
、磁性体3B、調整ねじ21および板ばね22により磁
気回路を構成するので、板ばね22の先端側が調整ねじ
22に吸着されて実線りで示すように当接し、この状態
では1発光素子15から板ばね22に照射されている光
は板ばね22で反射して受光素子16に入射し、一方、
感温磁性体IBのキューリー温度より高い温度になると
、前記磁気回路が感温磁性体lBの部分で遮断されるの
で、板ばね22の弾性により板ばねは2点鎖線iで示す
ように調整ねじから離れ、このときには板ばね22で反
射した光の向きが変わって受光素子16には入射されな
いようにしたものである。
FIG. 11 shows an example in which a plate spring 22 made of a magnetic material is used, and includes a temperature-sensitive magnetic body IB to which one end of the plate spring 22 is fixed, a magnet 2B whose one end is coupled to the temperature-sensitive magnetic body IH, and the magnet. 2B
A plate-shaped magnetic body 3B that is coupled to or fitted with the magnet 2B, and a magnetic plate that is screwed through and penetrates the plate-shaped magnetic body 3B so that the spacing between the opposite sides of the plate spring 22 can be adjusted. It is composed of an adjustment screw 21, a light emitting element 15 (which may be the optical fiber 10 described above), and a light receiving element 16 (which may be the optical fiber 11), which is attached to the leaf spring 22 so as to face the plate spring 22 at an angle. Therefore, at a temperature lower than the Curie temperature of the temperature-sensitive magnetic material IB, the temperature-sensitive magnetic material IB and the magnet 2B
, the magnetic body 3B, the adjusting screw 21, and the leaf spring 22 constitute a magnetic circuit, so that the tip side of the leaf spring 22 is attracted to the adjusting screw 22 and comes into contact as shown by the solid line, and in this state, from one light emitting element 15 to The light irradiated on the leaf spring 22 is reflected by the leaf spring 22 and enters the light receiving element 16, and on the other hand,
When the temperature becomes higher than the Curie temperature of the temperature-sensitive magnetic body IB, the magnetic circuit is cut off at the temperature-sensitive magnetic body IB, so the elasticity of the leaf spring 22 causes the leaf spring to tighten the adjustment screw as shown by the two-dot chain line i. At this time, the direction of the light reflected by the leaf spring 22 is changed so that it does not enter the light receiving element 16.

第1O図および第11図の構成においては、弾性部材を
用いるのて、バイメタルを用いる場合のような使用期間
の経過に伴なう金属疲労の問題は少なく、しかもリート
スイッチを用いたもののように、接触片の封入構造を有
しないので、設計上の自由度が大てあり、また、その他
のについては第1図の実施例と同様の効果を奏すること
ができる。
In the configurations shown in Figures 1O and 11, since the elastic member is used, there is less of a problem of metal fatigue over time as in the case of using a bimetal, and moreover, as in the case of using a reed switch, Since this embodiment does not have a contact piece encapsulation structure, there is a large degree of freedom in design, and in other respects, the same effects as the embodiment shown in FIG. 1 can be achieved.

第12図は本発明の温度センサによれば温度検出対象(
例えば水39)に近い部位に感温磁性体lを位置させる
ことか可能であることを説明する図であり、本発明の構
造は、前記いずれの実施例であっても、感温磁性体1を
取付は筒36内端部に設けることが可能であるから、温
度検出対象39の実際の温度により近い温度で感温磁性
体lが働くため、検出精度が向上する。
FIG. 12 shows the temperature detection target (
For example, it is a diagram illustrating that it is possible to position the temperature-sensitive magnetic body 1 in a region close to water 39), and the structure of the present invention is applicable to any of the above-mentioned embodiments. Since the temperature-sensitive magnetic body 1 can be installed at the inner end of the tube 36, the temperature-sensitive magnetic body 1 works at a temperature closer to the actual temperature of the temperature detection target 39, thereby improving detection accuracy.

以上本発明を実施例により説明したが、本発明を実施す
る場合には、本発明の要旨を逸脱しない範囲で種々の変
更、改良、付加が可能であることは言うまでもない。
Although the present invention has been described above using examples, it goes without saying that various changes, improvements, and additions can be made without departing from the gist of the present invention when carrying out the present invention.

(発明の効果) 以上述べたように、本発明においては、磁石と、該磁石
と共に磁気回路を構成する感温磁性体と、前記磁気回路
に含まれかつ前記感温磁性体の透過磁束の変化により変
動する可動部の変位を検出する光学検出装置とにより温
度センサを構成したものであり、可動部の動きを光で検
出しているので、検出によって磁気回路の磁場が乱され
ることなく、正確な温度検出が可能となる。
(Effects of the Invention) As described above, in the present invention, there is provided a magnet, a temperature-sensitive magnetic body constituting a magnetic circuit together with the magnet, and a change in the transmitted magnetic flux of the temperature-sensitive magnetic body included in the magnetic circuit. The temperature sensor is composed of an optical detection device that detects the displacement of the moving part that changes due to the movement of the moving part.Since the movement of the moving part is detected with light, the magnetic field of the magnetic circuit is not disturbed by the detection. Accurate temperature detection becomes possible.

また、温度検出部位と検出信号を受ける機器の取付は部
位とが離れている場合には、光ファイバを用いることか
可能であるから、電磁雑音を拾うことがなく、雑音によ
る誤動作の心配がなく、動作上の信頼性を向上させるこ
とができ、また、光ファイバは従来のリード線に比較し
て軽量であるから、信号線の軽量化か達成され、自動車
等のように軽量化が望まれるものに好適な温度センサが
実現される。
In addition, if the temperature detection part and the device receiving the detection signal are installed far apart, it is possible to use optical fibers, so there is no need to pick up electromagnetic noise and there is no need to worry about malfunctions due to noise. , operational reliability can be improved, and since optical fibers are lighter than conventional lead wires, the weight of signal lines can be reduced, and weight reduction is desired, such as in automobiles. A temperature sensor suitable for various applications is realized.

また、本発明の温度センサは、感温磁性体を端部に設け
ることが可能であるから、温度検出対象の近傍に感温磁
性体を位置させることがてき、検出精度を向上させるこ
とかできる。
Further, since the temperature sensor of the present invention can have a temperature-sensitive magnetic body at the end, the temperature-sensitive magnetic body can be positioned near the temperature detection target, and detection accuracy can be improved. .

また、従来のリートスイッチ使用の温度センサのように
接触片をガラス等の容器内に封入する必要がなく、製作
容易てあり、また可動部に磁石を用いることにより、チ
ャタリングを生じない安定した動作の温度センサが実現
できる。
In addition, there is no need to enclose the contact piece in a container such as glass, unlike temperature sensors that use conventional REIT switches, making it easy to manufacture. Also, by using a magnet in the movable part, stable operation without chattering can be achieved. temperature sensor can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による温度センサの一実施例を示す構成
図、第2図は該実施例における磁石と感温磁性体または
磁性体との吸引力の温度変化に伴なう変化を示す図、第
3図および第4図は該実施例における可動部の変位と光
の授受量の変化を説明する図、第5図ないし第11図は
本発明の他の実施例をそれぞれ示す断面図、第12図は
本発明の実施例の実装状態を示す断面図、第13図は従
来の温度センサを示す側面図、第14図は従来の温度セ
ンサの実装状態を示す断面図である。
FIG. 1 is a configuration diagram showing one embodiment of a temperature sensor according to the present invention, and FIG. 2 is a diagram showing changes in the attractive force between a magnet and a temperature-sensitive magnetic material or magnetic material in accordance with a temperature change in the embodiment. , FIGS. 3 and 4 are diagrams illustrating the displacement of the movable part and changes in the amount of light exchanged in this embodiment, and FIGS. 5 to 11 are sectional views showing other embodiments of the present invention, respectively. FIG. 12 is a sectional view showing the mounting state of the embodiment of the present invention, FIG. 13 is a side view showing a conventional temperature sensor, and FIG. 14 is a sectional view showing the mounting state of the conventional temperature sensor.

Claims (1)

【特許請求の範囲】 1、磁石と、該磁石と共に磁気回路を構成する感温磁性
体と、前記磁気回路に含まれかつ前記感温磁性体の透過
磁束の変化により変動する可動部の変位を検出する光学
検出装置とからなることを特徴とする温度センサ。 2、前記光学検出装置の信号の伝送路が光ファイバでな
ることを特徴とする特許請求の範囲第1項記載の温度セ
ンサ。 3、前記可動部が前記磁石であることを特徴とする特許
請求の範囲第1項または第2項記載の温度センサ。 4、前記磁石が筒体内に収容され、該筒体の中心に位置
するガイドにより案内されて移動自在に取付けられ、か
つ該筒体が磁性体でなることを特徴とする特許請求の範
囲第3項記載の温度センサ。
[Claims] 1. A magnet, a temperature-sensitive magnetic body constituting a magnetic circuit together with the magnet, and a movable part that is included in the magnetic circuit and changes due to a change in the magnetic flux transmitted through the temperature-sensitive magnetic body. A temperature sensor comprising: an optical detection device for detecting temperature; 2. The temperature sensor according to claim 1, wherein the signal transmission path of the optical detection device is an optical fiber. 3. The temperature sensor according to claim 1 or 2, wherein the movable part is the magnet. 4. The third aspect of the present invention is characterized in that the magnet is housed in a cylindrical body and is movably attached while being guided by a guide located at the center of the cylindrical body, and the cylindrical body is made of a magnetic material. Temperature sensor as described in section.
JP31495487A 1987-12-12 1987-12-12 Temperature sensor Pending JPH01155224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31495487A JPH01155224A (en) 1987-12-12 1987-12-12 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31495487A JPH01155224A (en) 1987-12-12 1987-12-12 Temperature sensor

Publications (1)

Publication Number Publication Date
JPH01155224A true JPH01155224A (en) 1989-06-19

Family

ID=18059660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31495487A Pending JPH01155224A (en) 1987-12-12 1987-12-12 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH01155224A (en)

Similar Documents

Publication Publication Date Title
CA2801181C (en) Magnetically-triggered proximity switch
JP5603532B2 (en) In particular, measuring probes for thin layer thickness measuring devices
US9318280B2 (en) Contactless switch
EP0218430B1 (en) Magnetic actuator
EP0568116B1 (en) Assembly of a magnetic tilt sensor
MX2014009549A (en) Magnetically-triggered proximity switch.
EP3211379A1 (en) An angular position detector
US6271660B1 (en) Permanent multi-pole position magnet
JPH01155224A (en) Temperature sensor
EP0296565B1 (en) Tilt sensor
EP1756847B1 (en) Magnetic switch arrangement and method for obtaining a differential magnetic switch
JPS60102585A (en) Metal sphere detecting apparatus
JP4150904B2 (en) Displacement sensor
EP0022328A1 (en) A cant angle sensor
RU2149459C1 (en) Shock detector
JPH05332849A (en) Temperature sensor
JPH05296855A (en) Temperature sensor
JP2008157963A (en) Displacement sensor
JPS6331474Y2 (en)
JPH049542Y2 (en)
JPS606980Y2 (en) thermal response device
JP2600780Y2 (en) Temperature sensor using temperature-sensitive magnetic material
SU582536A2 (en) Electromagnetic relay
JPH07225160A (en) Temperature detector
JPS6125150Y2 (en)