JPH01154727A - Manufacture of germ-and dust-free film - Google Patents
Manufacture of germ-and dust-free filmInfo
- Publication number
- JPH01154727A JPH01154727A JP62313871A JP31387187A JPH01154727A JP H01154727 A JPH01154727 A JP H01154727A JP 62313871 A JP62313871 A JP 62313871A JP 31387187 A JP31387187 A JP 31387187A JP H01154727 A JPH01154727 A JP H01154727A
- Authority
- JP
- Japan
- Prior art keywords
- bubble
- gas
- fan
- film
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 claims abstract description 31
- 238000004381 surface treatment Methods 0.000 claims description 11
- 238000003475 lamination Methods 0.000 claims description 7
- 239000011347 resin Substances 0.000 abstract description 22
- 229920005989 resin Polymers 0.000 abstract description 22
- 239000010419 fine particle Substances 0.000 abstract description 16
- 230000007246 mechanism Effects 0.000 abstract description 3
- 239000002245 particle Substances 0.000 description 20
- 238000000465 moulding Methods 0.000 description 9
- 230000003749 cleanliness Effects 0.000 description 6
- 239000000428 dust Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000005022 packaging material Substances 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009820 dry lamination Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000009455 aseptic packaging Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/14—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
- B29C48/141—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration extruding in a clean room
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2791/00—Shaping characteristics in general
- B29C2791/004—Shaping under special conditions
- B29C2791/005—Using a particular environment, e.g. sterile fluids other than air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0019—Combinations of extrusion moulding with other shaping operations combined with shaping by flattening, folding or bending
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は滅菌処理した医療器具や、権端に無塵を要求さ
れる高精度の機械部品や、高密麿の電気、電子部品等の
包装に好適な無菌、無塵フィルムの製造法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to packaging of sterilized medical instruments, high-precision mechanical parts that are required to be dust-free, and high-density electrical and electronic parts. The present invention relates to a method for producing a sterile and dust-free film suitable for
(従来の技術)
従来、無菌包装分野ではインフレーション成形づる場合
、チューブ内にフィルターでi濾過した清浄ガスを導入
して、チューブ内を常に無菌、無ゆ状態に保持し、外部
からチューブ内に粉塵、細菌等が入らないようにした包
装材の製法は公知である(特願昭58−206884号
)。また、工業的用途においても、フィルムを成形づる
雰囲気を清浄に維持して、フィルムに付着する粉塵等を
減少させる試みも種々行なわれている。さらに、フィル
ム成形性の問題から、フィルムのインフレーション法成
形の際、バブル内のガスを循環させるバブル安定具(特
公昭55−12367号公報)、循環風量調節による方
法(特開昭59−123624号公報)、バブル冷却装
置(特開昭61−154825号公報)等が発表されて
いる。(Prior technology) Conventionally, in the field of aseptic packaging, when using inflation molding, a filtered clean gas is introduced into the tube to keep the tube sterile and free of dust, and dust particles are introduced into the tube from the outside. A method for manufacturing packaging materials that prevents bacteria from entering is known (Japanese Patent Application No. 58-206884). Furthermore, in industrial applications, various attempts have been made to maintain a clean atmosphere in which films are molded to reduce dust and the like that adhere to the films. Furthermore, due to the problem of film formability, when forming the film by the inflation method, a bubble stabilizer that circulates the gas inside the bubble (Japanese Patent Publication No. 55-12367) and a method that adjusts the circulation air volume (Japanese Patent Application Laid-Open No. 59-123624) Publications), bubble cooling devices (Japanese Unexamined Patent Publication No. 154825/1983), etc. have been announced.
しかし、上記従来の方法は、バブル内に対する異物の侵
入、或は外面に対する粉塵の付着を防止したり、バブル
の成形性の向上を目的とするもので、原料の異分子吊物
、添加剤が原因となって、成形中にバブル内に発生ずる
微粒子や揮発分については何ら考慮がされていない。こ
れはフィルムについて清浄度を評価する方法が確立され
ておらず、一般に外部からの異物の侵入のみが問題視さ
れているためである。However, the above conventional methods are aimed at preventing foreign matter from entering the bubble or dust from adhering to the outer surface, and improving the formability of the bubble. Therefore, no consideration is given to fine particles and volatile matter generated within the bubble during molding. This is because there is no established method for evaluating the cleanliness of films, and generally only the intrusion of foreign matter from the outside is viewed as a problem.
本発明とらは、ポリAレフイン樹脂を用い公知のインフ
レーション法で、バブル内に高性能フィルターを通した
清浄ガスを吹込み成形を行なった。In the present invention, polyA reflex resin was used and a well-known inflation method was used to perform blow molding by blowing clean gas passed through a high-performance filter into a bubble.
この場合樹脂湿度は約150℃となるので無菌状態とな
る。しかし、例えばM F R: ’3.53/10
分、密度: 0.923SF/CT11’の低密度ポ
リエチレン(LDPE)を用い、150℃、40分成形
を行なった後、バブル内の微粒子濃度を気中微粒子カウ
ンターで測定したところ、径0.5μm以上の微粒子数
が103〜10’個/ ft3存在した。さらに、その
原因を追求し、成形とと6に、溶融樹脂から樹脂の微粒
子が分離されていることがわかった。通常の成形では、
バブル内部が上記微粒子Qa雰囲気に接して成形が行な
われている。さらにバブル内の微粒子濃度は成形温度に
対する依存性が高く、成形時間による依存性が少ないこ
とも知見した。In this case, the resin humidity is approximately 150° C., resulting in a sterile state. However, for example, M F R: '3.53/10
After molding at 150°C for 40 minutes using low density polyethylene (LDPE) with density: 0.923SF/CT11', the concentration of fine particles inside the bubble was measured with an airborne particle counter, and the diameter was 0.5 μm. There were 103 to 10' particles/ft3. Furthermore, we investigated the cause and found that resin particles were separated from the molten resin during molding. In normal molding,
Molding is performed with the inside of the bubble in contact with the atmosphere of the fine particles Qa. Furthermore, it was also found that the fine particle concentration within the bubble was highly dependent on the molding temperature and less dependent on the molding time.
この理由は、成形開始後、一定時間経過した後は、バブ
ル内の微粒子がフィルムに付着して巻取られるため、バ
ブル内の微粒子11度が平衡状態になる゛ためと思われ
る。The reason for this is thought to be that after a certain period of time has elapsed after the start of molding, the fine particles within the bubble adhere to the film and are wound up, so that the fine particles within the bubble reach an equilibrium state.
本発明は、上記の知見に基づいてなされたもので、通常
のインフレーション法、または共押出しインフレーショ
ン法に、コンパクトなガス循環および循環ガスの清浄化
機構を付加して、外部から侵入する異物は勿論、バブル
内で発生する微粒子をも除去して、医薬品、医療器具、
精密機械部品、電気、電子部品等の包装に好適な内面が
無菌、無塵の単層、或は積層ノイルム、或はこれらに表
面処理、v4層を施して、目的とする特性を付与せしめ
た無菌、無塵フィルムの製造法を提供することを目的と
する。The present invention has been made based on the above findings, and by adding a compact gas circulation and circulating gas cleaning mechanism to the normal inflation method or coextrusion inflation method, it is possible to eliminate not only foreign substances entering from the outside but also a compact gas circulation and circulating gas cleaning mechanism. , even removes fine particles generated within the bubble, allowing it to be used for pharmaceuticals, medical equipment,
Suitable for packaging precision mechanical parts, electrical, electronic parts, etc. The inner surface is sterile and dust-free single layer or laminated noilum, or these are subjected to surface treatment and V4 layer to impart the desired characteristics. The purpose is to provide a method for producing sterile and dust-free films.
本発明は上記の目的を達成すべくなされたもので、その
要旨は、
インフレーション法によってフィルムを製造するに際し
、バブル内にファンおよびフィルターを設け、バブル内
のガスをファンによって吸引し、フィルターを通してバ
ブル内に吹出し循環させる無菌、無塵フィルムの@A造
法である第1発明、インフレーション法によってフィル
ムを製造するに際し、バブル内にファンおよびフィルタ
ーを設け、バブル内のガスをファンによって吸引し、フ
ィルターを通してバブル内に吹出し循環させて成形され
たフィルムの外面に表面処理、或はvi層を施iJ無菌
、無塵フィルムの製造法である第2発明、
共押出しインフレーション法によって積層フィルムをI
l!J造するに際し、バブル内にファンおよびフィルタ
ーを設け、バブル内のガスをファンによって吸引し、フ
ィルターを通してバブル内に吹出し循環さゼる無菌、無
塵フィルムの製造法である第3発明、
および共押出しインフレーション法によっ−(積層フィ
ルムを9A造するに際し、バブル内にファンおよびフィ
ルターを設け、バブル内のガスをファンによって吸引し
、ノイルクーを通してバブル内に吹出し循環させて成形
された積層フィルムの外面に表面処理、或はさらに積層
を施1無菌、無塵フィルムの製造法である第4発明、
にある。The present invention has been made to achieve the above object, and its gist is that when manufacturing a film by the inflation method, a fan and a filter are provided inside the bubble, the gas inside the bubble is sucked by the fan, and the gas inside the bubble is sucked through the filter. The first invention is the @A manufacturing method of sterile and dust-free film that is blown and circulated inside the bubble.When manufacturing the film by the inflation method, a fan and a filter are provided inside the bubble, and the gas inside the bubble is sucked by the fan and the filter The second invention is a method for producing a sterile and dust-free film, in which the outer surface of a film formed by blowing and circulating it into a bubble is subjected to surface treatment or a VI layer.
l! A third invention, which is a method for producing a sterile and dust-free film, in which a fan and a filter are provided in a bubble, gas in the bubble is sucked by the fan, and the gas is blown out and circulated into the bubble through the filter, and By the extrusion inflation method (when manufacturing a 9A laminated film, a fan and a filter are installed inside the bubble, the gas inside the bubble is sucked by the fan, and the gas is blown out and circulated inside the bubble through a noil cooler. The fourth invention is a method for producing a sterile and dust-free film by subjecting it to surface treatment or further lamination.
本発明の方法に用いる装置は、ガスを循環するファンお
よび循環ガスを清浄化するフィルターがバブル内に設置
されているので、コンパクトで、バブル内で発生した微
粒子は、ファンによって吸引されるガスに同伴され、ガ
スが循IWする過程でフィルターによってガスと分離さ
れ、バブル内は清浄に保持される。The device used in the method of the present invention has a fan that circulates gas and a filter that cleans the circulating gas installed inside the bubble, so it is compact and particles generated inside the bubble are absorbed into the gas sucked in by the fan. During the IW process, the gas is separated from the gas by a filter, and the inside of the bubble is kept clean.
また、フィルムは筒状で両端部をヒートシールづれば、
細菌や微粉末が侵入することなく、フィルム外面に表面
処理、v4層を施しで、特性の優れた、内面が無菌、無
賭のフィルムが得られる。In addition, if the film is cylindrical and both ends are heat-sealed,
By applying surface treatment and V4 layer to the outer surface of the film, a film with excellent properties and a sterile inner surface can be obtained without the invasion of bacteria or fine powder.
(実施例〕
第1図は、本発明の方法を実施する装置の一例を示すも
の”e1図中符号1は樹脂の押出様である。(Example) Fig. 1 shows an example of an apparatus for carrying out the method of the present invention. In Fig. 1, reference numeral 1 indicates a resin extrusion system.
押出機1により溶融混練されて押出された樹脂は、ジニ
1イン°ト2を通ってダイス3に入り、ダイス3内に設
iJられた溶融樹脂通路4を通って環状ダイスリップ5
から円筒状に押出される。この円筒状に押出された樹脂
は、エアーリング6より吹出される空気によって外部か
ら冷却され、結晶化しながら、バブル7を形成して上背
し、ガイド板8によって偏平に折りたたまれ、引取りロ
:ル9によって引取られ、ワインダー10に巻取られる
。この際、上記環状ダイスリップ5から押出された溶融
樹脂は、微粒子を放散しながら冷却、固化してフィルム
となるが、樹脂温度の低下とともに微粒子の発生も漸減
し、やがて発生しなくなる。The resin melt-kneaded and extruded by the extruder 1 passes through the die 1 inlet 2, enters the die 3, passes through the molten resin passage 4 provided in the die 3, and passes through the annular die slip 5.
It is extruded into a cylindrical shape. The resin extruded into a cylindrical shape is cooled from the outside by the air blown out from the air ring 6, crystallizes, forms bubbles 7, bends upward, is folded flat by the guide plate 8, and is taken up at the take-up station. : taken up by the winder 10 and taken up by the winder 10. At this time, the molten resin extruded from the annular die slip 5 cools and solidifies into a film while dissipating fine particles, but as the resin temperature decreases, the generation of fine particles gradually decreases and eventually ceases to be generated.
上記ダイス3には、溶融樹脂通路4、環状ダイスリップ
5の他、ダイス3の環状ダイスリップ5の内周近傍の面
と、中央の面とに開口するガス通路11が設けられてい
る。また、ダイス3の中央上面には、上部に吹出し管1
2が取付けられたガス用ガイド13の基部が、上記ガス
通路11の中央開口を囲繞して固定されている。このガ
ス用ガイド13の外周および吹出し管12の下部外周に
はガスの流れを整流する案内板14が取付【ノられてい
る。上記ガス用ガイド13の内部には、ガス通路11を
介してバブル内のガスを中央開口より吸引するファン1
5が設けられている。このファン15によって吸引され
たガスは、フィルター16を通り、吹出し管12よりバ
ブル7内に放出循環される。In addition to the molten resin passage 4 and the annular die slip 5, the die 3 is provided with a gas passage 11 that opens to a surface near the inner circumference of the annular die slip 5 of the die 3 and to a central surface. In addition, on the center upper surface of the die 3, there is a blowout pipe 1 at the top.
The base of the gas guide 13 to which the gas guide 2 is attached surrounds and is fixed to the central opening of the gas passage 11. A guide plate 14 is attached to the outer periphery of the gas guide 13 and the lower outer periphery of the blow-off pipe 12 to rectify the flow of gas. Inside the gas guide 13, there is a fan 1 that sucks the gas inside the bubble from the central opening through the gas passage 11.
5 is provided. The gas sucked by this fan 15 passes through a filter 16 and is released and circulated into the bubble 7 from the blow-off pipe 12.
、F記の装置を用いて無菌、無塵フィルムを製造するに
は、先ず、環状ダイスリップ5より樹脂を押出し、バブ
ル7を形成しガイド板8によって折たたみ、引出ロール
9に引取りワインダ−10に・巻取られるとともに、フ
ァン15を駆動してバブル内のガスを循環する。この場
合、溶融樹脂は、温度が高いため、バブル7内は無菌状
態となり、またバブル7の下部の溶融樹脂から発生する
微粒子は、ファン15によって循環されるガスに什なわ
れ、ガス通路11を通り、フィルター16によって微粒
子が分離され、ガスのみがバブル内に戻るので、バブル
7内は無菌、無塵状態に保持される。なおスタートの際
には、流路11を通じて外部空気を導入し、安定化して
からファン15を起動する。To produce a sterile, dust-free film using the apparatus described in , F, first, resin is extruded from an annular die slip 5 to form a bubble 7, folded by a guide plate 8, and taken up by a pull-out roll 9 and placed in a winder. 10. At the same time, the fan 15 is driven to circulate the gas inside the bubble. In this case, since the temperature of the molten resin is high, the inside of the bubble 7 is in a sterile state, and the fine particles generated from the molten resin at the bottom of the bubble 7 are carried by the gas circulated by the fan 15 and are carried through the gas passage 11. As a result, fine particles are separated by the filter 16 and only gas is returned to the bubble, so the inside of the bubble 7 is kept sterile and dust-free. In addition, at the time of starting, external air is introduced through the flow path 11, and after stabilization, the fan 15 is started.
上記第1図の装置は、無菌、無塵フィルムを製造する方
法としては最も有効であるが、第2図に示すように、吹
出し管12を吸込み管12′とし、ファン15を下向と
するとともにフィルター16をファン15の下方に設け
、バブル7内のガスを下から上に流れるように逆にする
と、微粒子の除去効果はある程度低下するがフィルムの
成形性は良くなる。この場合、ファン15、フィルター
16を収納するガス用ガイド13の形状や、ガス通路1
1のバブル7内への吹込み口等の形状を使用する樹脂特
性に合わせて工夫することにより、成形性、無塵性を共
によくすることが出来る。The apparatus shown in FIG. 1 is the most effective method for producing a sterile and dust-free film, but as shown in FIG. At the same time, if the filter 16 is provided below the fan 15 and the gas inside the bubble 7 is reversed so that it flows from bottom to top, the effect of removing particulates will be reduced to some extent, but the formability of the film will be improved. In this case, the shape of the gas guide 13 that houses the fan 15 and filter 16, the shape of the gas passage 1
By adjusting the shape of the injection port into the bubble 7 in No. 1 to match the characteristics of the resin used, both moldability and dust-free property can be improved.
上記無菌、無塵フィルムは円筒状のバブルが折たたまれ
てワインダーに巻取られた長尺物で、その両端をヒート
シールすれば、内部の無菌、無塵性を保持して表面処理
、積層を施して、それぞれの特性を付与することが出来
る。The above-mentioned sterile and dust-free film is a long piece of cylindrical bubble that is folded and wound up in a winder.If both ends of the film are heat-sealed, the interior will remain sterile and dust-free, and the surface will be treated. Lamination can be applied to impart individual properties.
表面処理としては、例えば真空蒸着処理、スパッター処
理、或は塗布4人等がある。Examples of the surface treatment include vacuum evaporation treatment, sputtering treatment, and four-person coating.
真空蒸着処理、スパッター処理は、公知の方法により、
フィルム外面に金属膜を形成する。その際、表面3?P
電性機能を付与づ−るには、AI Zrl。Vacuum deposition treatment and sputtering treatment are performed by known methods.
A metal film is formed on the outer surface of the film. At that time, surface 3? P
AI Zrl to provide electrical function.
Cu、sn、AQ、Cr、N 1−Cr、ITO(イン
ジウム、8の酸化物)、Pd等が用いられ、コンデンサ
ー、フレキシブルプリント基板、各種電極、帯電防止、
透明導電性フィルム等の用途がある。電磁波遮断性機能
付与には、Δj、 Cu。Cu, sn, AQ, Cr, N1-Cr, ITO (indium, oxide of 8), Pd, etc. are used for capacitors, flexible printed circuit boards, various electrodes, antistatic,
It has applications such as transparent conductive films. For imparting electromagnetic wave shielding function, Δj, Cu.
Cr、N 1−Crが用いられる。光学特性機能付与に
は、AJ、Cr、N 1−Cr、Cuが用いられ、装飾
用、スタンピングフォイル、包装材等の用途がある。熱
遮断性機能付与には、Aj、AQ。Cr and N1-Cr are used. AJ, Cr, N1-Cr, and Cu are used to impart optical properties, and have applications such as decoration, stamping foil, and packaging materials. Aj, AQ for imparting heat shielding function.
ITO,Tiが用いられ、ソーラーコントロールフィル
ム、断熱包装材、建材用等に使われる。ガスパリV性機
能付与にはAJが用いられ、食品、電気電子部品、精密
機械部品の包装に用いられる。ITO and Ti are used for solar control films, insulation packaging materials, building materials, etc. Gaspari V AJ is used to impart functional properties and is used for packaging foods, electrical and electronic parts, and precision mechanical parts.
磁気特性機能付与にはCo、Go−N i、Go−Cr
等があり、磁気テープ、記録媒体等の用途がある。Co, Go-Ni, Go-Cr are used to impart magnetic properties.
It has applications such as magnetic tape and recording media.
また、塗布払としては、各種樹脂、薬剤の塗布がある。In addition, various types of resin and chemical coatings are used as coating removal methods.
例えば、耐r!A傷性機能付与のためには、メラミン系
、ウレタン系、シラン系の塗料をコーティングした後、
熱硬化反応により、架橋密度を高め、硬化膜を形成づる
方法、多感能アクリレートなどのモノマー、オリゴマー
に電子線を照射したり、光増感剤を添加した後に紫外線
を照射して架橋反応を開始させ、硬化膜を形成する方法
が知られている。これらの方法により、表面の耐FQ
jJ性が向上するとともに、内面の無菌、無四性とが複
合化され、光学材料用プl]デクトフィルムや、電気部
品への応用が可能となる。導電性機能付与には、外面に
導電性塗料を塗布ηるが、導電+/Iフィラーとしては
、金属粉、金属酸化物粉、カーボン粉、カーボンiim
、金属メツキされた短繊維や微粒子などがあげられる。For example, resistance! A: To impart scratch resistance, after coating with melamine, urethane, or silane paint,
A method of increasing crosslinking density and forming a cured film through a thermosetting reaction, by irradiating monomers and oligomers such as multisensitized acrylate with electron beams, or by adding a photosensitizer and then irradiating ultraviolet rays to initiate the crosslinking reaction. Methods of initiating and forming cured films are known. By these methods, the FQ resistance of the surface
In addition to improving the JJ property, the inner surface is made sterile and non-sterile, making it possible to apply it to optical materials such as plastic films and electrical parts. To impart a conductive function, a conductive paint is applied to the outer surface, and conductive +/I fillers include metal powder, metal oxide powder, carbon powder, and carbon IIM.
Examples include metal-plated short fibers and fine particles.
その場合用いられるバインダーとしては、エポキシ樹脂
、アクリル樹脂、フェノール樹脂、アルキッド樹脂、ウ
レタン樹脂、ゴムなどがある。これらの処理によって表
面電気抵抗を低下させ、帯電によるゴミの付着に起因す
る障害、静電気障害を防止し、電磁波シールド、透明f
f1lGフイルムとすることができる。また、半導体装
材料、透明導電性フィルム、電磁波遮断精密部品、光学
特性フィルムへの用途もある。Binders used in this case include epoxy resins, acrylic resins, phenolic resins, alkyd resins, urethane resins, and rubber. These treatments lower the surface electrical resistance, prevent problems caused by dust adhesion due to charging, and static electricity problems, and provide electromagnetic shielding and transparent f
It can be a f1lG film. It also has applications in semiconductor packaging materials, transparent conductive films, electromagnetic wave shielding precision parts, and optical property films.
また、ドライラミネートによってフィルムを積層化する
ことが出来るが、積層化するフィルムの種類を選ぶこと
によって、水蒸気透過性、断熱性、光遮断性の機能がイ
4与される。Furthermore, although films can be laminated by dry lamination, the functions of water vapor permeability, heat insulation, and light blocking properties can be imparted by selecting the type of film to be laminated.
このように、本発明の方法によってつくられた、無菌、
無塵フィルムは、内面の無菌、NO!を何ら損うことな
く、外面に表面処理、積層を自由に施すことが出来るの
で、それぞれの目的に合致した特性の無菌、無塵フィル
ムを製造することが出来る。Thus, the sterile,
The dust-free film is sterile on the inside, NO! Since the outer surface can be freely subjected to surface treatment and lamination without any damage, it is possible to produce sterile and dust-free films with characteristics that meet each purpose.
上記説明は、インフレーション法によってつくられた単
層フィルムについて)本べたが、共押出しインフレーシ
ョン法によって、内部が無菌、無塵の積層フィルムが得
られる。この積層フィルムは積層するフィルムを選ぶこ
とによって容易にそれぞれの特性を保持させることが出
来る。また、当然のことながら、単層フィルムと同様な
表面処理、或はラミネートによるvI層によって、内面
の無菌、無塵を保持して、ざらにそれぞれの特性を助長
させることが可能である。Although the above explanation is based on a single-layer film produced by the inflation method, the coextrusion inflation method yields a laminate film whose interior is sterile and dust-free. This laminated film can easily maintain its respective characteristics by selecting the films to be laminated. Naturally, it is also possible to keep the inner surface sterile and dust-free by surface treatment similar to that of a single-layer film or by laminating the vI layer, thereby enhancing the respective characteristics.
〔実施例1〕
第1図の5A置を用いて単層の無菌、無塵フィルムを製
造した。[Example 1] A single-layer sterile and dust-free film was produced using the 5A machine shown in FIG.
使用した樹脂は、MFR: 3.5g/Io分、密度
=0.9239/dの低密度ポリエチレン(昭和電f株
式会礼製ショウレックスL130)で、使用した押出機
は、スクリュー径: 40mm、L/D : 26、回
転数66 rflllで、環状ダイスリブ径:50mm
より押出し、ブローアツプレシオ(BtJR) :
2.3で成形し、引取速E[: 9.7m/sec
、厚さ:50μγルのフィルムをガイド板で折たたんだ
場合の幅、180mの筒状フィルムとした。また、空気
清浄用のフィルターはジオクヂルフタレートの0.3μ
myL標準粒子で捕集率99.97%の超高性能フィル
ターを用いた。The resin used was low-density polyethylene (Shorex L130 manufactured by Showa Denf Co., Ltd.) with an MFR of 3.5 g/Io and a density of 0.9239/d, and the extruder used had a screw diameter of 40 mm. L/D: 26, rotation speed 66 rflll, annular die rib diameter: 50 mm
Extrusion, blow-out ratio (BtJR):
2.3, take-up speed E [: 9.7 m/sec
A cylindrical film with a width of 180 m when a film with a thickness of 50 μγ was folded with a guide plate was obtained. In addition, the filter for air purification is 0.3μ of dioquidyl phthalate.
An ultra-high performance filter with a collection rate of 99.97% using myL standard particles was used.
上記樹脂を150℃で押出)幾より押出し、フィルター
を通した清浄空気をバブル中に吹込み、これを排出させ
、フィルターを通して再びバブル内に吹込み循環させた
。40分間運転した侵、押出機、引取ロールを同時に停
止し、バブル内のガスを吸引し、光散乱式気中微粒子カ
ウンター(リオン株式会礼装KC−01)で測定したと
ころ、0,5μIn以上の粒子数は100ケ/ ft3
以下であった。The resin was extruded at 150° C.), clean air that had passed through a filter was blown into the bubble, the air was discharged, and the air was blown through the filter into the bubble again for circulation. After running for 40 minutes, the extruder and take-up roll were stopped at the same time, the gas inside the bubble was sucked out, and measured with a light scattering airborne particle counter (Rion Co., Ltd. KC-01). Number of particles is 100/ft3
It was below.
また、製造されたデユープ状フィルムに0.2μmのフ
ィルターで一濾過した比抵抗18MΩ−cmの超純水を
注入した後、両端をヒートシールしたナンプル袋を振掃
機(岩城硝子株式会社製■−8型)で40#1IIX
4.17 fL+!の水平振動で1分間内面洗浄した。In addition, after injecting ultrapure water with a specific resistance of 18 MΩ-cm that had been filtered through a 0.2 μm filter into the produced duplex film, a dimple bag with both ends heat-sealed was placed in a shaker (manufactured by Iwaki Glass Co., Ltd.). -8 type) with 40 #1 IIX
4.17 fL+! The inner surface was cleaned for 1 minute with horizontal vibration.
次いで、洗浄液中の微粒子を光遮断式液中微粒子カウン
ター(ハイ7ツク、ロイコ社製4100)で測定した。Next, the particles in the cleaning solution were measured using a light-blocking type submerged particle counter (High 7T, manufactured by Leuco Corporation, 4100).
その結果、径2μmrL以上の微粒子が、“フィルム内
面積換算O11ケ/cI11以下であることが確認され
た。As a result, it was confirmed that the fine particles having a diameter of 2 μm rL or more had a film inner area conversion of O11 cells/cI11 or less.
〔比較例1〕
清浄な空気を吹込んでバブルを形成した俊、排気するこ
となくフィルムを成形した外は、実施例1と同じにして
粒子数を測定した。その結果、光散乱式気中微粒子カウ
ンターの測定では、0.5μIrL以上の粒子が103
0ケ/ft3 、光遮断式液中微粒子カウンターの測定
では2μm以上の微粒子数1よ、フィルムの内面積換算
1.2ケ/ ciであった。[Comparative Example 1] The number of particles was measured in the same manner as in Example 1, except that clean air was blown in to form a bubble, and a film was formed without evacuation. As a result, when measured using a light scattering airborne particle counter, 103 particles of 0.5μIrL or more were detected.
The number of particles of 2 μm or more was 1 when measured using a light blocking liquid submerged particle counter, which was 1.2 particles/ci when converted to the inner area of the film.
〔実施例2〕
両端部をピー1〜シールし、包装し、クリーンルーム(
クラス1000)に収納されている実jM 14111
の無菌、無塵フィルム取出し、グラビアコーディングに
よって外面に導電性塗料を塗布した。導電性塗料はSn
O2を用い、アクリル樹脂をバインダーとして、フィル
ム走行速度40TrL/nin、乾燥温度90℃で]−
トした。その結果、表面の抵抗値は106Ωとなった。[Example 2] Both ends were sealed, packaged, and placed in a clean room (
Real jM 14111 stored in class 1000)
A sterile, dust-free film was taken out, and a conductive paint was applied to the outer surface by gravure coating. Conductive paint is Sn
Using O2, acrylic resin as a binder, film running speed 40TrL/nin, drying temperature 90°C]-
I did it. As a result, the surface resistance value was 106Ω.
この表面処理したフィルム内面の清浄度を超純水で洗浄
し、液中微粒子カウンターで測定する実施例1と同じ方
法で測定したところ、フィルム内面積換粋の2μmrL
以上の微粒子は、0.11ケ/ ctdであった。The cleanliness of the inner surface of this surface-treated film was measured using the same method as in Example 1, in which the cleanliness was washed with ultrapure water and measured using a submerged particle counter.
The number of fine particles above was 0.11 particles/ctd.
〔実施例3〕
MFR: 2.Og/10分、密度: 0.912
g/c+/。[Example 3] MFR: 2. Og/10 min, density: 0.912
g/c+/.
厚み:20μmの直鎖状低密度ポリエチレンフィルムに
、厚み:15μmのエチレン系フィルム(日本合成ゴム
工業株式会社製ソアノールDJ。Thickness: 20 μm linear low-density polyethylene film, thickness: 15 μm ethylene film (Soarnol DJ manufactured by Japan Synthetic Rubber Industry Co., Ltd.).
エチレン含有429モル%)をウレタン系接着剤(東洋
モートン株式会社製アートコート主剤ΔD−300A、
硬化剤AD−300B、溶媒BTS−500を100
: 100 : 116の割合で混合したもの)を
ラミネーター(岡崎=[業株式会社¥JTDL−500
) を使用シテ接着剤塗布m : 4.1g/ rd
、ラミネート圧: 5. OR3/ cm、加熱O−
ル温麿:65℃、乾燥温度:90〜110℃、速度=2
0TrL/1nの条件でドライラミネートした。(429 mol% ethylene content) was used as a urethane adhesive (Art Coat main agent ΔD-300A manufactured by Toyo Morton Co., Ltd.).
Curing agent AD-300B, solvent BTS-500 100
: 100 : 116 ratio) in a laminator (Okazaki = [Gyo Co., Ltd. ¥JTDL-500
) Use shite adhesive application m: 4.1g/rd
, Lamination pressure: 5. OR3/cm, heating O-
Le onmaro: 65℃, drying temperature: 90-110℃, speed = 2
Dry lamination was performed under the condition of 0TrL/1n.
これを、実施例2で用いた両端部をヒートシールした無
菌、無塵フィルムのブ方の側の面にソアノールDT側を
内側として前と同じ方法でドライラミネートし、さらに
他方の面にもドライラミネートし、内側から50μm/
15μm(バリアー性フィルム)720μmのlI¥1
層フィルムをつくった。このフィルムの内面清浄度を超
純水を注入洗浄する実施例1と同じ方法によって測定し
たところ、2μm以上の粒子数は0.12ケ/ ciで
あった。This was dry-laminated in the same manner as before, with the Soarnol DT side inside, on the opposite side of the sterile, dust-free film that was heat-sealed at both ends used in Example 2, and the other side was also dry-laminated. Laminated and 50μm/
15μm (barrier film) 720μm lI¥1
A layered film was created. When the inner surface cleanliness of this film was measured by the same method as in Example 1 in which ultrapure water was injected and cleaned, the number of particles of 2 μm or more was 0.12 particles/ci.
〔実施例4〕
共押出しインフレーション法で種々な積層フィルムをつ
くり、これに表面処理を殆して、内面の清浄度を測定し
たところ、0.1〜0.12ケ/ ciであった。[Example 4] Various laminated films were made using the coextrusion inflation method, most of which were subjected to surface treatment, and the cleanliness of the inner surface was measured to be 0.1 to 0.12 cases/ci.
以上述べたように、本発明の方法は、装置がコンパクト
で、内面が無菌、無塵の単層フィルム、或は積層フィル
ムが容易に得られ、さらに、これらのフィルムは無菌、
無塵状態を損うことなく、表面処理、積層を施すことが
出来るので、それぞれの目的に適合した特性の無菌、無
塵フィルムとすることが出来る。そのため、医療器具、
精密機械部品、電子、電気部品の包装用どして、好適に
使用出来る他、今後表面清浄度の評価技術が進歩しても
充分対応q能で、それぞれの特性の優れた無菌、無塵フ
ィルムとして広い用途が見込まれる。As described above, the method of the present invention has a compact device, and can easily produce a single-layer film or a laminated film whose inner surface is sterile and dust-free, and furthermore, these films are sterile and dust-free.
Since surface treatment and lamination can be performed without impairing the dust-free state, a sterile and dust-free film with characteristics suitable for each purpose can be obtained. Therefore, medical equipment,
It is a sterile and dust-free film with excellent properties that can be used suitably for packaging precision mechanical parts, electronic and electrical parts, etc., and is fully compatible with future advances in surface cleanliness evaluation technology. It is expected to have a wide range of applications.
第1図は本発明を実施する装置の一例を示す図、第2図
は装置の伯の例を示J図である。
1・・・・・・押出機、 2・・・・・・ジヨ
イント、3・・・・・・ダイス、 4・・・・
・・溶融樹脂通路、5・・・・・・環状ダイスリップ、
6・・・・・・エアーリング、7・・・・・・バブル、
8・・・・・・ガイド根、9・・・・・・引
取りロール、 10・・・・・・ワインダー、11・・
・・・・ガス通路、 12・・・・・・吹出し管、
12′・・・・・・吸込み管、 13・・・・・・ガ
ス用ガイド、14・・・・・・案内板、 15・
・・・・・ファン16・・・・・・フィルター。FIG. 1 is a diagram showing an example of an apparatus for implementing the present invention, and FIG. 2 is a diagram showing an example of the apparatus. 1...Extruder, 2...Joint, 3...Dice, 4...
... Molten resin passage, 5... Annular die slip,
6...Air ring, 7...Bubble,
8... Guide root, 9... Take-up roll, 10... Winder, 11...
...Gas passage, 12...Blowout pipe,
12'... Suction pipe, 13... Gas guide, 14... Guide plate, 15.
...Fan 16...Filter.
Claims (4)
に際し、バブル内にファンおよびフィルターを設け、バ
ブル内のガスをファンによって吸引し、フィルターを通
してバブル内に吹出し循環させることを特徴とする無菌
、無塵フィルムの製造法。(1) When producing a film by the inflation method, a fan and a filter are provided inside the bubble, and the gas inside the bubble is sucked by the fan and blown out and circulated inside the bubble through the filter, which is sterile and dust-free. Film manufacturing method.
に際し、バブル内にファンおよびフィルターを設け、バ
ブル内のガスをファンによつて吸引し、フィルターを通
してバブル内に吹出し循環させて成形されたフィルムの
外面に表面処理、或は積層を施すことを特徴とする無菌
、無塵フィルムの製造法。(2) When manufacturing a film by the inflation method, a fan and a filter are installed inside the bubble, and the gas inside the bubble is sucked by the fan, and the gas is blown out and circulated inside the bubble through the filter to form the outer surface of the film. A method for producing a sterile, dust-free film characterized by subjecting it to surface treatment or lamination.
ムを製造するに際し、バブル内にファンおよびフィルタ
ーを設け、バブル内のガスをファンによって吸引し、フ
ィルターを通してバブル内に吹出し循環させることを特
徴とする無菌、無塵フィルムの製造法。(3) When producing a laminated film by the coextrusion inflation method, a sterile method characterized in that a fan and a filter are provided inside the bubble, and the gas inside the bubble is sucked by the fan and blown out and circulated inside the bubble through the filter. , a method for producing dust-free films.
ムを製造するに際し、バブル内にファンおよびフィルタ
ーを設け、バブル内のガスをファンによつて吸引し、フ
ィルターを通してバブル内に吹出し循環させて成形され
た積層フィルムの外面に表面処理、或はさらに積層を施
すことを特徴とする無菌、無塵フィルムの製造法。(4) When manufacturing a laminated film by the coextrusion inflation method, a fan and a filter are provided inside the bubble, and the gas inside the bubble is sucked by the fan and then blown out and circulated inside the bubble through the filter to form a laminated film. A method for producing a sterile and dust-free film, characterized by subjecting the outer surface of the film to surface treatment or further lamination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62313871A JPH01154727A (en) | 1987-12-11 | 1987-12-11 | Manufacture of germ-and dust-free film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62313871A JPH01154727A (en) | 1987-12-11 | 1987-12-11 | Manufacture of germ-and dust-free film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01154727A true JPH01154727A (en) | 1989-06-16 |
Family
ID=18046510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62313871A Pending JPH01154727A (en) | 1987-12-11 | 1987-12-11 | Manufacture of germ-and dust-free film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01154727A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009292099A (en) * | 2008-06-06 | 2009-12-17 | Sumitomo Chemical Co Ltd | Apparatus and method for producing blown film |
-
1987
- 1987-12-11 JP JP62313871A patent/JPH01154727A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009292099A (en) * | 2008-06-06 | 2009-12-17 | Sumitomo Chemical Co Ltd | Apparatus and method for producing blown film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108352351B (en) | Method for joining and separating substrates | |
JP2001329088A (en) | Silicon dioxide coated polyolefin resin and its manufacturing method | |
KR20160086323A (en) | Mold release film and semiconductor package manufacturing method | |
JPH0794577A (en) | Steam drain device | |
WO2015045414A1 (en) | Pellicle film, pellicle using same, exposure original plate and exposure device, and method for manufacturing semiconductor device | |
JP2022105579A (en) | Transparent conductive film | |
JP2017121721A (en) | Gas barrier film laminate and manufacturing method thereof | |
WO2012011377A1 (en) | Method for producing gas barrier film | |
KR101795711B1 (en) | Cell pouch film for battery and method of the same | |
US9117562B2 (en) | Method for producing scintillator panel, scintillator panel and flat panel detector | |
JPH01154727A (en) | Manufacture of germ-and dust-free film | |
EP0559500A1 (en) | Apparatus for forming resin coating on surface of article having three-dimensional structure | |
WO2017010419A1 (en) | Layered body and method for manufacturing same | |
JP2012076386A (en) | Ultraviolet-shieldable film and organic electronic device obtained by using the same | |
JPH01152034A (en) | Preparation of sterile, dust-free film | |
JP2013123833A (en) | Laminate of inorganic glass and resin film, and method for manufacturing the same | |
JPS5975928A (en) | Surface treatment of polymer web | |
JPWO2015118985A1 (en) | Glass roll | |
WO2022091606A1 (en) | Transparent conductive film | |
JPH1144443A (en) | Clean room, manufacture of semiconductor element, treating chamber for manufacturing semiconductor element, manufacturing device for semiconductor element and cleaning method of member for semiconductor element | |
JPH08155230A (en) | Electret filter and its preparation | |
KR101953732B1 (en) | layered film for gas barrier having organic film layer containing nanoporous materials, and preparation method and use thereof | |
JP2007302806A (en) | Surface treatment apparatus | |
JP2001151911A (en) | Method for highly cleaning plastic film or sheet | |
JP7400273B2 (en) | Polyimide film laminate and method for producing polyimide film laminate |