JPH01153734A - Polymer readily processable with light - Google Patents

Polymer readily processable with light

Info

Publication number
JPH01153734A
JPH01153734A JP62312176A JP31217687A JPH01153734A JP H01153734 A JPH01153734 A JP H01153734A JP 62312176 A JP62312176 A JP 62312176A JP 31217687 A JP31217687 A JP 31217687A JP H01153734 A JPH01153734 A JP H01153734A
Authority
JP
Japan
Prior art keywords
poly
polymer
light
polymers
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62312176A
Other languages
Japanese (ja)
Other versions
JPH0798870B2 (en
Inventor
Shozaburo Nagano
長野 昭三郎
Kazuaki Hotta
和明 堀田
Masahiro Hosoi
正広 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Teijin Ltd
Original Assignee
NEC Corp
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Teijin Ltd filed Critical NEC Corp
Priority to JP62312176A priority Critical patent/JPH0798870B2/en
Priority to DE3855179T priority patent/DE3855179T2/en
Priority to US07/392,929 priority patent/US5175043A/en
Priority to EP89900313A priority patent/EP0346485B1/en
Priority to PCT/JP1988/001252 priority patent/WO1989005330A1/en
Publication of JPH01153734A publication Critical patent/JPH01153734A/en
Publication of JPH0798870B2 publication Critical patent/JPH0798870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/009Using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • B29K2077/10Aromatic polyamides [polyaramides] or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/06PSU, i.e. polysulfones; PES, i.e. polyethersulfones or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/002Coloured
    • B29K2995/0021Multi-coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/262Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used recording or marking of inorganic surfaces or materials, e.g. glass, metal, or ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/36Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using a polymeric layer, which may be particulate and which is deformed or structurally changed with modification of its' properties, e.g. of its' optical hydrophobic-hydrophilic, solubility or permeability properties

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To provide the title polymer composed of an aromatic poly(ether sulfone) or poly(arylate), etchable with light or heat in high efficiency after exposure to ultraviolet radiation and useful as an organic polymer base for optical recording. CONSTITUTION:The objective polymer readily processable with light is composed of (A) a poly(ether sulfone) having a structure of formula I, etc., and derived from 4,4'-dichlorodiphenyl sulfone or (B) a poly(arylate) having a structure of formula II, etc., and composed of an aromatic dicarboxylic acid and a bisphenol. The polymer A or B or a composition produced by blending the polymer with other polymer [e.g. poly(methyl methacrylate)] as a photosensitizer is subjected to photo-processing with ultraviolet radiation having a wavelength of <=380nm in vacuum, in an inert gas or in air at normal temperature-100 deg.C.

Description

【発明の詳細な説明】 [発明の目的と利用分野] 本発明は、紫外線により光加工され易い特徴のある重合
体に関するもので、紫外線で照射された部分が効率的に
光又は熱によりエツチングされるため 1、 半導体集積回路などで使用される無現像乾式エツ
チング用フォトレジスト、又はフォトレジスト用増感剤
[Detailed Description of the Invention] [Object of the Invention and Field of Application] The present invention relates to a polymer that is characterized by being easily photoprocessed by ultraviolet rays, and a polymer that can be efficiently etched by light or heat in a portion irradiated with ultraviolet rays. 1. Photoresists for developmentless dry etching used in semiconductor integrated circuits, or sensitizers for photoresists.

2、 リードオンリーメモリー(ROM)、追記型など
の光記録用有機高分子基材。
2. Organic polymer base material for optical recording such as read-only memory (ROM) and write-once type.

3、 微細多孔膜用有機高分子素材。3. Organic polymer material for microporous membranes.

4、 回折格子等の光学用素子材料。4. Optical element materials such as diffraction gratings.

5、 異光加工性合成樹脂(穴あけ、切断1表面改質な
ど) として使用される高分子素材を関連業界に提供しようと
するものである。
5. The aim is to provide related industries with polymeric materials that can be used as different photoprocessable synthetic resins (for drilling, cutting, surface modification, etc.).

[先行技術との関連] エキシマ・レーザの高輝度性・短波長性に着目し、高分
子として最も高い解像力を有するといわれるポリ(メチ
ル・メタクリレート)をエキシマ・レーザによりエツチ
ングを行う試みは理化学研究所の同村、豊田、難波(レ
ーザ研究Vol、8゜11k16.941 (昭和55
年))により行われ、エキシマ・レーザがフォトエツチ
ング、フォトリソグラフィ等の光源として極めて有効で
あることがいち早く確められている。
[Relationship with prior art] Focusing on the high brightness and short wavelength properties of the excimer laser, an attempt was made to use an excimer laser to etch poly(methyl methacrylate), which is said to have the highest resolution among polymers, as part of physical and chemical research. Same village, Toyota, Namba (Laser Research Vol. 8゜11k16.941 (Showa 55)
(2005)), and it was quickly established that excimer lasers are extremely effective as light sources for photoetching, photolithography, etc.

その後、同村等とは別にインターナショナル・ビジネス
マシーンズ・コーポレーション(IBM)のアール・ス
リニヴサン(R,3riniVasan” La5er
  process+nc+ and D iagno
stics”5prinoer  5eries  i
n   Chemical  Physics   3
9゜Springer−■erlarg、  Berl
in、  1984)は短パルスの遠紫外エキシマ・レ
ーザを高分子フィルムに照射すると1000人又はそれ
以上の深さのエツチングが光化学的に瞬時に起ることを
見出し、これを融撥光分解(A blative P 
hot。
Afterwards, apart from the villagers, R.3riniVasan of International Business Machines Corporation (IBM)
process+nc+ and Diagno
sticks”5prinoer 5eries i
n Chemical Physics 3
9゜Springer-■erlarg, Berl
(In, 1984) found that when a polymer film is irradiated with a short-pulse far-UV excimer laser, etching to a depth of 1000 nm or more occurs instantaneously photochemically. blative P
Hot.

o ecompos + t t on )と名付けて
いる。
o ecompos + t on ).

アール・スリニヴサン等は193nmのレーザを使用し
た初期の融撥分解についての研究で分解の主なメカニズ
ムは光化学的なエツチング、即ち光子による直接的な電
子励起で照射面の高分子の化学的結合が切断されるとの
機構を提案していた。然し、その後193nmより長い
波長のエキシマ・レーザを使用した場合には、試料とし
て紫外領域に強い吸収のある高分子・・・・ポリ(イミ
ド)、ポリ(エチレン・テレフタレート)、ポリ(カー
ボネート)・・・・を使用してもこれらの高分子の融撥
分解は、主に熱分解を経由したエツチングとなることを
認めている(例えば、J、 Polym、 Sct。
R. Srinivsan et al., in their early research on ablative decomposition using a 193 nm laser, found that the main mechanism of decomposition was photochemical etching, that is, direct electron excitation by photons that caused chemical bonding of polymers on the irradiated surface. He proposed a mechanism in which the wire would be disconnected. However, when using an excimer laser with a wavelength longer than 193 nm, the sample may be a polymer with strong absorption in the ultraviolet region, such as poly(imide), poly(ethylene terephthalate), poly(carbonate), etc. It is acknowledged that even if ... is used, the melt-repellent decomposition of these polymers mainly results in etching via thermal decomposition (for example, J. Polym, Sct.

Polym、 Chem、  Ed、Vol、22 、
2601〜2609(1984) ; lyjacro
molecules’、 VOl、19 、 No、3
916〜921 (1986) ”)。モして融撥分解
には(1)′熱分解を経由する融撥分解。
Polym, Chem, Ed, Vol, 22,
2601-2609 (1984); lyjacro
molecules', VOl, 19, No, 3
916-921 (1986)'').For melt-repellent decomposition, (1)' melt-repellent decomposition via thermal decomposition.

(2)光化学的な融撥分解。(2) Photochemical ablation decomposition.

(3)熱により援助された融撥分解 (Therlally−assisted  (or 
activated)P hotoprocess ) の三つの融撥分解プロセスがある、としている。
(3) Therally-assisted (or
It is said that there are three melt-repellent decomposition processes: activated) photoprocess).

249rv以上の長波長のエキシマ・レーザで光エッチ
ングを行った場合、熱的な機構での融撥分解が起り易い
ことはその後、その他の研究者によっても実験的に確め
られている。
It has since been experimentally confirmed by other researchers that when optical etching is performed using an excimer laser with a long wavelength of 249 rv or more, thermal decomposition is likely to occur.

紫外領域では高分子内部への光透過距離は短く、光の吸
収される体積も小さいので局所的な高温化は起り易い、
然し熱拡散は極めて短時間であれば無視出来るため光加
工が主に熱による加工となっても成る程度の精度の加工
は可能である。然し高精度を要求する加工では極力熱分
解によるエツチングが起きるのを避けることが望ましい
In the ultraviolet region, the distance of light transmission into the interior of the polymer is short, and the volume in which light is absorbed is small, so local high temperatures are likely to occur.
However, since thermal diffusion can be ignored for an extremely short period of time, even if optical processing is mainly thermal processing, it is possible to perform processing with a certain degree of precision. However, in machining that requires high precision, it is desirable to avoid etching due to thermal decomposition as much as possible.

例えば同じ高分子を異なる波長のエキシマ・レーザで照
射した場合、長い波長によるエツチングの方が熱的な融
撥分解が起り易くなると考えて良いが、短い波長と比較
して長波長での光エッチングでは生成する生成物は高分
子の生成物割合が多く、エツチングにより生じた穴の内
壁は明らかに荒れており、又放出生成物中に融着した粒
状粉体の含有が多く、従って粒状粉体の飛散によるマイ
クロ・パターンの汚れ、レンズの曇りなども生じ易いと
されている。
For example, when the same polymer is irradiated with excimer lasers of different wavelengths, it can be assumed that thermal ablation decomposition occurs more easily when etching with longer wavelengths, but photoetching with longer wavelengths is more likely than with short wavelengths. In this case, the product produced has a high proportion of polymer products, the inner walls of the holes created by etching are obviously rough, and the emitted product contains a large amount of fused granular powder, so the granular powder It is said that micro-pattern stains and lens fogging are likely to occur due to the scattering of particles.

融撥分解に於いて光分解の起る割合を高めることは前記
の如く精密加工上極めて重要であるがこれは上記の如く
短波長のレーザを使用することの他、低い繰返し周波数
(通常501−I Z以下、場合によりIHz以下)を
使うことなど熱の蓄積を避けることによっても成る程度
は可能である。然し、基本的には照射される高分子の特
性に大きく制約される。例えばポリ(メチル・メタクリ
レート)は308r+n+のエキシマ・レーザでは融撥
光分解を起させることは出来ず熱的な分解によるエツチ
ングしか起らない。即ち、短波長でしか光分解を起さな
い高分子は長波長領域では熱分解によるエッチングは出
来ても光化学的なエツチングは出来ない。
Increasing the rate of photodecomposition in ablative decomposition is extremely important for precision machining as described above, but this requires not only the use of a short wavelength laser as described above, but also the use of a low repetition frequency (usually 501- This can be achieved to some extent by avoiding heat accumulation, such as by using a frequency below IZ (in some cases below IHz). However, it is fundamentally limited by the characteristics of the polymer to be irradiated. For example, poly(methyl methacrylate) cannot be subjected to ablation photolysis using a 308r+n+ excimer laser, but etching only occurs due to thermal decomposition. That is, polymers that only undergo photodecomposition at short wavelengths can be etched by thermal decomposition in the long wavelength range, but cannot be etched photochemically.

これに対し、長波長の紫外領域で光化学的に加工されう
る高分子は短波長でも容易に融撥光分解によるエツチン
グを行うことが出来る。更にこのような高分子は光化学
的な加工のばか照射条件を変えれば熱的な融撥分解も行
うことが出来る。従って、光による加工を行う上で加工
範囲を広〈実施することが出来る。
On the other hand, polymers that can be photochemically processed in the long wavelength ultraviolet region can be easily etched by repellent photolysis even at short wavelengths. Furthermore, such polymers can be thermally decomposed by ablative repellency by changing the irradiation conditions during photochemical processing. Therefore, when processing with light, the processing range can be widened.

かかる観点から紫外域に於いて長波長側でも融撥光分解
を起し易い高分子について鋭意探索した結果、本発明に
到達したものである。
From this point of view, the present invention was arrived at as a result of intensive searches for polymers that are susceptible to photorepellent decomposition even at long wavelengths in the ultraviolet region.

[発明の構成] 紫外線により光化学的に融撥分解し易く、熱的にも光加
工が可能な高分子としては、重合体の主鎖の大部分の骨
格に多環縮合芳香族化合物を含む高分子(特願昭61−
130359号にて出願)のほかに、単環芳香族の高分
子では、芳香族ポリ(エーテル・スルホン)及びポリ(
アリレート)を含む重合体があることが判った。これら
の重合体は他の高分子に比し短波長の紫外レーザでは勿
論のこと、200nmより長い波長のレーザによっても
光化学的に加工され易く、更に条件を適切に選べば熱的
にも融撥分解を行うことが出来ることを見出した。
[Structure of the Invention] Polymers that are easily photochemically fused and decomposed by ultraviolet rays and that can be thermally photoprocessed include polymers that contain a polycyclic fused aromatic compound in most of the main chain of the polymer. Molecules (patent application 1986-
In addition to monocyclic aromatic polymers, aromatic poly(ether sulfone) and poly(
It was found that there are polymers containing arylate). Compared to other polymers, these polymers are easily photochemically processed not only by ultraviolet lasers with short wavelengths but also by lasers with wavelengths longer than 200 nm, and they are also thermally repellent if conditions are appropriately selected. We discovered that it is possible to perform decomposition.

更に実施例に示したようにこれ等の高分子は出力、輝度
共にエキシマ・レーザより遥かに低い放電灯から放射さ
れる紫外線によってもエツチングすることが出来る。こ
の場合、 (1)  これらの高分子のフィルムは測定が可能な速
さでフィルムの厚さが減少する。
Furthermore, as shown in the examples, these polymers can also be etched by ultraviolet rays emitted from discharge lamps, which have much lower output and brightness than excimer lasers. In this case: (1) Films of these polymers decrease in film thickness at a measurable rate.

(2)  フィルム厚の減少する速度は他の高分子に比
して著しく早い。
(2) The rate at which the film thickness decreases is significantly faster than that of other polymers.

従来、高分子の紫外線照射による物性の変化(特に伸度
低下)は実用特性の一つとして耐候性が重視されるため
多くの高分子について厖大な研究が行われている。然し
、光崩壊型樹脂、感光性樹脂以外の樹脂殊に耐熱性高分
子について光によるエツチング性、照射表面の変化につ
いて追求した報告は殆んど見当らない。僅かにp、31
ais等の報告LJ、 Appl、  polyn+、
 Sci、 Vol、17゜1895 (1973) 
)・・・・ポリ(エチレン・テレフタレート)が光によ
り揮発散失する・・・・があるに過ぎない。p 、31
ais等はポリ(エチレン・テレフタレート)フィルム
上に300メツシユの金網を置き、i、ooo時間紫外
線を照射すると照射された部分のフィルム表面が凹み、
金網のパターンがフィルム上に転写されることで、ポリ
(エチレン・テレフタレート)が光により僅かながらエ
ツチングされることを認めている。
Conventionally, a huge amount of research has been conducted on many polymers because weather resistance is considered to be one of the practical properties of polymers due to changes in their physical properties (particularly reduction in elongation) due to ultraviolet irradiation. However, there are almost no reports that investigate the etching properties of resins other than photodegradable resins and photosensitive resins, especially heat-resistant polymers, and changes in the irradiated surface. Slightly p, 31
Ais et al. report LJ, Appl, polyn+,
Sci, Vol, 17°1895 (1973)
)...Poly(ethylene terephthalate) is simply volatilized and lost by light. p, 31
AIS etc. place a 300-mesh wire mesh on a poly(ethylene terephthalate) film and irradiates it with ultraviolet rays for i, ooo hours, causing the film surface to dent in the irradiated area.
It is acknowledged that the poly(ethylene terephthalate) is slightly etched by light as the wire mesh pattern is transferred onto the film.

この先行する公知の知見に対し本発明者等は本発明の対
象高分子が紫外線によりポリ(エチレン・テレフタレー
ト)より著しく早くエツチングされることを見出したも
のである。
In contrast to this prior known knowledge, the present inventors have discovered that the polymer targeted by the present invention is etched by ultraviolet light much faster than poly(ethylene terephthalate).

[発明の概要] 本発明の対象となる芳香族ポリ(エーテル・スルホン)
は4,4′ −ジクロールジフェニールスルホンを原料
として製造された市販品であり、次の如き構造 を有する。この他に の構造を有するポリ(エーテル・スルホン)も市販され
ており、本発明の対象高分子に含まれる。
[Summary of the invention] Aromatic poly(ether sulfone) that is the object of the present invention
is a commercial product manufactured using 4,4'-dichlorodiphenylsulfone as a raw material, and has the following structure. Poly(ether sulfones) having other structures are also commercially available and are included in the target polymers of the present invention.

ポリ(アリレート)は、芳香族ジカルボン酸とビスフェ
ノールからなる高分子であるが構造式のものが市場で入
手することが出来る。但しビスフェノールはビスフェノ
ール−Aの代りにその一部又は全部がビスフェノール−
8であっても差支えない。又、芳香族ジカルボン酸と芳
香族ジオールの代りにヒドロキシ芳香族カルボン酸を出
発原料とするポリ(アリレート)であっても良゛い。
Poly(arylate) is a polymer consisting of aromatic dicarboxylic acid and bisphenol, and those having the structural formula are available on the market. However, some or all of bisphenol is bisphenol-A instead of bisphenol-A.
Even if it is 8, there is no problem. Furthermore, a poly(arylate) using hydroxy aromatic carboxylic acid as a starting material instead of aromatic dicarboxylic acid and aromatic diol may be used.

本発明の対象となるポリ(エーテル・スルホン)、ポリ
(アリレート)にはそのベンゼン環に一つ又は二つ以上
の置換基を有するものも含まれる。又、その重合体は結
晶性でも非晶質の重合体であっても良い。結晶性の高分
子の場合には未延伸のまま光加工したり、延伸配向した
ものを光照射に使用しても良い。又未延伸のまま光加工
を行ったあとで延伸配向してその後の使用に供しても何
等差支えはない。更に又、他の重合体と共重合。
The poly(ether sulfones) and poly(arylates) targeted by the present invention include those having one or more substituents on their benzene rings. Further, the polymer may be a crystalline or amorphous polymer. In the case of a crystalline polymer, it may be photo-processed in an unstretched state, or it may be stretched and oriented and used for light irradiation. Moreover, there is no problem even if the film is subjected to optical processing without being stretched, then stretched and oriented for subsequent use. Furthermore, it can be copolymerized with other polymers.

ブレンド又はブロック重合した組成物もその重合体の主
鎖の大部分の骨格に芳香族ポリ(エーテル・スルホン)
又はポリ(アリレート)を含む限り本発明の重合体の範
ちゅうに含まれる。
Blend or block polymerized compositions also contain aromatic poly(ether sulfone) in the backbone of most of the main chain of the polymer.
Or, as long as it contains poly(arylate), it is included within the scope of the polymer of the present invention.

ブレンドして使用する興味のある一つの例として光化学
的な融撥分解が起り難い高分子・・・・例えばポリ(メ
チル・メタクリレート)・・・・に本発明の対象となる
重合体をブレンドし増感剤として使用することがある。
An interesting example of blending is blending the subject polymer of the present invention with a polymer that is difficult to photochemically decompose, such as poly(methyl methacrylate). May be used as a sensitizer.

この場合ブレンドする量は数パーセントから数十パーセ
ント程度で充分に増感剤としての効果が発現する。従っ
て本発明の対象高分子を増感剤として使用する場合では
重合体の大部分が本発明の対象外の高分子よりなる組成
物であるからと言って本発明の請求範囲には含まれない
と解釈することは出来ない。
In this case, the blending amount ranges from several percent to several tens of percent to sufficiently exhibit the effect as a sensitizer. Therefore, in the case where the polymer targeted by the present invention is used as a sensitizer, even if the majority of the polymer is composed of a polymer not targeted by the present invention, it does not fall within the scope of the claims of the present invention. cannot be interpreted as such.

照射に使用する紫外線としては大部分の光が380℃m
より短い波長を有する紫外線であれば良く、可視光を含
む光であっても差支えはない。工業的には放電灯(高圧
水銀灯、炭素アーク、水銀共鳴ランプなど)を利用する
ことが出来る。更に望ましい光源としては短時間に大容
量(たとえば10〜40K J /パルス)の光を広い
面積に放射し得るアルゴン又は、キセノンを含むパルス
放電管がある。
Most of the ultraviolet light used for irradiation is 380℃m.
Any ultraviolet light having a shorter wavelength may be used, and there is no problem even if it is light including visible light. Industrially, discharge lamps (high-pressure mercury lamps, carbon arcs, mercury resonance lamps, etc.) can be used. A more desirable light source is a pulse discharge tube containing argon or xenon, which can emit a large amount of light (for example, 10 to 40 KJ/pulse) over a wide area in a short period of time.

又、紫外線レーザと本発明の対象高分子とを組合せて使
用することで効率的な光加工を行うことも出来る。これ
らの紫外線レーザとしてはXeF(波長350nl )
 、 N2  (波長337nm ) 、 Xe Cj
(波長30801 ) 、 YAG (1/4波長(4
倍高調波)256n+++ >、 Kr F (波長2
48nm ) 、 Ar F(波長193nm ) 、
 F2  (波長157nlIl)ノホカ色素レーザを
光源として使用し、穴あけ、切断9表層加工9表面改質
などの光加工を行うことが出来る。
Furthermore, efficient optical processing can be performed by using a combination of an ultraviolet laser and the target polymer of the present invention. These ultraviolet lasers include XeF (wavelength 350nl)
, N2 (wavelength 337 nm), Xe Cj
(wavelength 30801), YAG (1/4 wavelength (4
Double harmonic) 256n+++ >, Kr F (wavelength 2
48nm), ArF (wavelength 193nm),
Using an F2 (wavelength: 157nlIl) Nohoka dye laser as a light source, optical processing such as drilling, cutting, 9 surface layer processing, and 9 surface modification can be performed.

光加工に先立って本発明の対象高分子に光増感剤例えば
色素や、触媒を添加して光照射を行っても良い。光加工
は真空中、不活性ガス中、又は空気中のいずれの雰囲気
中で実施しても良い。光加工湿度は一般に常温から10
0℃の範囲であれば良いが熱的な加工が伴っても良い場
合には更に昇温して光を照射してもよい。
Prior to photoprocessing, a photosensitizer such as a dye or a catalyst may be added to the target polymer of the present invention, and the polymer may be irradiated with light. Optical processing may be performed in any atmosphere such as vacuum, inert gas, or air. Optical processing humidity generally ranges from room temperature to 10
The temperature may be within the range of 0° C., but if thermal processing is acceptable, the temperature may be further increased and the light irradiated.

光加工を行う際、精密な加工が必要とされる場合にはフ
ォトマスク、ウェーハ露光用アライナ−等の技術、プロ
セス、設備と組合せることによりほぼ同じ程度の微細加
工を行うことが出来るが、この場合には著しく付加価値
の高い製品、又は著しく機能化された製品を作ることが
出来る。
When performing optical processing, if precision processing is required, almost the same level of fine processing can be achieved by combining technology, processes, and equipment such as photomasks and wafer exposure aligners. In this case, products with significantly higher added value or with significantly higher functionality can be produced.

次に本発明の実施例、比較例について説明する。Next, examples and comparative examples of the present invention will be described.

実施例−1放電灯による光エツチング 光源として近紫外線透過フィルター付き(450nI1
1〜2900m)水冷式特殊放電ランプ1.5KWを使
用した。そのピーク波長は365℃mであった。
Example-1 Photo-etching using a discharge lamp As a light source, a near-ultraviolet transmitting filter (450 nI1) was used as a light source.
1-2900m) A 1.5KW water-cooled special discharge lamp was used. Its peak wavelength was 365°Cm.

照射フィルム試料を光源より 150℃離れた回転テー
ブル上に置き1時間当り5回、回転させることで照射が
均一に行われるようにした。
The irradiated film sample was placed on a rotating table 150° C. away from the light source and rotated 5 times per hour to ensure uniform irradiation.

この場合、有効照射面積は1oo= X 1oo馴、均
斉度は90%以上であった。Uvデジタルメーターでフ
ィルム表面の照射エネルギーを測定したところ365r
vで27m W / seaであった。熱的な加工が起
るのを避けるため、試料表面にブロアーで冷風を送り試
料温度が80℃以下になるようにして照射を100時間
行った。
In this case, the effective irradiation area was 1oo=X1oo, and the degree of symmetry was 90% or more. When I measured the irradiation energy on the film surface with a UV digital meter, it was 365r.
27m W/sea. In order to avoid thermal processing, irradiation was carried out for 100 hours by blowing cold air onto the sample surface to keep the sample temperature below 80°C.

照射後、試料フィルムの厚さを測定しフィルム厚さの減
少を求めた。
After irradiation, the thickness of the sample film was measured to determine the decrease in film thickness.

フィルム試料は市販品を使用した。ポリ(エーテル吻ス
ルホン)はVICTREX(商品名)のフィルムグレー
ド、ポリ(アリレート)はユニチカ社製のUポリマー−
8000(商品名)をシート化したものを入手しテスト
に使用した。テストの結果を数表に示した。
A commercially available film sample was used. Poly(ether proboscis sulfone) is VICTREX (trade name) film grade, poly(arylate) is U polymer manufactured by Unitika Co., Ltd.
A sheet of 8000 (trade name) was obtained and used for testing. The test results are shown in the table below.

第一表 紫外線照射によるフィルム厚さ変化100時間
照射後のフィルム厚さの減少は比較例−1に示したポリ
(エチレン・テレフタレート)に比し、各々2倍又は8
倍の早さでエツチングされている。
Table 1 Change in film thickness due to ultraviolet irradiation The decrease in film thickness after 100 hours of irradiation is twice or 8 times, respectively, compared to the poly(ethylene terephthalate) shown in Comparative Example-1.
It's being etched twice as fast.

比較例−1 アール・スリニヴサン等の報告で照射試料として使用さ
れているフォトレジスト以外の主な高分子はポリ(メチ
ル・メタクリレート)、ポリ(イミド)、ポリ(カーボ
ネート)、ポリ(エチレン・テレフタレート)である。
Comparative Example-1 The main polymers other than photoresist used as irradiation samples in the report by R. Srinivsan et al. are poly(methyl methacrylate), poly(imide), poly(carbonate), and poly(ethylene terephthalate). It is.

市場で入手しうるこれらの樹脂のシート、又はフィルム
を使用して実施例−1と同様なテストをおこなった。結
果を第二表に示した。
A test similar to Example 1 was conducted using commercially available sheets or films of these resins. The results are shown in Table 2.

第二表 紫外線照射によるフィルム厚さの変化上表より
ポリ(エチレン・テレフタレート)。
Table 2 Changes in film thickness due to ultraviolet irradiation Poly(ethylene terephthalate) from the above table.

ポリ(カーボネート)は僅かながら光によりエツチング
されるが、ポリ(メチル・メタクリレート)、ポリ(イ
ミド)は、100時間の照射でもフィルムの厚さは全く
変化していない。
Although poly(carbonate) is slightly etched by light, the film thickness of poly(methyl methacrylate) and poly(imide) does not change at all even after 100 hours of irradiation.

更に光の吸収があることが光エッチングが起る条件であ
るか否かを確めるためのテストを実施した。単環芳香族
の高分子はベンゼン環に基づく紫外部の吸収があるので
これらについて実施例−1と全く同様な方法と条件でテ
ストを行った。
Furthermore, a test was conducted to confirm whether light absorption is a condition for photoetching to occur. Since monocyclic aromatic polymers have ultraviolet absorption based on benzene rings, they were tested using the same method and conditions as in Example-1.

照射試料は ポリ(エーテル・エーテル・ケトン) ポリ(エーテル・イミド) ポリ(フェニレン・サルファイド) ポリ(スルホン) で市販品を入手してテストした。照射後の試料はいづれ
も伸度が著しく低下し、特にポリ(スルホン)は脆化が
著しかった。然し、フィルムの厚さは、いづれの試料も
照射前後で変化なく光エッチングが起った形跡は全く認
められなかった。
The irradiated samples were commercially available poly(ether/ether/ketone), poly(ether/imide), poly(phenylene sulfide), and poly(sulfone) and were tested. After irradiation, the elongation of all samples decreased significantly, and poly(sulfone) was particularly brittle. However, the thickness of the film did not change before and after irradiation in any of the samples, and no evidence of photoetching was observed.

この内、ポリ(スルホン)は2,2−ビス−(4−ハイ
ドロオキシフェニール)プロパンと、4.4′ −ジク
ロールジフェニールスルホンから合成される樹脂で の構造を有し、ポリ(エーテル・スルホン)と同族の樹
脂である。
Among these, poly(sulfone) has a resin structure synthesized from 2,2-bis-(4-hydroxyphenyl)propane and 4,4'-dichlorodiphenylsulfone, and poly(ether) It is a resin in the same family as sulfone).

ポリ(スルホン)は、耐熱性は高いが、320nlll
付近に吸収を有するため耐候性は低く、紫外線により化
学的な変化−光酸化分解を受は易く、重合体の極限粘度
が低下し、GO,COzを発生して分子量の低下が起り
易いことが知られている(B。
Poly(sulfone) has high heat resistance, but
Weather resistance is low due to absorption in the vicinity, and it is easily susceptible to chemical changes and photooxidative decomposition due to ultraviolet rays, which lowers the intrinsic viscosity of the polymer and generates GO and COz, which tends to cause a decrease in molecular weight. known (B.

D、 Gen5ner、 P、 G、 Kellehe
r、J、 Appl。
D, Gen5ner, P, G, Kellehe
r, J, Appl.

Polym、 Sci、 Vol、12 、1199(
1968) ) 。従って、ポリ(スルホン)は光によ
り、主に揮発性物質に変化し、エツチングをうけやすい
と推定された。然し、テストによりポリ(スルホン)は
同じ系統の重合体であるポリ(エーテル・スルホン)−
−33OnIll以下で吸収が急激に増えるm−より光
によりエツチングされ難く寧ろ、照射により主として脆
化が起ることが判った。以上のことから照射される高分
子が紫外領域で強い吸収を有することが光エッチングが
起る必要な条件であっても必ず光エッチングが起るとは
言えず、寧ろ脆化が支配的に起る場合もあることが判る
Polym, Sci, Vol. 12, 1199 (
1968) ). Therefore, it was assumed that poly(sulfone) mainly changes into a volatile substance when exposed to light and is susceptible to etching. However, tests have shown that poly(sulfone) is similar to the same family of polymers, poly(ether sulfone).
It was found that m-, whose absorption increases rapidly below -33OnIll, makes it difficult to be etched by light, but rather causes embrittlement mainly due to irradiation. From the above, even though the necessary condition for photoetching to occur is that the irradiated polymer has strong absorption in the ultraviolet region, it cannot be said that photoetching will always occur, and rather, embrittlement will predominately occur. It turns out that there are cases where this happens.

又、紫外部に吸収のある単環芳香族高分子でも光により
エツチングされ易い高分子は比較的に少く、限られた構
造のものに限られることも判った。
It has also been found that even among monocyclic aromatic polymers that absorb in the ultraviolet region, there are relatively few polymers that are easily etched by light, and these are limited to those with a limited structure.

特許出願人  帝  人  油  化  株  式  
会  社日  本  電  気  株  式  会  
礼式 理 人 弁理士  前  1) 純  博手続補
正書 昭和63年 9月2と日
Patent applicant Teijin Yuka Co., Ltd.
Company Japan Electric Co., Ltd.
Ceremony in front of Patent Attorney 1) Jun Haku procedural amendment September 2nd, 1988

Claims (1)

【特許請求の範囲】[Claims] 芳香族ポリ(エーテル・スルホン)又はポリ(アリレー
ト)よりなる高分子を380nm以下の紫外線により光
加工する方法。
A method of photo-processing a polymer made of aromatic poly(ether sulfone) or poly(arylate) using ultraviolet light of 380 nm or less.
JP62312176A 1987-12-11 1987-12-11 Polymer optical processing method Expired - Lifetime JPH0798870B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62312176A JPH0798870B2 (en) 1987-12-11 1987-12-11 Polymer optical processing method
DE3855179T DE3855179T2 (en) 1987-12-11 1988-12-10 CASTING MOLDS FROM AROMATIC POLYMERS WITH CHANGED SURFACE TEXTURE AND METHOD FOR PRODUCING THE SAME
US07/392,929 US5175043A (en) 1987-12-11 1988-12-10 Aromatic polymer molded article with modified surface condition and process for producing the same
EP89900313A EP0346485B1 (en) 1987-12-11 1988-12-10 Aromatic polymer moldings having modified surface condition and process for their production
PCT/JP1988/001252 WO1989005330A1 (en) 1987-12-11 1988-12-10 Aromatic polymer moldings having modified surface condition and process for their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312176A JPH0798870B2 (en) 1987-12-11 1987-12-11 Polymer optical processing method

Publications (2)

Publication Number Publication Date
JPH01153734A true JPH01153734A (en) 1989-06-15
JPH0798870B2 JPH0798870B2 (en) 1995-10-25

Family

ID=18026137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312176A Expired - Lifetime JPH0798870B2 (en) 1987-12-11 1987-12-11 Polymer optical processing method

Country Status (1)

Country Link
JP (1) JPH0798870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502587A (en) * 1988-02-05 1991-06-13 レイケム・リミテッド Laser processing of polymers
EP0770924A3 (en) * 1995-10-27 1997-12-17 Bayer Ag Process for microstructuring of polymeric materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050308A1 (en) * 2012-09-27 2014-04-03 富士フイルム株式会社 Diffraction optical element and method and device for producing diffraction optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117540A (en) * 1981-01-12 1982-07-22 Kollmorgen Tech Corp Method of releasing stress of article made from sulfone polymer
JPS60245643A (en) * 1984-05-21 1985-12-05 Shin Etsu Chem Co Ltd Surface-modified synthetic resin molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117540A (en) * 1981-01-12 1982-07-22 Kollmorgen Tech Corp Method of releasing stress of article made from sulfone polymer
JPS60245643A (en) * 1984-05-21 1985-12-05 Shin Etsu Chem Co Ltd Surface-modified synthetic resin molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502587A (en) * 1988-02-05 1991-06-13 レイケム・リミテッド Laser processing of polymers
EP0770924A3 (en) * 1995-10-27 1997-12-17 Bayer Ag Process for microstructuring of polymeric materials

Also Published As

Publication number Publication date
JPH0798870B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
KR100257956B1 (en) Positive acting radiation sensitive mixture and recording material produced therewith
US4417948A (en) Self developing, photoetching of polyesters by far UV radiation
JPS62164045A (en) Negative photoresist composition and formation of image
WO1989005330A1 (en) Aromatic polymer moldings having modified surface condition and process for their production
KR860001860B1 (en) Preparation method for photo-sensitive organic thin layer
CN1308707C (en) Reflector for exposure device, reflective mask for exposure device, exposure device and pattern forming method
JPH01153734A (en) Polymer readily processable with light
JPH0149935B2 (en)
JPS59104127A (en) Formation of fine pattern
US6753132B2 (en) Pattern formation material and pattern formation method
WO2019208354A1 (en) Positive resist composition for euv lithography and resist pattern forming method
JP5439902B2 (en) Photosensitive resin composition and pattern forming method
US20070269751A1 (en) Immersion Liquid for Liquid Immersion Lithography Process and Method for Forming Resist Pattern Using Such Immersion Liquid
JP2574013B2 (en) Optical processing of molded products such as polycarbonate
JP2656517B2 (en) Optical processing of polymers
JPS6161154A (en) Negative type resist composition and formation of fine resist pattern using said composition
US6645694B2 (en) Pattern formation material and pattern formation method
JPH07120924A (en) Resist composition and pattern forming method
JP2555167B2 (en) Optical processing of amorphous plastic moldings
JPH06857B2 (en) Photoprocessing of polycyclic fused aromatic polymers
US6689536B2 (en) Pattern formation material and pattern formation method
US6511786B2 (en) Pattern formation material and pattern formation method
WO2024095885A1 (en) Resin composition, cured object, layered object, method for producing cured object, method for producing layered object, method for producing semiconductor device, and semiconductor device
US6737213B2 (en) Pattern formation material and method
RU2029979C1 (en) Method of dry obtaining of positive image in photolithography