JPH01153718A - Production of wholly aromatic copolyester - Google Patents

Production of wholly aromatic copolyester

Info

Publication number
JPH01153718A
JPH01153718A JP31218587A JP31218587A JPH01153718A JP H01153718 A JPH01153718 A JP H01153718A JP 31218587 A JP31218587 A JP 31218587A JP 31218587 A JP31218587 A JP 31218587A JP H01153718 A JPH01153718 A JP H01153718A
Authority
JP
Japan
Prior art keywords
reaction
polymer
iii
polymerization
wholly aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31218587A
Other languages
Japanese (ja)
Inventor
Yusaku Suenaga
勇作 末永
Tomohiro Ishikawa
朋宏 石川
Yozo Kondo
近藤 陽三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP31218587A priority Critical patent/JPH01153718A/en
Publication of JPH01153718A publication Critical patent/JPH01153718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a copolyester easily dischargeable from a reactor, preventing the deposition of scale, by terminating the reaction while the reaction system is still in molten state and solidifying and pulverizing the reaction product under cooling. CONSTITUTION:A wholly aromatic copolyester containing the constituent units of formulas I-IV (n and m are 0 or 1; X is H, 1-20C hydrocarbon group, O, SO2, S or CO) as essential constituent components is produced by melt- polycodensation reaction. The amount of the unit of formula I is 20-70mol.% based on the whole polymer, the ratio of unit II/(III+IV) is 0.95-1.05 and that of unit III/IV is 1/0-0.1/0.9. In the above process, the polymerization is carried out until the torque of the reaction mixture is increased to a level corresponding to 10-1,000 poise of the viscosity of the molten polymer (measured at shearing rate of 10sec<-1> at 300 deg.C), the polymer is solidified and crushed under cooling at a cooling rate of 0.5 deg.C/min-10 deg.C/min and the prepolymer taken out of the reactor is subjected to solid-phase polymerization. The copolyester can be produced e.g. by reacting 4-hydroxybenzoic acid and lower acyl ester of 4,4'- biphenol with terephthalic acid.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、全芳香族コポリエステルの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a wholly aromatic copolyester.

〈従来の技術〉 近年プラスチックの高性能化に対する要求がますます高
まり、種々の高性能プラスチックが開発され、市場に供
されているが、なかでも特に剛直な分子鎖から成り、溶
融時に光学異方性を示すサーモトロピック液晶ポリマー
は溶融粘度が低く、加工性が良好であり、またすぐれた
機械的性質を有する点で注目されている。
<Conventional technology> In recent years, the demand for higher performance plastics has been increasing, and various high-performance plastics have been developed and put on the market. Thermotropic liquid crystal polymers have attracted attention because they have low melt viscosity, good processability, and excellent mechanical properties.

この液晶ポリマーとして全芳香族ポリエステルが知られ
ているが、重合法には界面重縮合法、溶液型締合法、溶
融重縮合法がある。このうち溶融重縮合法が溶媒回収工
程が示必要な点でプロセス上最も簡略化された重合法の
ため工業化がなされている。
Fully aromatic polyester is known as this liquid crystal polymer, and polymerization methods include an interfacial polycondensation method, a solution mold clamping method, and a melt polycondensation method. Among these, the melt polycondensation method has been industrialized because it is the most simplified polymerization method in terms of process since it requires a solvent recovery step.

しかしながら、溶融重縮合は、反応が進行し、となる。However, in melt polycondensation, the reaction progresses to become.

このような反応挙動をとるためポリマーの取出し方法が
プロセス上の重要な課題となってくる。
Because of this reaction behavior, the method for extracting the polymer becomes an important process issue.

このように反応末期において高粘度となるポリマーの取
出し方法としては、従来、ポリエステル樹脂では、取出
し口の温度をコントロールしながら溶融状態で取出す方
法がある。しかしながら、芳香族ポリエステルでは反応
温度が高いため、劣化しやすく取出し口に残留したポリ
マーが製品に混入し、好ましくなかった。
Conventionally, for polyester resins, there is a method for taking out the polymer, which becomes highly viscous at the end of the reaction, in a molten state while controlling the temperature at the outlet. However, since aromatic polyester has a high reaction temperature, it easily deteriorates and the polymer remaining at the outlet mixes into the product, which is not desirable.

又、例えば特公昭62−21808.特開昭56−10
4932等の例があるように反応を高粘度から固相に変
化するまで行い、高粘度用撹拌装置によって機械的に粉
砕した後、粉末固体で取出す方法がある。しかし°なが
ら固相変化したポリマーを高剪断下で粉砕する外め、撹
拌装−の動力は大きくする必要があり、又、撹拌翼も高
剪断力がかかる様な形状に変える工夫が必須となってく
る。また、このように固体状態で粉砕まで行うと反応器
壁や撹拌翼にスケールが付着しクリーニングが困蛯であ
った。
Also, for example, Special Publication No. 62-21808. Japanese Patent Publication No. 56-10
4932, etc., there is a method in which the reaction is carried out until the high viscosity changes to a solid phase, and after mechanically pulverizing with a high viscosity stirring device, the solid state is taken out as a powder. However, in order to crush the solid-phase-changed polymer under high shear, it was necessary to increase the power of the stirring device, and it was also necessary to change the shape of the stirring blades so that they could apply high shear force. It's coming. Furthermore, if the solid state is pulverized in this way, scale will adhere to the reactor walls and stirring blades, making cleaning difficult.

〈発明が解決しようとする問題点〉 本発明の目的は、全芳香族コポリエステルを溶融重縮合
で製造する際、スケール付着がなく、容易に取り出すこ
とができる該コポリエステルの製造方法を提供すること
にある。
<Problems to be Solved by the Invention> An object of the present invention is to provide a method for producing a wholly aromatic copolyester by melt polycondensation, which does not cause scale adhesion and can be easily taken out. There is a particular thing.

く問題点を解決するための手段〉 即ち、本発明は反応系が溶融状態であるうちに反応を停
止し、冷却しながら固化粉砕することによりプレポリマ
ーを取出したのち固相重合することによる全芳香族コポ
リエステルの製造方法に関する。
Means for Solving Problems> That is, the present invention stops the reaction while the reaction system is in a molten state, takes out the prepolymer by solidifying and pulverizing it while cooling, and then performs solid phase polymerization. The present invention relates to a method for producing an aromatic copolyester.

さらに詳しくは、下記の(I)〜(TV)で示される反
復単位を必須成分とし、単位(I)が全体の20〜70
モル%含まれ、(II)/[(II)+(■)]が0.
95〜1.05、(II)/(IV)が110〜0.1
10.9である全芳香族コポリエステルを溶融重縮合で
製造する際、重合溶融液の粘度が10ポアズ〜1000
ポアズ(剪断速度10秒−1,温度300℃)に匹敵す
る反応体のトルクを得るまで重合した後、冷却速度0.
5℃/分〜10℃/分で冷却しながら固化粉砕しプレポ
リマーを取出した後、固相重合することによる全芳香族
コポリエステルの製造方法に関する。
More specifically, the repeating units shown below (I) to (TV) are essential components, and the unit (I) accounts for 20 to 70 of the total.
It contains mol%, and (II)/[(II)+(■)] is 0.
95-1.05, (II)/(IV) 110-0.1
When producing a fully aromatic copolyester having a molecular weight of 10.9 by melt polycondensation, the viscosity of the polymerization melt is from 10 poise to 1000 poise.
After polymerization to obtain a reactant torque comparable to Poise (shear rate 10 s-1, temperature 300°C), cooling rate 0.
The present invention relates to a method for producing a wholly aromatic copolyester by solidifying and pulverizing the prepolymer while cooling at a rate of 5°C/min to 10°C/min, followed by solid phase polymerization.

0     。0.

(式中、n、mはOまたは1であり、XはHlC−C2
oの炭化水素、−1o−+−3O2−。
(In the formula, n and m are O or 1, and X is HlC-C2
o hydrocarbon, -1o-+-3O2-.

−S−、−CO−である) 冷却固化粉砕において、反応系の粘度が前記10ポアズ
に相当する粘度より低い時は、重合度が十分でないため
、さらに高分子量化する固相重合の段階でポリマーが融
着し、効率よく分子量を高くすることかできない。また
目的とする分子量のポリマーを得るのに長時間を要する
ためポリマーの熱安定性や着色に悪影響を及ぼし好まし
くはない。
-S-, -CO-) In cooling solidification pulverization, if the viscosity of the reaction system is lower than the viscosity corresponding to the above 10 poise, the degree of polymerization is insufficient, and the solid state polymerization step to further increase the molecular weight is performed. The polymers fuse together, making it impossible to increase the molecular weight efficiently. Further, since it takes a long time to obtain a polymer having a desired molecular weight, it has an adverse effect on the thermal stability and coloration of the polymer, which is not preferable.

反応系の粘度が前記1000ポアズに相当する粘度より
大きい時は、はとんど相がかわり、固化する直前である
ため、撹拌が不均一となり撹拌動力に負荷がかかり機械
的耐久性の面で好ましくない。
When the viscosity of the reaction system is greater than the viscosity equivalent to 1000 poise, the phase changes almost immediately and it is just before solidification, resulting in uneven stirring and a load on the stirring power, resulting in poor mechanical durability. Undesirable.

このような状態で重合した後、反応器壁や撹拌翼に付着
するスケールはかたくクリーニングが固数である。
After polymerization under such conditions, the scale that adheres to the reactor walls and stirring blades is hard and difficult to clean.

また、冷却速度が0.5℃/分より遅い時は反応系が半
溶融した不均一な状態で熱履歴がかかり、均質なポリマ
ーを得ることはできない。冷却速度が10℃/分より早
い時は、均一粉砕ができず、又、材質の耐久性の面から
も好ましくない。本発明で使用する反応器で使用される
撹拌翼は、ダブルヘリカル翼、アンカー翼、パドル翼等
いずれでも良いが、高粘度用が好ましい。又、冷却粉砕
の時、粉砕効率を上げること、スケール付着を無くすた
めに撹拌翼と反応器内壁とのクリアランスを小さくする
のが好ましい。
Furthermore, when the cooling rate is slower than 0.5° C./min, the reaction system is in a semi-molten and non-uniform state and undergoes heat history, making it impossible to obtain a homogeneous polymer. When the cooling rate is faster than 10° C./min, uniform pulverization cannot be achieved and it is also unfavorable from the viewpoint of the durability of the material. The stirring blades used in the reactor used in the present invention may be any of double helical blades, anchor blades, paddle blades, etc., but those with high viscosity are preferred. Further, during cooling pulverization, it is preferable to reduce the clearance between the stirring blade and the inner wall of the reactor in order to increase the pulverization efficiency and eliminate scale adhesion.

本発明の全芳香族ポリコニステルの溶融重縮合法は、特
に制限はないが、代表的な製造方法としては、例えば4
−ヒドロキシ安息香酸、 4゜4′−ビフェノールの低
級アシルエステル、好ましくは酢酸エステルとテレフタ
ル酸を反応さ4せる方法が挙げられる。アシルエステル
はまたその場で作り、単離せずに使用することもできる
There are no particular limitations on the melt polycondensation method for the wholly aromatic polyconistere of the present invention, but typical production methods include, for example, 4
-Hydroxybenzoic acid, a lower acyl ester of 4°4'-biphenol, preferably an acetate, and a method of reacting terephthalic acid can be mentioned. Acyl esters can also be made in situ and used without isolation.

〈実施例〉 以下本発明を実施例及び比較例によって説明するが、本
発明はこれら実施例によって何ら限定されるものではな
い。
<Examples> The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples in any way.

実施例1 50β反応器に以下の物質を秤量して入れる。Example 1 Weigh the following materials into a 50β reactor.

(a)4−ヒドロキシ安息香酸9.36 kg(67,
8モル)(b) 4.4′−ビフェノール   6.3
1 bg(33,9モル)(c)テレフタル酸    
5.63 bsr(33,9モル)(d)無水酢酸  
    1f3.60 k+r (162,7モル)撹
拌しながら150℃まで加熱し、4,5時間還流を行っ
た後、酢酸を重合装置から蒸留しながら温度を5時間に
わたり300°Cまで上昇させ、さらにその温度で1.
5時間、反応を続けた。その時の撹拌トルクから反応系
の溶融粘度を推定すると100ポアズ(剪断速度10秒
−’、300℃)であった。冷却速度3℃/分で冷却し
ながら固化粉砕を行った。得られたポリマーの流出開始
温度は260℃であった。粉砕後の反応器の内部は、気
相部、液相部へのスケール付着はほとんどなく、容易に
取除くことができた。流出開始温度は、長さ10mm、
口径1 mmのダイズを用い、高化式フローテスターで
100kg/−の圧力下、6℃/分で昇温し、溶融粘度
か48000ポアズを与える温度とした。
(a) 4-hydroxybenzoic acid 9.36 kg (67,
8 mol) (b) 4.4'-biphenol 6.3
1 bg (33,9 mol) (c) Terephthalic acid
5.63 bsr (33,9 mol) (d) Acetic anhydride
1f3.60 k+r (162,7 mol) was heated to 150°C with stirring and refluxed for 4.5 hours, then the temperature was increased to 300°C over 5 hours while distilling acetic acid from the polymerization apparatus, and then At that temperature 1.
The reaction continued for 5 hours. The melt viscosity of the reaction system was estimated from the stirring torque at that time to be 100 poise (shear rate 10 seconds-', 300°C). Solidification and pulverization was performed while cooling at a cooling rate of 3° C./min. The starting temperature of the polymer obtained was 260°C. There was almost no scale adhesion to the gas phase or liquid phase inside the reactor after pulverization, and it could be easily removed. The outflow start temperature is 10 mm in length,
Using soybeans with a diameter of 1 mm, the temperature was raised at a rate of 6° C./min under a pressure of 100 kg/min using a Koka type flow tester to a temperature that gave a melt viscosity of 48,000 poise.

得られたプレポリマーを粉砕後15時間かけて窒素気流
中350℃まで加熱し、さらに5時間固相重縮合を行っ
た。この熱処理後のポリエステルの流出開始温度は39
0°Cであった。
After the obtained prepolymer was pulverized, it was heated to 350° C. in a nitrogen stream over 15 hours, and solid-phase polycondensation was further performed for 5 hours. The temperature at which polyester begins to flow after this heat treatment is 39
It was 0°C.

比較例1 原料は実施例1と同じで反応時間が300°Cに到達し
てから3時間後に撹拌トルクの振れが大きくなった。こ
の時の重合溶融液の粘度は剪断速度10秒−1,300
°Cで測定した時、10000ポアズに匹敵するトルク
であることがわかった。このことから反応系は、固化し
たものと推定された。
Comparative Example 1 The raw materials were the same as in Example 1, and 3 hours after the reaction time reached 300°C, the fluctuation of the stirring torque became large. The viscosity of the polymerization melt at this time is 10 seconds at a shear rate of 1,300
The torque was found to be comparable to 10,000 poise when measured at °C. From this, it was presumed that the reaction system had solidified.

さらにポリマーが粉砕されるまで撹拌を続けた後、冷却
しポリマーを取出した。反応器内部はスケールが付着が
多く、容易に取り除くことができなかった。
After further stirring was continued until the polymer was pulverized, the mixture was cooled and the polymer was taken out. There was a lot of scale adhering to the inside of the reactor, and it was not easy to remove it.

比較例2 原料は実施例1と同じで反応時間が300°Cに到達し
てからすぐに冷却速度3℃/分で冷却粉砕した。その時
の撹拌トルクの変化は無かったか、得られたポリマーを
剪断速度10秒 、300℃で溶融粘度を測定したとこ
ろ5ポアズであった。
Comparative Example 2 The raw materials were the same as in Example 1, and immediately after the reaction time reached 300°C, they were cooled and pulverized at a cooling rate of 3°C/min. There was no change in the stirring torque at that time, and the melt viscosity of the obtained polymer was measured at 300° C. at a shear rate of 10 seconds and found to be 5 poise.

得られたポリマーの流出開始温度は200℃であった。The starting temperature of the polymer obtained was 200°C.

このポリマーを高分子量化するために室温から350℃
まで徐々に昇温したが、途中で融着し、製品の均質性が
悪かった。
In order to increase the molecular weight of this polymer, temperature is increased from room temperature to 350°C.
Although the temperature was gradually raised to 100%, fusion occurred during the process, resulting in poor homogeneity of the product.

〈発明の効果〉 以上の説明から明らかなように本発明によりスケールが
付着することなく容易に取り出せる全芳香族ポリエステ
ルの製造方法が提供される。
<Effects of the Invention> As is clear from the above description, the present invention provides a method for producing wholly aromatic polyester that can be easily removed without scale adhesion.

Claims (1)

【特許請求の範囲】[Claims] (1)下記の( I )〜(IV)で示される反復単位を必
須構成成分とし、単位( I )が全体の20〜70モル
%含まれ、(II)/[(III)+(IV)]が0.95〜
1.05、(III)/(IV)が1/0〜0.1/0.9
である全芳香族コポリエステルを溶融重縮合で製造する
際、重合溶融液の粘度が10ポアズ〜1000ポアズ(
剪断速度10秒^−^1、温度300℃)に匹敵する反
応体のトルクを得るまで重合した後、冷却速度0.5℃
/分〜10℃/分で冷却しながら固化粉砕し取出したプ
レポリマーを固相重合することを特徴とする全芳香族コ
ポリエステルの製造方法。 ▲数式、化学式、表等があります▼( I ) ▲数式、化学式、表等があります▼(II) ▲数式、化学式、表等があります▼(III) ▲数式、化学式、表等があります▼(IV) (式中、n、mは0または1であり、XはH、C_1〜
C_2_0の炭化水素、−O−、−SO_2−、−S−
、−CO−である)
(1) The repeating units shown below (I) to (IV) are essential constituents, the unit (I) is contained in 20 to 70 mol% of the total, and (II)/[(III) + (IV) ] is 0.95~
1.05, (III)/(IV) is 1/0 to 0.1/0.9
When producing a wholly aromatic copolyester by melt polycondensation, the viscosity of the polymerization melt ranges from 10 poise to 1000 poise (
After polymerization until obtaining a reactant torque comparable to a shear rate of 10 s^-^1 and a temperature of 300 °C, a cooling rate of 0.5 °C
1. A method for producing a wholly aromatic copolyester, which comprises solidifying and pulverizing the prepolymer taken out while cooling at a rate of 10 DEG C./min to 10 DEG C./min and solid-phase polymerizing it. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼( IV) (where n and m are 0 or 1, X is H, C_1~
C_2_0 hydrocarbon, -O-, -SO_2-, -S-
, -CO-)
JP31218587A 1987-12-11 1987-12-11 Production of wholly aromatic copolyester Pending JPH01153718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31218587A JPH01153718A (en) 1987-12-11 1987-12-11 Production of wholly aromatic copolyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31218587A JPH01153718A (en) 1987-12-11 1987-12-11 Production of wholly aromatic copolyester

Publications (1)

Publication Number Publication Date
JPH01153718A true JPH01153718A (en) 1989-06-15

Family

ID=18026240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31218587A Pending JPH01153718A (en) 1987-12-11 1987-12-11 Production of wholly aromatic copolyester

Country Status (1)

Country Link
JP (1) JPH01153718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002766A (en) * 1999-04-20 2001-01-09 Sumitomo Chem Co Ltd Aromatic polyester and its molding product
JP2011153284A (en) * 2009-12-28 2011-08-11 Kao Corp Method for producing polyether polycarbonate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594930A (en) * 1979-01-10 1980-07-18 Sumitomo Chem Co Ltd Preparation of aromatic polyester by improved bulk polymerization process
JPS60235833A (en) * 1984-04-26 1985-11-22 バイエル・アクチエンゲゼルシヤフト Stiff and tenaceous thermotropic aromatic polyesters and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594930A (en) * 1979-01-10 1980-07-18 Sumitomo Chem Co Ltd Preparation of aromatic polyester by improved bulk polymerization process
JPS60235833A (en) * 1984-04-26 1985-11-22 バイエル・アクチエンゲゼルシヤフト Stiff and tenaceous thermotropic aromatic polyesters and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002766A (en) * 1999-04-20 2001-01-09 Sumitomo Chem Co Ltd Aromatic polyester and its molding product
JP2011153284A (en) * 2009-12-28 2011-08-11 Kao Corp Method for producing polyether polycarbonate

Similar Documents

Publication Publication Date Title
CA2057234C (en) Thermotropic liquid crystalline polyester compositions
US4313870A (en) Process for producing polycondensates
CN101649043A (en) Polyester for producing fiber, and fiber and non-woven fabric using the same
JPH01240528A (en) Molding material composed of thermoplastic processable aromatic polyesterimide
JPS6038426A (en) Thermotropic aromatic polyester with high strength and improved melt viscosity and manufacture
CN102803338B (en) Methods of preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound with constant melt viscosity
JPS6137820A (en) Thermotropic highly tough aromatic polyester, manufacture and use
JPS6038428A (en) Polyester and manufacture
JP2537534B2 (en) Method for producing thermotropic liquid crystalline polyester
CN108299632A (en) A kind of liquid crystal polyester and its application
JPH01153718A (en) Production of wholly aromatic copolyester
US5250654A (en) Thermotropic liquid crystalline polyester compositions
JPS61261319A (en) Thermotropic aromatic polyester, its production and use
JP4576644B2 (en) Aromatic liquid crystalline polyester and method for producing the same
CN106750198B (en) A kind of thermotropic liquid crystalline polyester that monomer ratio is stable with and the preparation method and application thereof
JPH01156321A (en) Production of wholly aromatic copolyester
JPH0255724A (en) Preparation of wholly aromatic copolyester
JPH03731A (en) Preparation of wholly aromatic copolyester
JPH0247132A (en) Thermotropic fully aromatic polyester having low processing temperature
JP3265662B2 (en) Repeated batch polymerization of liquid crystalline polyester
JP2000248056A (en) Production of liquid crystalline polymer
JPS62212426A (en) Production of aromatic polyester
JP3116512B2 (en) Batch continuous polymerization of liquid crystalline polyester
JPH01215823A (en) Production of aromatic copolyester
JP2577476B2 (en) Liquid crystalline cellobiose derivatives