JPH01153504A - Method for initiating corona discharge reaction - Google Patents

Method for initiating corona discharge reaction

Info

Publication number
JPH01153504A
JPH01153504A JP31255187A JP31255187A JPH01153504A JP H01153504 A JPH01153504 A JP H01153504A JP 31255187 A JP31255187 A JP 31255187A JP 31255187 A JP31255187 A JP 31255187A JP H01153504 A JPH01153504 A JP H01153504A
Authority
JP
Japan
Prior art keywords
corona discharge
ozone
electrodes
electrode
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31255187A
Other languages
Japanese (ja)
Other versions
JPH0822726B2 (en
Inventor
Katsuharu Yamamoto
山本 克治
Masaki Shimizu
清水 昌己
Yukihiro Kamase
幸広 釜瀬
Akira Mizuno
彰 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62312551A priority Critical patent/JPH0822726B2/en
Publication of JPH01153504A publication Critical patent/JPH01153504A/en
Publication of JPH0822726B2 publication Critical patent/JPH0822726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To contrive an increase in formed concentration of ozone, etc., and power efficiency by applying a rectangular wave voltage in which at least one of leading and trailing edges satisfies specific conditions and simultaneously generating a sufficient electric field across electrodes to form corona discharge. CONSTITUTION:A plate electrode 24 is placed in the longitudinal direction of a flow passage 23 and a knife edge-like electrode 25 is provided opposite the plate electrode 24. Both electrodes 24 and 25 are connected with a high- voltage power source 26 including a pulse generating circuit. A rectangular wave voltage in which at least one of leading and trailing edges satisfies conditions of 1-0.125kV/ns and simultaneously generates a sufficient electric field to form corona discharge is applied across the electrodes for corona discharge. Thereby corona discharge is realized over a required length along the flow passage 23 and formed concentration of ozone, etc., and power efficiency can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気エネルギから化学反応エネルギへのエネ
ルギ変換効率が非常に高いコロナ放電によるコロナ放電
反応の生成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for generating a corona discharge reaction using a corona discharge, which has a very high energy conversion efficiency from electrical energy to chemical reaction energy.

[従来の技術] 純酸素ガス又は酸素を含むガス(例えば空気)からオゾ
ンを生成するオゾン発生装置としては、無声放電を利用
したものがある。
[Prior Art] Some ozone generators that generate ozone from pure oxygen gas or oxygen-containing gas (for example, air) utilize silent discharge.

無声放電を利用したオゾン発生装置としては従来第14
図に示すものがある。
It is the 14th ozone generator that uses silent discharge.
There is one shown in the figure.

接地した容器l内に外管2を配設し、該外管2に内管3
を適宜な間隙を明けて挿入し、外管2、内管3によって
形成される間隙4を気密とし、該間隙4に乾燥空気又は
酸素の導入管5を連通させると共に排出管6を連通させ
る。冷却水供給管を兼ねる電極7を前記内管3内部に挿
入する。
An outer pipe 2 is placed inside a grounded container l, and an inner pipe 3 is attached to the outer pipe 2.
is inserted with an appropriate gap, the gap 4 formed by the outer tube 2 and the inner tube 3 is made airtight, and the gap 4 is communicated with an inlet tube 5 for dry air or oxygen and an outlet tube 6. An electrode 7 which also serves as a cooling water supply pipe is inserted into the inner pipe 3.

前記容器1に冷却水人口8より冷却水9を供給し、該容
器1を冷却水で充満させ外管2を浸漬した状態で、冷却
水出口10より排出する。又、内管3内には電極7より
冷却水9を供給し、電極7を浸漬させた状態とし、排出
口11より排出する。12は交流高電圧源を示す。
Cooling water 9 is supplied to the container 1 from the cooling water port 8, and the container 1 is filled with the cooling water and discharged from the cooling water outlet 10 with the outer tube 2 immersed therein. Further, cooling water 9 is supplied into the inner tube 3 through the electrode 7, so that the electrode 7 is immersed in the cooling water 9, and is discharged through the discharge port 11. 12 indicates an AC high voltage source.

電極7と容器Iとの間に交流高電圧をかけた状態で導入
管5より空気等13を流入させ、間隙4を経て排出管6
より流出させる。外管2と内管3との間で無声放電が起
り、その間隙4を流れる酸素に化学反応を生じさせオゾ
ンを生成しようとするものである。
With a high AC voltage applied between the electrode 7 and the container I, air or the like 13 is introduced through the inlet pipe 5 and then passed through the gap 4 into the discharge pipe 6.
Make it flow more. Silent discharge occurs between the outer tube 2 and the inner tube 3, and the oxygen flowing through the gap 4 causes a chemical reaction to generate ozone.

[発明が解決しようとする問題点コ 上記した無声放電は、電極間に挾んだ誘電体(上記例で
は外管、内管)の電荷の吸着、放出作用によって放電が
パルス状に発生することを利用している。従って、パル
ス電流波形は、電極や誘電体の形状寸法ばかりでなく、
それらの加工精度により大きく変化する。更に基本的に
パルス電流波形は能動的に制御されているわけではなく
、誘導体により受動的に決定されている。その為、第1
5図(ホ)に示す電圧波形に対し、電流波形は第15図
(8)に示す様に著しく不揃いで電気エネルギから放電
エネルギを通して化学反応エネルギへの変換が効率よく
行われず、放電エネルギは殆ど熱エネルギに変換されて
しまい、大量の熱を発生し、オゾン生成についての電力
効率は大体90g’/kwhと低く、又冷却水を大量に
必要とする等ランニングコストが高い。
[Problems to be Solved by the Invention] The silent discharge described above occurs in a pulsed manner due to the charge adsorption and release action of the dielectric material (in the above example, the outer tube and the inner tube) sandwiched between the electrodes. is used. Therefore, the pulse current waveform depends not only on the shape and size of the electrode and dielectric, but also on the
It varies greatly depending on the processing accuracy. Moreover, fundamentally the pulse current waveform is not actively controlled but is determined passively by the dielectric. Therefore, the first
In contrast to the voltage waveform shown in Figure 5 (E), the current waveform is extremely irregular as shown in Figure 15 (8), and conversion from electrical energy to chemical reaction energy through discharge energy is not performed efficiently, and almost no discharge energy is used. It is converted into thermal energy and generates a large amount of heat, the power efficiency for ozone generation is low at approximately 90 g'/kwh, and running costs are high, such as requiring a large amount of cooling water.

更に、加工精度、組立精度は1塵程度を要求され、装置
として非常に高価なものとなっている。
Furthermore, the processing accuracy and assembly accuracy are required to be on the order of 1 dust, making the device extremely expensive.

そこで、無声放電に比ベエネルギ変換効率の高いコロナ
放電を利用しようとするものがある。
Therefore, some attempts are made to utilize corona discharge, which has a high relative energy conversion efficiency, for silent discharge.

一般に、コロナ放電は電極の少なくとも一方を突起とし
電極側に極短パルス電圧をかけて発生させており、その
コロナ放電を強く安定させるには極短パルスの時間幅が
短い程よい(く1μ5−ec )とされ、その為のパル
ス発生電源は非常に高価である。
Generally, corona discharge is generated by using at least one of the electrodes as a protrusion and applying an extremely short pulse voltage to the electrode side. In order to make the corona discharge strong and stable, the shorter the time width of the extremely short pulse, the better. ), and the pulse generation power supply for this purpose is extremely expensive.

本発明は上記実情に鑑み、コロナ放電をより安価に発生
させようとするものである。
In view of the above circumstances, the present invention aims to generate corona discharge at a lower cost.

[問題点を解決するための手段] 本発明は、反応ガス流中にコロナ放電させてオゾン等を
生成させるコロナ放電反応の生成方法に於いて、コロナ
放電をさせる電極間に立上り、立下りの少なくとも一方
がI KV/ns〜0.125KV/nsの条件を満足
すると共に、コロナ放電を発生させるに充分な電界を生
ぜしめる矩形波電圧を印加することを特徴とするもので
ある。
[Means for Solving the Problems] The present invention provides a method for producing a corona discharge reaction in which corona discharge is caused in a reaction gas flow to produce ozone, etc. It is characterized in that at least one side satisfies the conditions of I KV/ns to 0.125 KV/ns, and a rectangular wave voltage is applied that generates an electric field sufficient to generate corona discharge.

[作   用] オゾン等の生成はコロナ放電に於いて、印加電圧立上り
部、立下り部によって行われ、その生成は立上り速度、
立下り速度の大きい程効率よく、I KV/ns 〜0
.125KV/nsの条件を満すことにより適正な効率
が得られる。
[Function] In corona discharge, ozone etc. are generated by the rising and falling parts of the applied voltage, and the generation is controlled by the rising speed,
The higher the falling speed, the more efficient it is, I KV/ns ~ 0
.. Appropriate efficiency can be obtained by satisfying the condition of 125 KV/ns.

[実 施 例] 以下図面を参照しつつ本発明の1実施例を説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

本発明者等は、コロナ放電によるオゾン発生のメカニズ
ムを検討した結果、オゾンが発生するのは極短パルスの
幅ではなく矩形波電圧の立上り速度、立下り速度に関係
するものであることを見出した。
As a result of studying the mechanism of ozone generation by corona discharge, the present inventors found that ozone is generated not by the width of the ultrashort pulse but by the rise and fall speeds of the rectangular wave voltage. Ta.

即ち、第1図で示すオゾン発生装置で矩形波電圧の立上
り速度、立下り速度とオゾン発生の因果関係を調べた。
That is, the causal relationship between the rising speed and falling speed of the rectangular wave voltage and ozone generation was investigated using the ozone generator shown in FIG.

図中14は高電圧直流電源、15はオゾン反応器を示し
、高電圧直流電源14と反応器15とを結ぶ回路に抵抗
16.17が直列に又抵抗18が並列に接続され、抵抗
1Bと高電圧直流電源14との間にスイッチ19が、抵
抗18に対してスイッチ20がそれぞれ設けられている
In the figure, 14 is a high voltage DC power supply, 15 is an ozone reactor, and a resistor 16, 17 is connected in series and a resistor 18 is connected in parallel to the circuit connecting the high voltage DC power supply 14 and the reactor 15. A switch 19 is provided between the high voltage DC power supply 14 and a switch 20 between the resistor 18 and the resistor 18, respectively.

上記回路に於いてスイッチ19.20を交互に0N−o
ppするとコロナ放電を発生させる反応器15に掛かる
電圧は矩形波になる(以下の実験ではこの方形波の周波
数を50 Hz s矩形波の幅は数ff1S〜数十IO
S程度)。スイッチ19.20は具体的にはロークリス
パークギャップ式のスイッチを使用した。
In the above circuit, switches 19 and 20 are turned 0N-o alternately.
pp, the voltage applied to the reactor 15 that generates corona discharge becomes a rectangular wave (in the following experiments, the frequency of this square wave is 50 Hz, and the width of the rectangular wave is from several FF1S to several tens of IO).
S level). Specifically, the switches 19 and 20 are low-crisp gap-type switches.

第1図で示される回路で発生する矩形波の波形は、第2
図(ホ)の通りであり、矩形波幅は20fflSである
。この時のオゾン生成濃度は4QOppmであった。次
に第1図の回路から抵抗17.18を取去った回路とし
た場合の波形は第2図(B)の通り立上り速度の遅いも
のでありζこの時のオゾン生成濃度は200ppmであ
った。又第1図の回路から抵抗16.17を取去った回
路とした場合の波形は第2図(C)の通り立上り速度の
遅いものであり、この時のオゾン生成濃度は200pp
mであった、更に、第1図の回路から抵抗18.18を
取去った回路とした場合の波形は第2図CD)の通り立
上り速度、立下り速度共遅いものであり、この時はオゾ
ン生成は殆ど認められなかった。
The waveform of the rectangular wave generated in the circuit shown in FIG.
As shown in Figure (E), the rectangular wave width is 20fflS. The ozone production concentration at this time was 4QOppm. Next, when the circuit in Figure 1 is removed from the resistor 17.18, the waveform has a slow rise speed as shown in Figure 2 (B), and the ozone concentration at this time was 200 ppm. . Furthermore, when the circuit shown in Fig. 1 is removed from the resistor 16.17, the waveform has a slow rise speed as shown in Fig. 2 (C), and the ozone production concentration at this time is 200 pp.
Furthermore, when the resistor 18.18 is removed from the circuit in Figure 1, the waveform is slow in both the rising speed and the falling speed, as shown in Figure 2 (CD). Almost no ozone formation was observed.

従って、オゾン生成は波形の立上り速度、立下り速度に
起因するとか確認され、又電圧を定常的に印加している
状態ではオゾンが生成されないことも分る。又、立上り
部分と立下り部分のオゾン生成寄与は同程度である。
Therefore, it has been confirmed that ozone generation is caused by the rising speed and falling speed of the waveform, and it has also been found that ozone is not generated when a voltage is constantly applied. Further, the contribution of the rising portion and the falling portion to ozone generation is approximately the same.

次に、印加電圧の立上り速度と、立下り速度と、オゾン
生成率(電力効率)との因果関係を第3図に示す回路に
於いて実験した。
Next, an experiment was conducted using the circuit shown in FIG. 3 to determine the causal relationship between the rising speed, falling speed, and ozone production rate (power efficiency) of the applied voltage.

高電圧直流電源14に対してスイッチ19.20を直列
に接続し、又反応器15と抵抗21とを並列に接続し、
スイッチ19と20との間と高電圧直流電源14とをコ
ンデンサ22を介して接続する。
Switches 19 and 20 are connected in series to the high voltage DC power supply 14, and the reactor 15 and the resistor 21 are connected in parallel,
The switches 19 and 20 are connected to the high voltage DC power supply 14 via a capacitor 22.

スイッチ19と20とを交互に継断すると第4図で示す
印加電圧波形が得られる。ここでスイッチ19と20は
前記したロータリースパークギヤツブ式のスイッチを使
用した。
When switches 19 and 20 are alternately connected and disconnected, the applied voltage waveform shown in FIG. 4 is obtained. Here, the switches 19 and 20 are the rotary spark gear type switches described above.

該回路では立上り速度はスイッチ20の性能で決定され
、立下り速度はコンデンサ22と抵抗21によって決定
される時定数に決まる。
In this circuit, the rising speed is determined by the performance of the switch 20, and the falling speed is determined by the time constant determined by the capacitor 22 and the resistor 21.

前記した様に印加電圧の立上り部分と立下り部分に於け
るオゾン生成寄与度は同じであるので以下の実験では立
上りを充分遅くして立上り部分のみを調べている。結果
は下記の表に示す通りである。
As mentioned above, the degree of contribution to ozone generation in the rising and falling parts of the applied voltage is the same, so in the following experiments, the rising was sufficiently slowed down and only the rising part was investigated. The results are shown in the table below.

上記実験の結果で立上り50KV150ns〜50KV
/400nsで生成濃度、電力効率の上で大きな成果が
見られ、オゾン発生用の為に適当な条件を与え、立上り
50KV/1.5μs以下はオゾン生成の条件としては
適当でないことが分る。
As a result of the above experiment, the rise time is 50KV, 150ns to 50KV.
It can be seen that a rise of 50 KV/1.5 .mu.s or less is not suitable as a condition for ozone generation.

尚、特に示していないがパルス幅自体を変えてみても同
じデータが得られるので、パルス幅はオゾンの生成に余
り関係ないことが分った。
Although not specifically shown, the same data can be obtained even if the pulse width itself is changed, so it was found that the pulse width has little to do with ozone generation.

又、オゾン生成のファクタとして立上り、立下り速度の
他の電界強度、電極間のギャップ長が挙げられる。
In addition, factors for ozone generation include rise and fall speeds, electric field strength, and gap length between electrodes.

電圧を上げていくと、コロナ放電からアーク放電へ移行
していくが、オゾン生成としては、オゾン濃度、オゾン
生成量共アーク放電に移行する直前の電界強度がよく、
その限界電界強度は、正電圧印加時では15KV/cm
程度、負電圧印加時では30KV/effl程度である
As the voltage is increased, corona discharge shifts to arc discharge, but for ozone production, the electric field strength just before the shift to arc discharge is good for both ozone concentration and amount of ozone production.
Its limiting electric field strength is 15KV/cm when positive voltage is applied.
It is about 30 KV/effl when a negative voltage is applied.

電界強度とオゾン生成量との関係を印加電圧50KV 
(50Hz)一定とし、コロナ放電電極ギャップを変化
させて調べた結果を第5図で示す。第5図ではオゾン生
成はギャップ長の増大即ち電界強度の低下と共に減少し
ている。従って、経済的効果を考慮すると電界強度は5
〜30KV/cmが適当である。
The relationship between the electric field strength and the amount of ozone produced was determined at an applied voltage of 50 KV.
(50 Hz) constant and the corona discharge electrode gap varied. The results are shown in FIG. In FIG. 5, ozone production decreases with increasing gap length, ie decreasing electric field strength. Therefore, considering the economic effect, the electric field strength is 5
~30KV/cm is suitable.

次に、ギャップ長について、電界強度を8KV/c+I
l一定として、ギャップ長と放電電流との関係(第6図
)、ギャップ長とオゾン生成量との関係(第7図)、ギ
ャップ長と電力効率との関係(第8図)を調べた。
Next, regarding the gap length, set the electric field strength to 8KV/c+I
The relationship between the gap length and the discharge current (Figure 6), the relationship between the gap length and the amount of ozone generated (Figure 7), and the relationship between the gap length and power efficiency (Figure 8) were investigated assuming that l was constant.

第6図〜第8図より、電界強度が一定の時、ギャップ長
が長い程オゾン生成量、電力効率共良く、ギャップ長は
1〜20cm程度を適当とする。
From FIGS. 6 to 8, when the electric field strength is constant, the longer the gap length, the better the amount of ozone produced and the power efficiency, and the appropriate gap length is about 1 to 20 cm.

而して、オゾン生成には印加電圧をI KV/ns〜0
.125KV/nsの立上り立下り条件として、装置の
規模等に応じ電界強度を5〜30KV/co+ s電極
間のギャップ長を1〜20cmより選択すればよい。
Therefore, for ozone generation, the applied voltage is I KV/ns ~ 0
.. As the rising and falling conditions of 125 KV/ns, the electric field strength may be selected from 5 to 30 KV/co+s and the gap length between the electrodes from 1 to 20 cm depending on the scale of the device.

以下、本発明を実施するに好ましい、電極形状について
説明する。
Hereinafter, preferred electrode shapes for carrying out the present invention will be described.

オゾンをより効果的に発生させる為には、酸素とコロナ
放電との接触機会を多くすることが好ましい。
In order to generate ozone more effectively, it is preferable to increase the chances of contact between oxygen and corona discharge.

第9図に示すものは流路23の長平方向に沿って平板電
極24を配設し、該平板電極24に対峙させ、ナイフェ
ツジ状の電極25を設け、画電極24゜25をパルス発
生回路を含む高電圧電源26に接続したものであり、斯
かる電極により流路23に沿い所要長さに亘ってコロナ
放電を実現することができる。
In the case shown in FIG. 9, a flat plate electrode 24 is disposed along the longitudinal direction of the flow path 23, a knife-shaped electrode 25 is provided facing the flat plate electrode 24, and the picture electrodes 24 and 25 are connected to a pulse generating circuit. This electrode is connected to a high-voltage power source 26 containing the channel 23, and a corona discharge can be realized along the flow path 23 over a required length.

第10図に示すものは対峙する電極を両方ともナイフェ
ツジ状としたものであり、第9図に示したものに比べよ
りコロナ放電が起り易い様にしたものである。
In the case shown in FIG. 10, both of the electrodes facing each other are knife-shaped, so that corona discharge is more likely to occur than in the case shown in FIG.

又、第11図に示すものは流路23を遮ぎって網状の電
極27を配し、画調状の電極27と27の間に先端を鋭
利にした電極28を設け、電極27と28を高電圧電源
26に接続したものである。
Further, in the case shown in FIG. 11, a net-like electrode 27 is arranged to block the flow path 23, and an electrode 28 with a sharp tip is provided between the image-like electrodes 27 and 27. It is connected to a high voltage power supply 26.

電極27と28の間で電極28から27に向ってスカー
ト状に広がりコロナ放電が発生し、酸素等の反応ガスは
コロナ放電している中を通過してゆく。
A corona discharge is generated between the electrodes 27 and 28, spreading like a skirt from the electrodes 28 to 27, and reactive gas such as oxygen passes through the corona discharge.

第12図に示すものは、流路(図では断面が矩形となっ
ている)23を仕切壁29で小流路30に分割し、各小
流路30に断面十字状で小流路30に沿って延びる電極
31を配設し、この電極31と流路の壁32、仕切壁2
9それぞれを高電圧電源26へ接続する。
In the system shown in FIG. 12, a channel 23 (which has a rectangular cross section in the figure) is divided into small channels 30 by a partition wall 29, and each small channel 30 has a cross-shaped cross section. An electrode 31 extending along the channel is arranged, and this electrode 31 and the channel wall 32 and the partition wall 2
9 are connected to the high voltage power supply 26.

該実施例では電極31の4の先端より小流路30の合壁
に向ってコロナ放電か発生する。
In this embodiment, a corona discharge is generated from the tip 4 of the electrode 31 toward the joint wall of the small channel 30.

第13図で示すものは、線状の電極33.34.35を
流路23に対して同心状に配設し、流路壁32と電極3
4とを高電圧電源26の1方の極へ、又電極33゜35
を電源の他方の壁へ接続する。而して、流路壁32と電
極33、電極33と34、電極34と35、の間でそれ
ぞれコロナ放電させる。
In the case shown in FIG. 13, linear electrodes 33, 34, 35 are arranged concentrically with respect to the channel 23, and the channel wall 32 and the electrode 3 are arranged concentrically with respect to the channel 23.
4 to one pole of the high voltage power supply 26, and the electrode 33°35
Connect the power source to the other wall. Thus, corona discharge is caused between the channel wall 32 and the electrode 33, between the electrodes 33 and 34, and between the electrodes 34 and 35, respectively.

上記電極形状はいずれも流路内部で広範囲に亘ってコロ
ナ放電をさせようとするものである。
All of the above electrode shapes are intended to cause corona discharge over a wide range inside the flow path.

尚、コロナ放電による反応物の生成としてはオゾンの他
にメタン(CHa )と水素(H2)の混合ガスでダイ
ヤモンドの超微粒子、シラン(SiH4)とメタン(C
Ha)の混合ガスでシリコンカーバイト(S i C)
の超微粒子の生成等が挙げられる。
In addition to ozone, reactants generated by corona discharge include ultrafine diamond particles, silane (SiH4) and methane (C) using a mixed gas of methane (CHa) and hydrogen (H2).
silicon carbide (S i C) with a mixed gas of
Examples include the generation of ultrafine particles.

[発明の効果] 以上述べた如く本発明によれば、従来の方法に比ベオゾ
ン等の生成濃度、電力効率を飛躍的に増加させ得るとい
う優れた効果を発揮する。
[Effects of the Invention] As described above, the present invention exhibits an excellent effect in that the concentration of biozone and the like produced and the power efficiency can be dramatically increased compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は印加電圧の立上りと立下りとオゾン生成との因
果関係を調べる為の回路図、第2図(A) (B)(C
) (D)は該回路又は該回路を応用した回路によって
得られる印加電圧波形図、第3図は立上り速度とオゾン
生成の因果関係を調べる為の回路図、第4図は該回路に
よる印加電圧の波形を示す図、第5図はギャップ長とオ
ゾン生成量との関係を示す図、第6図は電界強度を一定
にした場合のギャップ長と放電電流との関係を示す図、
第7図は電界強度を一定にした場合のギャップ長とオゾ
ン生成量との関係を示す図、第8図は電界強度を一定に
した場合のギャップ長と電力効率との関係を示す図、第
9図〜第13図はそれぞれ流路中に於いて効果的にコロ
ナ放電をさせる為の電極形状を示す説明図、第14図は
従来のオゾン発生装置の説明図、第15図(A)(B)
は該発生装置での印加電圧波形、電流波形を示す図であ
る。 14は高電圧直流電源、15はオゾン反応器、23は流
路、24.25は電極、26は高電圧電源、27゜28
.33,34.35は電極を示す。
Figure 1 is a circuit diagram for investigating the causal relationship between the rise and fall of applied voltage and ozone production, and Figure 2 (A) (B) (C
) (D) is an applied voltage waveform diagram obtained by the circuit or a circuit applying the circuit, Figure 3 is a circuit diagram for investigating the causal relationship between the rise speed and ozone generation, and Figure 4 is the applied voltage by the circuit. Figure 5 is a diagram showing the relationship between the gap length and the amount of ozone produced; Figure 6 is a diagram showing the relationship between the gap length and discharge current when the electric field strength is constant;
Figure 7 is a diagram showing the relationship between the gap length and the amount of ozone produced when the electric field strength is constant, Figure 8 is a diagram showing the relationship between the gap length and power efficiency when the electric field strength is constant, and Figure 8 is a diagram showing the relationship between the gap length and power efficiency when the electric field strength is constant. Figures 9 to 13 are explanatory diagrams showing electrode shapes for effective corona discharge in the flow path, Figure 14 is an explanatory diagram of a conventional ozone generator, and Figure 15 (A) ( B)
FIG. 2 is a diagram showing applied voltage waveforms and current waveforms in the generator. 14 is a high voltage DC power supply, 15 is an ozone reactor, 23 is a flow path, 24.25 is an electrode, 26 is a high voltage power supply, 27°28
.. 33, 34, and 35 indicate electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1)反応ガス流中にコロナ放電させてオゾン等を生成さ
せるコロナ放電反応の生成方法に於いて、コロナ放電を
させる電極間に立上り、立下りの少なくとも一方が1K
V/ns〜0.125KV/nsの条件を満足すると共
に、コロナ放電を発生させるに充分な電界を生ぜしめる
矩形波電圧を印加することを特徴とするコロナ放電反応
の生成方法。
1) In a method of generating a corona discharge reaction in which ozone, etc. is generated by causing a corona discharge in a reaction gas flow, at least one of the rising and falling points between the electrodes causing the corona discharge is 1K.
A method for generating a corona discharge reaction characterized by applying a rectangular wave voltage that satisfies the conditions of V/ns to 0.125 KV/ns and generates an electric field sufficient to generate a corona discharge.
JP62312551A 1987-12-10 1987-12-10 Method of generating corona discharge reaction Expired - Lifetime JPH0822726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312551A JPH0822726B2 (en) 1987-12-10 1987-12-10 Method of generating corona discharge reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312551A JPH0822726B2 (en) 1987-12-10 1987-12-10 Method of generating corona discharge reaction

Publications (2)

Publication Number Publication Date
JPH01153504A true JPH01153504A (en) 1989-06-15
JPH0822726B2 JPH0822726B2 (en) 1996-03-06

Family

ID=18030570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312551A Expired - Lifetime JPH0822726B2 (en) 1987-12-10 1987-12-10 Method of generating corona discharge reaction

Country Status (1)

Country Link
JP (1) JPH0822726B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078670A1 (en) * 1999-06-17 2000-12-28 1357784 Ontario Inc. High efficiency corona discharge device for generating ozone
US6267924B1 (en) 1998-10-14 2001-07-31 Steril-Aire U.S.A., Inc. Reduction of pressure drop of a cooling or heating system
JP2005030651A (en) * 2003-07-10 2005-02-03 Toshiba Corp Refrigerator
US9004781B2 (en) 2009-03-11 2015-04-14 Sumitomo Electric Industries, Ltd. Method for reinforcing a splice part and reinforcing structure
CN107922190A (en) * 2015-08-14 2018-04-17 罗伯特·德拉托尔·斯通 A variety of oxygen allotrope makers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739931B2 (en) 2000-09-18 2004-05-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267924B1 (en) 1998-10-14 2001-07-31 Steril-Aire U.S.A., Inc. Reduction of pressure drop of a cooling or heating system
WO2000078670A1 (en) * 1999-06-17 2000-12-28 1357784 Ontario Inc. High efficiency corona discharge device for generating ozone
US6217833B1 (en) 1999-06-17 2001-04-17 1357784 Ontario Inc. High efficiency corona discharge device for generating ozone
JP2005030651A (en) * 2003-07-10 2005-02-03 Toshiba Corp Refrigerator
US9004781B2 (en) 2009-03-11 2015-04-14 Sumitomo Electric Industries, Ltd. Method for reinforcing a splice part and reinforcing structure
CN107922190A (en) * 2015-08-14 2018-04-17 罗伯特·德拉托尔·斯通 A variety of oxygen allotrope makers
JP2018531876A (en) * 2015-08-14 2018-11-01 デ ラ トッレ ストーン,ロバート Multiple oxygen allotrope generator

Also Published As

Publication number Publication date
JPH0822726B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
AU581554B2 (en) Method of removing so2, nox and particles from gas mixtures using streamer corona
Masuda et al. A ceramic-based ozonizer using high-frequency discharge
US6136278A (en) Discharge reactor and uses thereof
Samaranayake et al. Ozone production using pulsed dielectric barrier discharge in oxygen
Hensel Microdischarges in ceramic foams and honeycombs
US4152603A (en) Device for the production of ozone
CN107029644B (en) Device for generating oxygen active substance by mesh-shaped surface discharge plasma
EP0714378B1 (en) Method and apparatus for ozone generation and treatment of water
JP3227635B2 (en) Exhaust gas purification system by plasma method
JPH01153504A (en) Method for initiating corona discharge reaction
KR20030003951A (en) Apparatus for generating ozone in high concentration
US5366702A (en) Apparatus for generating ozone utilizing an oscillating plate electrode
JP3142660B2 (en) Glow discharge plasma generating electrode and reactor using this electrode
US3842286A (en) Apparatus for producing ozone
El-Koramy et al. Development of ac corona discharge modes at atmospheric pressure
JP3121105B2 (en) Glow discharge plasma generating electrode and reactor using this electrode
JPS56120507A (en) Ozonizer
CN207091049U (en) A kind of liquid phase low-temperature plasma generator
JPS63291803A (en) Ozone generator
JP4529209B2 (en) Gas cracker
CN216698448U (en) Module for supplying hydrogen fuel cell by hydrogen production purification device
CN218993607U (en) Desktop type plasma air disinfection purifier
RU2117628C1 (en) Tubular ozonizer
JPH01103903A (en) Ozonizer
CN109316910B (en) Wet-type discharge reactor and application thereof in degradation of gaseous pollutants

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 12