JPH01153497A - Oil feeder with gas sensor - Google Patents

Oil feeder with gas sensor

Info

Publication number
JPH01153497A
JPH01153497A JP30840387A JP30840387A JPH01153497A JP H01153497 A JPH01153497 A JP H01153497A JP 30840387 A JP30840387 A JP 30840387A JP 30840387 A JP30840387 A JP 30840387A JP H01153497 A JPH01153497 A JP H01153497A
Authority
JP
Japan
Prior art keywords
value
oil
signal
refueling
oil supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30840387A
Other languages
Japanese (ja)
Other versions
JPH0714760B2 (en
Inventor
Masaji Hashimoto
橋本 正次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tominaga Manufacturing Co
Original Assignee
Tominaga Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tominaga Manufacturing Co filed Critical Tominaga Manufacturing Co
Priority to JP30840387A priority Critical patent/JPH0714760B2/en
Publication of JPH01153497A publication Critical patent/JPH01153497A/en
Publication of JPH0714760B2 publication Critical patent/JPH0714760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)

Abstract

PURPOSE: To prevent the failure and malfunction of a sensor by detecting the full condition of the oil by utilizing a gas sensor. CONSTITUTION: When an oil face 65 is risen in accordance with the proceeding of the feeding, and a point 63 of an air-supply tube 22 is soaked, the oil itself is sucked for the oil gas, the concentration of the oil, gas is decreased, and a value of the detected concentration value signal (s) is lowered. When the value of the detected concentration value signal (s) is lowered to be agreed with a set C value of a second determination circuit 54, a stop signal (r) is output to de-energized a motor 16, and the oil intruded from the point 63 of the air-supply tube 22 is discharged by the compressed air from an air switching valve 35 for a specific time. After the time has passed, the air-supply tube 22 starts its suction again, on this occasion, as the oil face is stabilized, the oil gas in the tank 52 is sucked again and the value of the detected concentration value signal (s) is increased. On the other hand, a timer D60 outputs a small flow oil feeding start signal (i) for energizing the motor 16 at a low speed. Whereby the oil face is slowly risen again, a stop signal (r) is output when the oil face reaches the point 63 of the air-supply tube 22, the motor 16 is de-energized, and the oil feeding is completed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は給油所等において使用され、自動単に燃料油を
供給する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an apparatus for automatically supplying fuel oil, which is used in gas stations and the like.

(ロ)従来技術とその問題点 給油所においては、満たんを検出する方法として給油す
る油の流速を利用し、ペンテーリー効果によって発生さ
せ之負圧の作用で機械的に給油全停止させる方法(たと
えば特公昭53−28645 )や元センサーによる方
法<’cとえは特開昭58−41095 )が採用され
ており、他にもフロート式や静電容量式のものが提案さ
れている。
(b) Conventional technology and its problems At gas stations, the method of detecting the filling state is to use the flow velocity of the oil being supplied, and to mechanically stop the refueling completely by the effect of the negative pressure generated by the pentaly effect ( For example, Japanese Patent Publication No. 53-28645) and the original sensor method (for example, Japanese Patent Application Laid-open No. 58-41095) have been adopted, and float type and capacitive type have also been proposed.

しかしながらペンチーリー効果を利用したものは油中に
気泡が混入されるために泡立って誤動作を生じ、他のセ
ンサーによる方法においては必らずセンサーを接液部に
設置する必要があり、前切nの悪い場合や油で濡れ几セ
ンサーにゴミが付着した場合には誤動作を起すことが度
度あった。
However, the method using the Penchiley effect causes air bubbles to be mixed into the oil, resulting in foaming and malfunctions, and other sensor methods require the sensor to be installed in the wetted area, and the pre-cut n. In bad cases, or if the sensor gets wet with oil or has dust attached to it, malfunctions often occur.

(ハ)問題点全解決するための構成 本発明は、センサーを接液部から離して設置することを
可能とし、先の問題が生じない給油装置?提案するもの
であり、その構成の要点を述べると、 第1に、給油ノズルの吐出雪近傍まで延長させた送気管
を介して油ガスを吸引させるとともにこのガスに接触す
る位置に検知対象成分ガスの濃度に応じ之検知濃度値信
号s2発生するガスセンサー全設置する。
(c) Structure for solving all the problems The present invention is a refueling system that allows the sensor to be installed away from the liquid-contacted parts and does not cause the above problems. The main points of the configuration are as follows: First, oil gas is sucked in through an air pipe that extends close to the snow discharged from the refueling nozzle, and the component gas to be detected is placed in the position where it comes into contact with the gas. All gas sensors are installed to generate a detected concentration value signal s2 according to the concentration of .

第2に、当該給油油種から発生する検知対象成分ガスの
最高検出濃度値よりも小さい濃度値であるC値が設定さ
れた判定値設定回路と、前記検知濃度値と前記C値とを
比較する判定回路とを設ける。
Second, the detected concentration value and the C value are compared with a judgment value setting circuit in which a C value is set, which is a concentration value smaller than the highest detected concentration value of the detection target component gas generated from the fuel oil type. A determination circuit is provided.

あるいは、ガスセンサーの検出濃度値の時間に対する変
化率であり、検出濃度が小さくなったときの値である偽
値が設定された判定値設定回路と、前記検知濃度値の時
間に対する変化率とα値とを比較する判定回路とを設け
る。
Alternatively, a judgment value setting circuit in which a false value is set, which is the rate of change of the detected concentration value of the gas sensor with respect to time and is a value when the detected concentration becomes small, and the rate of change of the detected concentration value with respect to time and α A determination circuit is provided to compare the value.

あるいは、給油中の燃料タンクから発生する検知対象成
分ガスの最高検出濃度値を記憶するとともにその記憶値
よジも/JSさい演算値であるF値を示す設定値信号全
出力する判定値設定回路と、前記検知濃度値と前記F値
とを比較する判定回路とを設ける。
Alternatively, a judgment value setting circuit that stores the maximum detected concentration value of the detection target component gas generated from the fuel tank during refueling and also outputs a full set value signal indicating the F value, which is the calculated value after the stored value. and a determination circuit that compares the detected concentration value and the F value.

に)作用 給油作業が進み、曲面が上昇してくると、そから発生す
る油ガスを吸引することになり、このときにガスセンサ
ーへ達する油ガスの量は極端に減少する。そこで、この
油ガスに含まれる検知対象成分ガスの濃度の低下を判定
値設定回路に設定さ几たC値、jL値あるいはF値と比
較することによって判定し、すなわち満たんになったこ
とを判定して判定回路が給油停止信号を出力し給油を停
止させる。
(b) As the refueling process progresses and the curved surface rises, the oil and gas generated from it will be sucked in, and at this time the amount of oil and gas that reaches the gas sensor will be extremely reduced. Therefore, the decrease in the concentration of the detection target component gas contained in this oil gas is determined by comparing it with the C value, jL value, or F value carefully set in the determination value setting circuit. The determination circuit outputs a refueling stop signal and stops refueling.

(ホ)実施例 まず第1の発明について第1.2.3t 4A、 4B
(E) Example First, regarding the first invention Section 1.2.3t 4A, 4B
.

5A、8図をもとに以下説明する。This will be explained below based on FIGS. 5A and 8.

第1図において、(1)は給油装置のハウジングでコン
クリートで作られたアイランド(2)の上に設置されて
いる。
In FIG. 1, (1) is the housing of the refueling device, which is installed on an island (2) made of concrete.

(3)はポンプで図示しない貯油タンクから送油(たと
えば1/1001Jツ)/I/)’に計量する毎に1個
の流量パルレス信号p?出力する。
(3) is a flow rate pulseless signal p? every time oil is metered (for example, 1/1001J)/I/)' from an oil storage tank (not shown) using a pump. Output.

(7)は給油ノズルで先端に吐出管(8)を備え、回転
継手(9)、ホース(10、連絡管αυを介して流量計
(5)へ繋がっている。
(7) is a refueling nozzle equipped with a discharge pipe (8) at its tip and connected to a flow meter (5) via a rotary joint (9), a hose (10), and a connecting pipe αυ.

(2)はノズル検知スイッチで、ノズルケース03ヘノ
ズ/l/ (7)が掛は止められているとき検知信号m
’2出力し、外さ九ているとき非検知イ=fni出力す
る。
(2) is a nozzle detection switch, which sends a detection signal m when the nozzle/l/(7) is not engaged with the nozzle case 03.
' Outputs 2, and outputs non-detection = fni when it is removed.

α荀は給油量表示器α5t−収納した表示器ボックス、
αQはポンプ(3)?回転させるポンプ用モーター、α
ηは後述す/)電気回路を収納した制御部、(ト)は報
仰用のブザーである。
α5t is the oil supply amount indicator α5T-indicator box,
αQ is pump (3)? Rotating pump motor, α
η is a control unit (described later) containing an electric circuit, and (g) is a alarm buzzer.

α1は負圧発生源である切替ユニットでコンプレッサー
(ホ)から延長さf′Lfc送気管シ送気管シスル(7
)へ繋がる送気管(4)とノズルケースα1に形成され
たセンサー室(ホ)へ繁がる送気g(財)とが接続され
ており、第4A 、 4B図にあるようにそのボディー
(イ)には空気通路に)が形成されている。
α1 is a switching unit that is a negative pressure generation source, and is extended from the compressor (E).
) is connected to the air supply pipe (4) that leads to the sensor chamber (E) formed in the nozzle case α1, and the air supply pipe (4) that leads to the sensor chamber (E) formed in the nozzle case α1 is connected to the air supply pipe (4) that leads to the sensor chamber (E) formed in the nozzle case α1. A) is formed in the air passage.

@はボディー(至)と一体に組み付けらfした空気遮断
弁で、円柱形の弁体(ハ)とこの弁体(ハ)が空気通路
(イ)全閉止する方向へ常時付勢するスプリング四と通
電時にこのスプリング翰の付勢に抗して弁wi引き寄せ
空気通路(ホ)を開く電磁コイμ■とから構成されてい
る。
@ is an air cutoff valve that is assembled integrally with the body (to), and consists of a cylindrical valve body (c) and a spring 4 that constantly biases this valve body (c) in the direction of completely closing the air passage (a). and an electromagnetic coil μ■ which, when energized, pulls the valve wi and opens the air passage (e) against the urging of the spring wire.

0υは噴射ノズルで、その細孔に)から空気が噴射され
るとノズ/v(,3υのまわりに形成された負圧発生室
(至)では負圧が発生する。
0υ is an injection nozzle, and when air is injected from its pores), negative pressure is generated in the negative pressure generation chamber formed around the nozzle /v (, 3υ).

この負圧発生の原理については既に広く知られているの
でここでの説明は省略する。
The principle of this negative pressure generation is already widely known, so the explanation here will be omitted.

■はバイパス路で、空気通路に)と負圧発生室(至)と
送気管口とを連絡している。
■ is a bypass path that connects the air passage (to the air passage), the negative pressure generation chamber (to), and the air supply pipe port.

μsは突気切替弁で、窒気通路翰とバイパス路(ロ)と
?連通あるいは遮断する円柱形の弁体(7)とこの弁体
(7)がバイパス路と空気通路朝ρとの連通全遮断する
方向へ常時付勢するスプリングりと通電時に弁体c!4
全4全引せてバイパス路■を開く電磁コイ/L’(2)
とから構成さルており、バイパス路(2)の閉止時には
空気通路(ハ)から送らnてきた圧縮を気が弁体(7)
のまわりに削設された溝(ト)を通って噴射ノズ/l1
0Dへ導びかnる。
μs is a sudden changeover valve, which connects the nitrogen passageway and the bypass passage (b). A cylindrical valve body (7) that communicates or blocks communication, and a spring that constantly biases the valve body (7) in the direction of completely cutting off communication between the bypass path and the air passage ρ, and when energized, the valve body c! 4
All 4 pull out and open the bypass path■ Electromagnetic carp/L' (2)
When the bypass passage (2) is closed, the compressed air sent from the air passage (c) is transferred to the valve body (7).
The injection nozzle /l1 passes through the groove (g) cut around the
Lead to 0D.

(ト)は噴射ノズ/L10υの前方に形成され送気管C
!→へ繋がる送風路、(旬は負圧発生室03全大気へ連
絡することによって負圧値の最高値?規制する負圧調節
路で負圧発生室に)内が大気圧を超え之場合には軽量な
樹脂等で作られた球形のチャツキ弁初によって塞がnる
(G) is formed in front of the injection nozzle/L10υ and the air pipe C
! →The air passage leading to (in the negative pressure generation chamber 03, the highest value of negative pressure by communicating with the whole atmosphere? Regulating the negative pressure regulation passage to the negative pressure generation chamber) exceeds atmospheric pressure. The valve is closed by a spherical valve made of lightweight resin or the like.

に)はチャツキ弁(財)力;負圧発生室Q内へ移動する
のを阻止す/11通風板である。
2) is a Chatsuki valve (incorporated) force; a /11 ventilation plate that prevents the negative pressure from moving into the chamber Q.

第3図において、■はガスセンサーでセンサー室@内へ
導びか′i″L′fi−送気管(ハ)を介して送らnて
きた油ガスに接触する位置に設置され、油ガスに含まn
る検知対象成分ガス、友とえばベンゼン、ペンタンある
いは可燃性性分の濃度に応じた値を示す検知濃度値信号
Sを出力する。
In Fig. 3, ■ is a gas sensor installed in a position where it comes into contact with the oil gas that is guided into the sensor chamber @ or sent through the air pipe (c). Contains n
A detected concentration value signal S indicating a value corresponding to the concentration of a component gas to be detected, such as benzene, pentane, or a combustible substance, is output.

(7)はセンサー室@の出口に設けらnた引火防止用の
金網でセンサー室翰はこの金網に)をとおして大気に開
放されている。
(7) is a wire mesh installed at the exit of the sensor chamber to prevent ignition, and the sensor chamber wire is exposed to the atmosphere through this wire mesh.

第5A図において、■は計数回路で流量パルス信号pの
数を計数してその計数値を計数値信号lとして出力し、
給油量表示器(至)へ給油量として表示させる。
In FIG. 5A, ■ counts the number of flow rate pulse signals p in a counting circuit and outputs the counted value as a counted value signal l;
Display the amount of oil on the oil amount display (To).

0ηはポンプ用モーター駆動回路で、給油許可信号りの
入力によってポンプ用モーターQO’に付勢させ検知信
号mの入力すなわち輸曲ノズ/I/(7ンがノズルケー
ス(至)へ収納されたときあるいは給油停止信号rが入
力さ几たときポンプ用モーター頭の付勢を停止させる。
0η is a pump motor drive circuit, in which the pump motor QO' is energized by the input of the refueling permission signal, and the detection signal m is input, that is, the inflection nozzle /I/(7) is stored in the nozzle case (to). or when the refueling stop signal r is input, the energization of the pump motor head is stopped.

また小流給油開始信号iが入力されるとポンプ用モータ
ーαi−低速の入力があると、すなわちノズ/L’ (
7)がノズルケース(至)から取り外されるとコンプレ
ッサー(ホ)を付勢して圧縮空気を作らせ送気管に)へ
送り出しツサー(イ)の付勢を停止させる。
Also, when the small flow refueling start signal i is input, when the pump motor αi - low speed is input, that is, the nozzle /L' (
When 7) is removed from the nozzle case (7), the compressor (E) is energized to produce compressed air, which is sent to the air pipe (2), and the energization of the compressor (A) is stopped.

0俤は空気遮断弁駆動回路でノズル検知スイッチ(6)
から非検知信号nが出力されると、すなわちノズ1v(
7)がノズルケース(至)から取り外されると空気遮断
弁@を付勢して窒気路(ハ)を開き後述する送風信号W
3の消滅で消勢させる。
0 is the air cutoff valve drive circuit and the nozzle detection switch (6)
When the non-detection signal n is output from the nozzle 1v (
When 7) is removed from the nozzle case (to), the air cutoff valve @ is energized to open the nitrogen air passage (c) and the air blow signal W, which will be described later, is activated.
It is deactivated by the disappearance of 3.

c4はクロック信号qを出力し続けるクロック信号発生
回路、6pは第1判定回路でガスセンサー(ロ)が検知
対象成分ガスをまったく検出していないときの検出濃度
値信号Sの値と当該油種における最高濃度を検出してい
るときの値との中間の値であり、給油ノズ/L’(力が
自動車の燃料タンクGつの給油口Qへ挿入されたとき検
出する値として第8図におけるA値が設定されており、
そのA値を示す設定値信号u′t−出力している。
c4 is a clock signal generation circuit that continues to output the clock signal q, and 6p is a first judgment circuit that shows the value of the detected concentration value signal S and the oil type when the gas sensor (b) does not detect any target component gas. It is the intermediate value between the value when detecting the maximum concentration in the fuel supply nozzle /L' (A in Fig. 8 as the value detected when the force is inserted into the fuel filler port Q of G in the fuel tank value is set and
A set value signal u't- indicating the A value is output.

0は第2判定値設定回路でガスセンサー(財)が当該油
種における最高濃度の検知対象成分ガスを検出したとき
の最高値(第8因におけるB値〕よりもやや低い値であ
るC値が設定されておりそのC値を示す設定信号Cを出
力している。
0 is the C value, which is a value slightly lower than the highest value (B value in the 8th factor) when the Gas Sensor (Incorporated) detects the highest concentration target component gas for the oil type in the second judgment value setting circuit. is set, and a setting signal C indicating the C value is output.

に)は第1判定回路でガスセンサー−カラ出力される検
出濃度値信号Sの値と設定値信号Uの値(A値)とを比
較して両者が一致する(第8図におけるe点)と給油許
可信号h(ワンパルスフおよび判定開始信号V(ワンパ
ルス)を出力する。
), the first judgment circuit compares the value of the detected concentration value signal S outputted from the gas sensor with the value of the set value signal U (value A), and the two match (point e in FIG. 8). A refueling permission signal h (one pulse) and a determination start signal V (one pulse) are output.

曽は第2判定回路で判定開始信号Vが入力されたことを
きりかけにガスセンサー■の検出濃度値信号Sの値と設
定値信号Cの値(C値)とを比較し検出濃度値信号Sの
値が下る方向で両値が1回目に一致したとき(第8図で
f点ン及び2回目に一致したとき(第8図でg点]給油
停止信号r(ワンパルス)を出力するとともにl@J目
に一致したとき一致信fX<ワンパルス)を、2回目に
一致したとき一致倍号y(ワンバ/I/ )c)と報知
信号ztl−一定時間(′fI:、とえば10秒間)出
力する。
When the judgment start signal V is input in the second judgment circuit, Zeng compares the value of the detected concentration value signal S of the gas sensor ■ with the value of the set value signal C (C value) and outputs the detected concentration value signal. When both values match for the first time in the downward direction of the S value (point f in Figure 8) and for the second time (point g in Figure 8), a refueling stop signal r (one pulse) is output. When the l@Jth match is made, the match signal fX<one pulse), and when the second match is made, the match signal y (wamba/I/ ) c) and the notification signal ztl - a certain period of time ('fI:, for example, 10 seconds) )Output.

に)はタイマーAでクロック信号qを計数することによ
って計時して非検知信号nの入力時から11時間(通常
ノズ/I’(7)’tノズルケース(至)から外して給
油口(至)へ挿入するのに要する時間よりやや少ない時
間で、たとえば2秒間)の同送風信号Wlを出力する。
) is measured by counting the clock signal q with timer A, and the time is measured for 11 hours from the input of the non-detection signal n. ), for example, 2 seconds).

に)はタイマーBでクロック信号qを計数することによ
って計時して一致信号Xが入力さfLると12時間(た
とえば1秒間ンの同送風信号w2を出ことによって計時
して一致信号Xが入力されると前面の泡立ちが収まるま
での時間である14時間(たとえば5秒間〕後に小流給
油開始信号iを出力する。
), the timer B counts the clock signal q to input the coincidence signal X, and when fL, the coincidence signal Then, a small flow refueling start signal i is output after 14 hours (for example, 5 seconds), which is the time it takes for the foaming on the front surface to subside.

II)は空気切替弁駆動回路で送風信号NVI 、 W
2 。
II) is the air switching valve drive circuit and the air blowing signals NVI, W
2.

W3のいずれかが入力さルている間空気切替弁(至)を
駆動してバイパス路■を開く。
While any of W3 is input, the air switching valve (to) is driven to open the bypass path (■).

なお、第8図に一点鎖線で示した曲mけ送気管@の先端
岐が油に浸りた後吸引状憇から送風状態へと切替えずに
吸引状態を維持した場合の検出濃度値信号Sの値であり
、D値まで下って安定する。
In addition, the detected concentration value signal S when the tip branch of the bent air pipe @ shown by the dashed line in Fig. 8 is immersed in oil and the suction state is maintained without switching from the suction state to the blowing state. The value decreases to the D value and stabilizes.

以上の構成において、第1の発明の一つ目の実施例であ
る第1の実施例について以下説明する。
In the above configuration, the first embodiment, which is the first embodiment of the first invention, will be described below.

給油を開始するにあ之って給油ノズル(7)をノズルケ
ースα罎から取り外すとノズル検知スイッチ(2)の出
力信号が検知信号mから非検知信号nへと変化しこAk
受けて下記の動作が行なわnる。
When the refueling nozzle (7) is removed from the nozzle case to start refueling, the output signal of the nozzle detection switch (2) changes from the detection signal m to the non-detection signal n.
In response, the following operations are performed.

■計数回路0Qでの計数値の帰零(給油量表示器OQの
零表示) ■コンプレッサー翰の始動 ■空気遮断弁翰の開弁(第4B図の状態]■送風信号町
の発生によV空気切替弁(至)の開弁(空気通路(至)
とバイパス路■との連通バ第4B図の状態) そこで切替ユニットαりにおいてはコンプレッサー(1
)および針圧タンクIaから送気管a])を介して送ら
nてき之圧縮空気が空気通路(ホ)、バイパス路■を通
って(一部噴射ノズ〜0ηの細孔(至)を通る)送気管
■と送気管(イ)へと送ら′t′L7)が、このとき負
圧発生室(至)には負圧が発生せず、まt大気圧よりも
高くなるのでチャツキ弁(6)は第4B図の位置へ移動
して負圧調節路■を閉塞し、を気の逃げを防止すること
によってクリーニング用空気の効率を高める。
■ Return of the count value to zero in the counting circuit 0Q (zero display on the oil supply amount display OQ) ■ Starting the compressor wire ■ Opening the air cutoff valve wire (the state shown in Figure 4B) ■ V due to the occurrence of the air blow signal Opening of the air switching valve (to) (air passage (to)
4B) Therefore, in the switching unit α, the compressor (1
) and the needle pressure tank Ia through the air supply pipe a]), and the compressed air passes through the air passage (e) and the bypass passage (partially through the injection nozzle to 0η pore). The air is sent to the air pipe (■) and the air pipe (A), but at this time, no negative pressure is generated in the negative pressure generation chamber (to), and the pressure becomes higher than atmospheric pressure, so the check valve (6) is ) is moved to the position shown in FIG. 4B to close the negative pressure regulating path (2), thereby increasing the efficiency of cleaning air by preventing air from escaping.

また送気管■へ送られた圧縮空気(油ガスは含まnてい
ない)はセンサー■へ吹き付けらnてセンサー−のクリ
ーニングが行なわれ、一方送気管四へ送られた圧縮を気
によって送気管(ハ)内のクリーニング(残存油ガスの
排出)が行なわ几る。そして1.時間が経過すると送風
信号Wlが消滅するので空気切替弁に)の付勢か停止さ
九バイパス路■は弁体(至)によって閉じられる。(第
4A図の状態) すると、空気通路(ホ)へ送られてきた圧縮を気はバイ
パス路■へ侵入することができず弁体(7)の溝H’T
h通って噴射ノズA/C3υの細孔(2)からのみ噴射
される。
In addition, the compressed air (not including oil and gas) sent to the air pipe (2) is blown onto the sensor (2) to clean the sensor.Meanwhile, the compressed air sent to the air pipe (4) is blown to the air pipe (4). c) Cleaning (draining residual oil and gas) inside the tank will be performed. And 1. As time elapses, the air blowing signal Wl disappears, so the air switching valve () is energized or stopped, and the bypass passage (2) is closed by the valve body (). (Situation shown in Figure 4A) Then, the compressed air sent to the air passage (E) cannot enter the bypass passage (■) and the groove H'T of the valve body (7)
h and is injected only from the pore (2) of the injection nozzle A/C3υ.

この細孔(2)からの空気噴射は前記し友ように負圧発
生室に)に負圧を発生させ、送気管@全弁して外気を吸
引させる。このとき吸引さ九る外気は細孔(2)からの
噴射流と混りて送気管(財)へ送らnガスセンサー−へ
至る。ま几このとき負圧発生室(至)の負圧発生によジ
チャッキ弁(6)が第4A図の位置へ変位して負圧調節
路0やが開かn、ここからも外気が流入することになる
The air jet from this pore (2) generates a negative pressure in the negative pressure generating chamber (as described above), and the air supply pipe @all valves are opened to suck in outside air. At this time, the outside air that is sucked in is mixed with the jet flow from the pore (2) and sent to the air pipe and reaches the gas sensor. At this time, due to the generation of negative pressure in the negative pressure generation chamber (to), the check valve (6) is displaced to the position shown in Fig. 4A, and the negative pressure adjustment path 0 is opened, and outside air also flows in from here. become.

この負圧調節路■の効果は後述する。The effect of this negative pressure adjustment path (2) will be described later.

給油ノズ/l/ (7)の吐出管(8)が給油口(至)
へ挿入(第1図の状M)されると送気管四の先端−から
燃料タンクQ内の油ガスが吸引されて送気管(支)。
The discharge pipe (8) of the refueling nozzle/l/ (7) is the refueling port (towards)
When it is inserted into the fuel tank Q (shape M in Figure 1), the oil gas in the fuel tank Q is sucked from the tip of the air pipe 4 and the air pipe (branch) is inserted.

負圧発生室に)、送気管(財)を介してセンサー室(ホ
)へ送り込まれてガスセンサー■にiMする。するとガ
スセンサーーから出力される検出濃度値信号Sの値は上
昇し第1判定値設定回路(2)に設定されたA値と一致
する(第8因で0点)と第1判定回路曽が給油許可信号
りを出力してポンプ用モーターQlを付勢させる。
The gas is sent to the negative pressure generation chamber) and sent to the sensor chamber (E) via the air pipe (F), where it is applied to the gas sensor (■). Then, the value of the detected concentration value signal S output from the gas sensor rises and matches the A value set in the first judgment value setting circuit (2) (0 point due to the 8th factor), and the first judgment circuit So refuels. A permission signal is output to energize the pump motor Ql.

この後ノズル(7)のバμプレバーf4’に操作して図
示しない内蔵弁を開いて給油を行なう。
Thereafter, the valve lever f4' of the nozzle (7) is operated to open a built-in valve (not shown) to supply oil.

給油が進行して曲面■が上昇し第2図で示すように送気
管(イ)の先端−が浸るとそflまで吸引していた油ガ
スに替えて油そのものが吸引されることになる。この場
合には送気管(2)内の曲面すなわち内径面積部分から
蒸発する油ガスしかガスセンサー■へ供給されなくなり
、そのときの油ガスのiは油ガスそのものを吸引する場
合に比して極端に少なくなる。
As the oil supply progresses, the curved surface (2) rises, and as shown in FIG. 2, when the tip (-) of the air pipe (A) is immersed, the oil itself will be sucked in instead of the oil gas that was being sucked up to that point. In this case, only the oil gas that evaporates from the curved surface in the air pipe (2), that is, the inner diameter area, is supplied to the gas sensor ■, and the i of the oil gas at that time is extremely extreme compared to when the oil gas itself is sucked. will decrease.

油ガスの量が減少しても噴射ノズル3ηから噴射される
圧縮空気のiは変らないので結果として油ガスの濃度が
減少することになり、検出濃度値信号Sの値が下がる。
Even if the amount of oil and gas decreases, i of the compressed air injected from the injection nozzle 3η does not change, so as a result, the concentration of oil and gas decreases, and the value of the detected concentration value signal S decreases.

なお、送気管@が油を吸い込んだ場合には負圧調節路0
ηから流入する外気量が増える(送気管(イ)が油ガス
を吸引する場合と油を吸引する場合とでは圧力損失値に
大きな隔りがあり、第2図で送気管四内の油面te4は
Hで示す高さまでしか上昇できないように、すなわち油
そのものが吸引されてもガスセンサー■へ達しないよつ
に負圧調節路0υの開口面積が設定されている)。
In addition, if the air pipe @ sucks oil, the negative pressure adjustment path 0
The amount of outside air flowing in from η increases (there is a large difference in the pressure loss value when the air pipe (a) sucks oil gas and when it sucks oil, and the oil level inside the air pipe (a) The opening area of the negative pressure regulating path 0υ is set so that te4 can only rise to the height indicated by H, that is, so that even if the oil itself is sucked, it does not reach the gas sensor (2).

検出濃度値信号Sの値が降下し第2判定回路□□□に設
定されたC 1fLと一致(1回目の一致)する(第8
図のf点)と第2判定回路(ト)は給油停止信号rを出
力してポンプ用モーターαQを消勢させるとともに一致
信号x=2出力してタイマーB(ト)に12時間を計時
させこの12時間の間空気切替弁に)を付勢させてバイ
パス路■を開かせ圧縮空気(クリーニング用)を送気管
(財)と送気管(イ)へ送り特に送気管(イ)の先端(
へ)から侵入した油を排出させる。12時間が経過する
と空気切替弁(2)は消勢されてバイパス路■が閉止さ
れるので送気管(ホ)は再び吸引を始めるがこのときに
はすでに燃料タンク働内の油の泡立ちが収まって曲面は
送気管■の先端−よりも下った状態で安定しているので
再度燃料タンクQ内の油ガスを吸い込み検出濃度値信号
Sの値は上昇する。
The value of the detected concentration value signal S decreases and matches (first match) with C 1fL set in the second judgment circuit □□□ (8th
Point f in the figure) and the second judgment circuit (G) output a refueling stop signal r to de-energize the pump motor αQ, and output a coincidence signal x=2 to cause the timer B (G) to time 12 hours. During these 12 hours, the air switching valve () is energized to open the bypass passage ■, and compressed air (for cleaning) is sent to the air pipe (A) and the air pipe (A), especially at the tip of the air pipe (A).
) to drain out the oil that has entered. After 12 hours have elapsed, the air switching valve (2) is deenergized and the bypass passage ■ is closed, so the air supply pipe (e) starts sucking again, but by this time the oil in the fuel tank has already stopped bubbling and the curved surface has stopped. Since it is stable below the tip of the air supply pipe (-), the oil gas in the fuel tank Q is sucked in again and the value of the detected concentration value signal S increases.

一方、タイマーD輪は一致信号Xが入力されてから14
時間が経過すると小流給油開始信号iを出力してポンプ
用モーターαat低速付勢させる。こうすることによっ
てポンプ(3)がゆりくり回転されてノズ/L’ (7
)からの吐出流速が油をかき回さない程度すなわち泡立
几せない程度の速度で供給が行なわn1曲面が再び今度
はゆつくりと上昇して第2図の位置まできて送気管弼の
先端−に達すると検出濃度値信号Sの値が再び下って第
2判定値設定回路0のC値と一致(第8図のg点)する
ので(2回目の一致)第2判定回路曽から給油停止信号
rが出力されてポンプ用モーターα・が消勢され給油が
終了されるとともに一致信fyが出力されてタイマーC
(ホ)の13時間の計時開始と報知信号2の出力による
ブザー(至)の付勢が行なわnる。
On the other hand, the timer D wheel is set 14 times after the match signal X is input.
When the time has elapsed, a small flow lubrication start signal i is output to energize the pump motor αat at low speed. By doing this, the pump (3) is rotated slowly and the nozzle /L' (7
) is supplied at a speed that does not stir up the oil, i.e., does not cause foaming, and the n1 curved surface slowly rises again until it reaches the position shown in Figure 2, at the tip of the air pipe. When the value of the detected concentration value signal S decreases again and matches the C value of the second judgment value setting circuit 0 (point g in Fig. 8) (second match), the refueling is stopped from the second judgment circuit Z. The signal r is output, the pump motor α is deenergized, and refueling is completed, and the coincidence signal fy is output, and the timer C is activated.
(e) The 13-hour time measurement is started and the buzzer (to) is energized by outputting the notification signal 2.

タイマー〇(至)はt3時間計時中に送風信号w3を出
力し続けるので空気切替弁に)は13時間の間付勢され
て送気f(ハ)、センサー■、送気管四のクリーニング
が行なわ九、13時間が経過して送風信号W3が消滅す
るとコンプレッサーーの消勢。
Since the timer 〇 (to) continues to output the air blowing signal w3 while measuring time t3, the air switching valve) is energized for 13 hours and the air feeding f (c), sensor ■, and air pipe 4 are cleaned. When the air blow signal W3 disappears after 9 or 13 hours, the compressor is turned off.

空気遮断弁に)の消勢(弁閉止)、空気切替弁に)の消
勢が行なわnて次回の給油に備えらnることになる。
The air cutoff valve) is deenergized (valve closed) and the air switching valve) is deenergized to prepare for the next refueling.

なお、コンプレッサー■には送気管■υとの接続部に図
示しないチャツキ弁が設けられているのでコンプレッサ
ー(7)が消勢されても針圧タンク輪内の圧縮空気がコ
ンプレッサー(1)?介して漏九たりすることはない。
Note that the compressor ■ is equipped with a check valve (not shown) at the connection with the air supply pipe ■υ, so even if the compressor (7) is de-energized, the compressed air in the stylus pressure tank ring will flow to the compressor (1). There will be no leakage through the media.

また、第2判定値設定回路(ロ)に設定されるC値は油
のメーカー別性分の違いや季節要因さらに給油時の油ガ
ス濃度変化等を考慮して誤判断を起さない程度の値が設
定される。
In addition, the C value set in the second judgment value setting circuit (b) should be set to a level that does not cause erroneous judgments, taking into account differences in oil manufacturer and gender, seasonal factors, and changes in oil and gas concentration during refueling. The value is set.

次に第1の発明の二つ目の実施例である第2の実施例を
第1 t 2t 3.4A、 4By 5B+ 8図を
もとに説明するが、第1の実施例と同一部品及び同一機
能部分は同一記号を採用しその説明は省略するものとす
る。なお後述する第3.4.5.6の実施例についても
同様とする。・ 第2の実施例の第1実施例との相異点は、第1の実施例
におけるポンプ用モーターα・が給油許可信号りおよび
小流給油開始信号iの入力で付勢され給油停止信号rの
入力で消勢されるのに対して第2の実施例ではポンプ用
モーターαQがノズル検知スイッチ(ロ)から出力され
る非検知信号nの発生で付勢され検知信号mの発生で消
勢されるようになっている点と、第1の実施例にはなか
つ几油量調節弁劫が連絡管(ロ)に挿設されるとともに
油量調節弁駆動回路−が追加された点にあり、油量調節
弁■は給油許可信号りの発生によって大きく開き小流給
油開始信号iの発生によって小さく開くとともに給油停
止信号rの発生で閉止される。
Next, a second embodiment, which is a second embodiment of the first invention, will be explained based on FIG. The same symbols will be used for the same functional parts, and the explanation thereof will be omitted. The same applies to embodiments 3.4.5.6 to be described later. - The difference between the second embodiment and the first embodiment is that the pump motor α in the first embodiment is energized by the input of the refueling permission signal and the small flow refueling start signal i, and is activated by the input of the refueling permission signal and the small flow refueling start signal i. In contrast, in the second embodiment, the pump motor αQ is energized by the generation of the non-detection signal n output from the nozzle detection switch (B), and is deenergized by the generation of the detection signal m. In addition, an oil flow control valve is inserted into the communication pipe (b) and an oil flow control valve driving circuit is added, which is not present in the first embodiment. The oil amount control valve (2) opens wide when the refueling permission signal is generated, opens slightly when the small flow refueling start signal i is generated, and is closed when the refueling stop signal r is generated.

すなわち第1の実施例と第2の実施例とは送油の制御を
ポンプ用モーターQ・で行なうか油1調節弁■で行なう
かの違いのみである。
That is, the only difference between the first embodiment and the second embodiment is whether the oil feeding is controlled by the pump motor Q or by the oil 1 control valve ■.

引続いて第2の発明における一つ目の実施例である第3
の実施例について第1.2.3.4A。
Next, the third embodiment, which is the first embodiment of the second invention, will be explained.
Section 1.2.3.4A regarding the embodiment of.

4B、 6A、8図をもとに説明するが、第1の実施例
との違いは、第2判定値設定回路64に替ってガスセン
サー−の検出濃度値信号Sの時間に対する変化率であり
検出濃度値が小さくなるときの値であるaL値が設定さ
れるとともにこのa値を示す設定値信号dを出力する第
3判定値設定回路−が設けらf′L九点と、第2判定回
路に)に替ってクロック信号qt計数することによって
計時し検出濃度値信号Sの時間に対するに化率をたとき
給油停止信号r−2出力する第3判定回路(70’に設
は友点にあり、第1の実施例の動作と同一部分の説明を
省略し、曲面が上昇して1回目の送気管(イ)の先端−
への到達時以降から説明を続ける。
4B, 6A, and 8, the difference from the first embodiment is that the second judgment value setting circuit 64 is replaced by a change rate with respect to time of the concentration value signal S detected by the gas sensor. A third judgment value setting circuit is provided which sets an aL value, which is a value when the detected concentration value becomes small, and outputs a set value signal d indicating this a value. A third judgment circuit (70') which measures time by counting the clock signal qt and outputs the refueling stop signal r-2 when the conversion rate of the detected concentration value signal S with respect to time is The explanation of the same parts as the operation of the first embodiment is omitted, and the curved surface rises to the tip of the air pipe (A) for the first time.
The explanation will continue from the time of reaching .

第2図に示すように油面−が先端−へ到達すると検知濃
度値信号啄顎降7L第8図で示すようにガスセンサー出
力曲線の傾きが角度であられした1値(設定信号dの値
)に一致1(第1回目の一致)すると第3判定回路10
は給油停止信号rf高出力てポンプ用モーター(10f
t消勢させるとともに一致信号Xを出力してタイマーB
にt2時間を計時させこのt2時間の間空気切替9PC
Iを付勢させてバイパス路■を開かせ送気管(財)と送
気管(支)のクリーニングを行なわせる。
As shown in Fig. 2, when the oil level reaches the tip, the detected concentration value signal drops 7L.As shown in Fig. 8, the slope of the gas sensor output curve is a value calculated by the angle ) matches 1 (first match), the third judgment circuit 10
is the refueling stop signal rf high output pump motor (10f
timer B by deactivating it and outputting a coincidence signal X.
During this t2 time, air switching is performed by 9PC.
I is energized to open the bypass path (2) and clean the air pipe (main) and air pipe (branch).

t2時間が経過すると空気切替弁(至)は消勢されてバ
イパス路■が閉止されるので送気管翰は再び吸引?始め
るが、このときにはすでに燃料タンクQ内の油の泡立ち
が収まって曲面は送気管(イ)の先端−よりも下った状
態で安定しているので再度燃料タンクに)内の油ガスを
吸い込み検出濃度信号Sの値は上昇する。
When time t2 has elapsed, the air switching valve (to) is deenergized and the bypass passage ■ is closed, so the air pipe can be sucked again. However, by this time, the oil in the fuel tank Q has already stopped bubbling and the curved surface is stable below the tip of the air pipe (A), so the oil and gas in the fuel tank Q is sucked into the fuel tank again and detected. The value of the concentration signal S increases.

一方、タイマーD−は一致倍号Xが入力されてからt4
時間が経過すると小流給油開始信号i?出力してボング
用モーターafl付勢させる。
On the other hand, the timer D- is t4 after the matching multiple X is input.
When time elapses, the small flow lubrication start signal i? Output to energize the bong motor afl.

こうすることによってポンプ(3)がゆりくり回転さ扛
てノズ/L/ (7)からの吐出速度が油をかき回さな
い程度すなわち泡立たせない程度の速度で供給され、そ
の曲面−が再び今度はゆつくりと上昇して第2図の位置
まできて送気W(イ)の先端−に達すると検出濃度値信
号Sの値が下りて検る。
By doing this, the pump (3) is rotated slowly and the discharge speed from the nozzle /L/ (7) is such that it does not stir up the oil, that is, it does not create bubbles. When it slowly rises to the position shown in FIG. 2 and reaches the tip of the air supply W (a), the value of the detected concentration value signal S decreases and is detected.

すると給油停止信号rが出力さ九てポンプモーター(I
Qが消勢され給油が終了されるとともに一致信号yが出
力されてタイマーC(至)の13時間の計時開始と報知
信号2の出力によるブザー(ト)の付勢が行なわnる。
Then, the refueling stop signal r is output and the pump motor (I
When Q is deenergized and refueling is ended, a coincidence signal y is output, and timer C (to) starts counting 13 hours, and the buzzer (t) is energized by outputting notification signal 2.

タイマーC(至)はこの13時間の計時中に送風信号W
3 f出力し続けるので空気切替弁(2)は13時間の
間付勢されて送気・a(ハ)、センサー−・送気官四の
クリーニングが行なわnt3時間が経過して送風信号W
3が消滅するとコンプレッサー(ホ)の消勢、突気遮断
弁(支)の消勢、を気切替弁(至)の消勢が行なわ九て
次回の給油に備えらルる。
Timer C (to) receives the air blow signal W during this 13-hour time period.
Since 3 f continues to be output, the air switching valve (2) is energized for 13 hours to clean the air supply a (c), sensor, and air supply official 4, and after nt3 hours have elapsed, the air supply signal W is output.
When 3 is extinguished, the compressor (E) is de-energized, the sudden cut-off valve (sub) is de-energized, and the gas switching valve (to) is de-energized to prepare for the next refueling.

次に第2の発明の二つ目の実施例である第4の実施例を
第112,314A、4B? 513. s図をもとに
第3の実施例との相違点について説明すると、第3の実
施例におけるポンプモーター0・が給油許可信号りおよ
び小流給油開始信号iの入力で付勢され給油停止信号r
の入力で消勢されるのに対して第4の実施例ではポンプ
用モーターMがノズル検知スイッチ@から出力される非
検知信号nの発生で付勢され検知信号mの発生で消勢さ
れる点と、第3の実施例にはなかった油量調節弁−が連
絡管αυに挿設されるとともに油量調節弁駆動回路−が
追加さf′Lfc点にあり、油i調節弁@は給油許可信
号りの発生によって大きく開き、小流給油開始信号iの
発生によって小さく囲<とともに給油停止信号rの発生
で閉止される。
Next, the fourth embodiment, which is the second embodiment of the second invention, will be described as No. 112, 314A, 4B? 513. To explain the differences from the third embodiment based on the diagram s, the pump motor 0 in the third embodiment is energized by the input of the refueling permission signal and the small flow refueling start signal i, and the pump motor 0 in the third example is activated by the input of the refueling permission signal and the small flow refueling start signal i, and the refueling stop signal is activated. r
In contrast, in the fourth embodiment, the pump motor M is energized by the generation of the non-detection signal n output from the nozzle detection switch @, and deenergized by the generation of the detection signal m. An oil flow control valve, which was not present in the third embodiment, is inserted into the communication pipe αυ, and an oil flow control valve drive circuit is added at point f'Lfc, and the oil control valve @ is It opens wide when a refueling permission signal is generated, and closes when a small flow refueling start signal i is generated and a small circle is generated, and when a refueling stop signal r is generated.

よって第3の実施例と第4の実施例とは送油の制御をポ
ンプ用モーターQ0で行なうか油量調節弁動で行なうか
の違いのみである。
Therefore, the only difference between the third embodiment and the fourth embodiment is whether the oil supply is controlled by the pump motor Q0 or by the oil flow control valve.

さらに続いて第3の発明における一つ目の実施例である
第5の実施例について第1 t 2 t 3 *4 A
t4B、 7A、 811Nkもとに説明するが、第虐
i施例との違いは、第2判定値設定回路(ロ)に替って
第条 n始めてから検出濃度値信号Sの値の最高値(第8図に
おけるB値)を記憶するとともにこの記憶値からあらか
じめ定め比値(第8圀におけるE値を差し引い比値バ第
8図におけるE値)を示す、あるいは先の最高値にあら
かじめ定めた1に満たない値を乗じ比値(第8図におけ
るF値)を示す設定値信号に2出力する。
Further, regarding the fifth embodiment, which is the first embodiment of the third invention, the first t 2 t 3 *4 A
t4B, 7A, 811Nk As will be explained below, the difference from the first embodiment is that the second judgment value setting circuit (b) is replaced with the highest value of the detected concentration value signal S from the beginning of the second judgment value setting circuit (b). (B value in Figure 8) and indicates a predetermined ratio value (subtracting the E value in the 8th area and the ratio value E value in Figure 8) from this memorized value, or preset it to the previous highest value. In addition, a value less than 1 is output as a set value signal indicating a multiplication ratio value (F value in FIG. 8).

以下第5の実施例について説明を続けるが、第1の実施
例の動作と同一部分の説明を省略し曲面が上昇して10
目の送気管四の先端−への到達時以降から説明?続ける
The explanation of the fifth embodiment will be continued below, but the explanation of the same parts as the operation of the first embodiment will be omitted, and the curved surface will rise to 10
Explanation from the time you reach the tip of eye air tube 4? continue.

第2図に示すように油面−が先端−へ到達すると検知濃
度値信号Sの値が降下してF値に一致(第1回目の一致
)する(第8図のf点)と第2判定回路(至)は給油停
止信号rf高出力てポンプ用モーターαCl消勢させる
とともに一致信号Xを出力してタイマーB K Tz時
ifi ′に計時させこの12時間の間空気切替弁0!
19ヲ付勢させてバイパス路■?開かせ圧縮空気(りI
J + ニング用)を送気管(ハ)と送気管翰へ送り、
特に送気管■の先端−から侵入し次曲を排出させる。1
2時間が経過すると空気切替弁(至)は消勢されてバイ
パス路■が閉止されるので送気管翰は再び吸引を始める
がこのときにはすでに燃料タンク働内の油の泡立ちが収
まって曲面は送気管(4)の先端部よりも下った状態で
安定しているので再度燃料タンクに)内の曲ガス?吸い
込み検出濃度値信号Sの値は上昇する。
As shown in Figure 2, when the oil level reaches the tip, the value of the detected concentration value signal S drops and matches the F value (first coincidence) (point f in Figure 8), and the second The judgment circuit (to) outputs a high output of the refueling stop signal rf to de-energize the pump motor αCl, outputs a coincidence signal
Energize 19 and create a bypass road ■? Open the compressed air
Send the air pipe (for J + ning) to the air pipe (c) and air pipe wire,
In particular, it enters from the tip of the air pipe ■ and causes the next song to be discharged. 1
After 2 hours have elapsed, the air switching valve (to) is deenergized and the bypass passage ■ is closed, so the air supply pipe starts suction again, but by this time, the oil in the fuel tank has already stopped bubbling and the curved surface has stopped. Since it is stable below the tip of the trachea (4), the bent gas inside the fuel tank again? The value of the suction detection concentration value signal S increases.

一方、タイマーDC4は一致信号Xが入力されてから1
4時間が経過すると小流給油開始信号iを出力してポン
プ用モーターQI Th低速付勢させる。こうすること
によってポンプ(3)がゆりくり回転されてノズ/v(
7)からの吐出流速が油tかき回さない程度すなわち泡
立たせない程度の速度で給油が行なわれ、曲面が再び上
昇して第2因の位置まできて送気・S(イ)の先端−に
達すると検出濃度値信号Sの逼が再び下って第4判定値
設定回路侶υのF値と一致(第8図の2点)するので(
2回目の一致〕第2判定回路輪から給油停止信号rが出
力されてポンプ用モーターOQが消勢され給油が終了さ
れるとともに一致信号yが出力さ几てタイマーC−の1
3時間の計時開始と服用信号2の出力によるブザー(ト
)の付勢が行なわ几る。
On the other hand, the timer DC4 is set to 1 after the coincidence signal X is input.
After 4 hours have elapsed, a small flow lubrication start signal i is output to energize the pump motor QI Th at low speed. By doing this, the pump (3) is rotated slowly and the nozzle /v(
7) The oil is supplied at a speed that does not stir the oil, that is, does not cause bubbles, and the curved surface rises again to the second cause position and reaches the tip of the air supply S (A). When the detected concentration value signal S decreases again and matches the F value of the fourth judgment value setting circuit υ (2 points in Fig. 8), (
2nd match] The second judgment circuit outputs the refueling stop signal r, de-energizes the pump motor OQ, and ends the refueling, and at the same time outputs the matching signal y, and the timer C- is turned off to 1.
The 3-hour clock starts and the buzzer (g) is energized by the output of the medication signal 2, and then the clock stops.

タイマー〇・■はt3時間計時中に送風信号W3を出力
し続けるので空気切替弁に)は13時間の間付勢されて
送気管(財)、センサー−。送気管Qのクリーニングが
行なわれ、13時間が経過して送風信号W3が消滅する
とコンプレッサー(7)の消勢。
Since the timers 〇 and ■ continue to output the blow signal W3 while counting time t3, the air switching valve) is energized for 13 hours, and the air pipe and sensor are activated. When the air pipe Q is cleaned and the air signal W3 disappears after 13 hours, the compressor (7) is deenergized.

空気遮断弁(ロ)の消勢(弁閉止)、空気切替弁(2)
の消勢が行なわnて次回の給油に備えら几ることになる
Deenergizing (valve closing) of air cutoff valve (b), air switching valve (2)
This deenergizes the fuel and prepares for the next refueling.

次に第3の発明の二つ目の実施例である第6の実施例を
第1.2.3.4A、 4B、 7B、 8図をもとに
説明するが、第6の実施例◇W、5の実施例との相異点
は、第5の実施例におけるポンプ用モーターDIが給油
許可信号りおよび小流給油開始信号iの入力で付勢され
給油停止信号rの入力で消勢されるのに対して第6の実
施例ではポンプ用モーターαQがノズル検知スイッチ@
から出力さ几る非検知信号nの発生で付勢され2検知信
号mの発生で消勢されるよう罠なっている点と、第5の
実施例にはなかつ次曲量調節弁■が連絡管aηに挿設さ
れるとともに油量調節弁駆動回路−が追加され次点にあ
り、油量調節弁−は給油許可信号りの発生によって大き
く開き小流給油開始信号iの発生によって小さく開くと
ともに給油停止信号rの発生で閉止される。
Next, the sixth embodiment, which is the second embodiment of the third invention, will be explained based on Figures 1.2.3.4A, 4B, 7B, and 8. The difference from the embodiment W and 5 is that the pump motor DI in the fifth embodiment is energized by the input of the refueling permission signal and the small flow refueling start signal i, and is deenergized by the input of the refueling stop signal r. On the other hand, in the sixth embodiment, the pump motor αQ is the nozzle detection switch @
In the fifth embodiment, the next bending amount control valve ■ is connected. At the same time as it is inserted into the pipe aη, an oil flow control valve drive circuit is added, and the oil flow control valve opens wide when the refueling permission signal is generated and opens slightly when the small flow refueling start signal i is generated. It is closed when the refueling stop signal r is generated.

すなわち第5の実施例と第6の実施例とは送油の制御?
ポンプ用モーターQ0で行なうか前2調節弁■で行なう
かの違いのみである。
In other words, are the fifth and sixth embodiments about oil feeding control?
The only difference is whether the pump motor Q0 or the front 2 control valve ■ is used.

(へ)効果 以上のようにガスセンサーを利用して油が満几んになり
たことを検出するように構成したので給油ノズル内を流
nる油によりて負圧を発生させる場合のように油に空気
が混って油の泡立ちが助長され誤動作を起すこともなく
、元センサー、フロート、静電気センサーのようにセン
サーが直接接液することがないので、センサーの故障や
誤動作を起す心配のない給油装置が得らnるものである
(F) Effect As mentioned above, the configuration is configured to detect when the oil is full using the gas sensor, so it can be used to generate negative pressure by the oil flowing inside the refueling nozzle. There is no risk of malfunctions caused by air mixing with the oil, which promotes oil foaming, and the sensor does not come into direct contact with liquid, unlike original sensors, floats, and static sensors, so there is no need to worry about sensor failure or malfunction. This is what you get when you don't have a refueling device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は給油装置の内部構造を、第2図は吐出管先端部
の詳ik、第3図はセンサー室の詳細?、第4A、 B
図はそれぞれ異なる動作状態にある切替ユニットの構造
を示し、第5A、 B図はそ几ぞれ第1および第2の実
施例における電気回路を、第5A、 B図はそれぞれ第
3および第4の実施例における電気回路を、第7A、 
B図はそれぞfL第5および第6の実施例における電気
回路?ブロック図で示し、第8図はガスセンサーの出力
曲線を示す図である。 (3)・・・ポンプ  (5)・・・流量計 (7)・
・・給油ノズルQυ、@、(ハ)・・・送気管  に)
・・−センサー室@・・・空気遮断弁  (至)・・・
空気切替弁0υ・・・噴射ノズ/l103・・・負圧発
生室(6)・・・チャツキ弁  (財)・・・通風板特
許出願人 株式会社 富永製作所 第1回 第2回 G′:3
Figure 1 shows the internal structure of the oil supply system, Figure 2 shows details of the tip of the discharge pipe, and Figure 3 shows details of the sensor chamber. , 4th A, B
The figures show the structure of the switching unit in different operating states, Figures 5A and B show the electrical circuits in the first and second embodiments, respectively, and Figures 5A and B show the electrical circuits in the third and fourth embodiments, respectively. The electric circuit in the example of 7A,
Figure B shows the electric circuit in the fifth and sixth embodiments, respectively. It is shown in a block diagram, and FIG. 8 is a diagram showing an output curve of the gas sensor. (3)...Pump (5)...Flowmeter (7)・
...Refueling nozzle Qυ, @, (c)...to the air pipe)
...-Sensor chamber @...Air cutoff valve (to)...
Air switching valve 0υ...Injection nozzle/l103...Negative pressure generation chamber (6)...Chatsuki valve (Foundation)...Ventilating plate patent applicant Tominaga Seisakusho Co., Ltd. 1st 2nd G': 3

Claims (7)

【特許請求の範囲】[Claims] (1)送油用ポンプと、このポンプで汲み出した油を計
量する流量計と、流量計に繋がる油流路でありハウジン
グ外に延長された給油ホースと給油ホース先端の給油ノ
ズルと、一方端が給油ノズルの吐出管近傍まで延長され
他方端が負圧発生源に接続された送気管と、負圧発生源
による吸引動作中にこの送気管を介して吸引されるガス
に接触する位置に設置され、油から発生する検知対象成
分ガスの濃度を検出し、対応する検出濃度値信号sを発
生するガスセンサーと、当該給油油種から発生する検知
対象成分ガスの最高検出濃度値であるB値より小さい濃
度値であるC値が設定されるとともにこのC値を示す設
定値信号cを出力する判定値設定回路と、前記検出濃度
値信号sの値と前記設定値信号cの値であるC値とを比
較し、検出濃度値信号sの値が小さくなる途中でC値に
至つたとき給油停止信号rを出力する判定回路とを備え
たことを特徴とするガスセンサー付給油装置。
(1) An oil supply pump, a flowmeter that measures the oil pumped by this pump, an oil supply hose that is an oil flow path connected to the flowmeter and extends outside the housing, and an oil supply nozzle at the tip of the oil supply hose, and one end is installed near the discharge pipe of the refueling nozzle, and the other end is connected to the negative pressure source, and the gas sucked through the air tube is installed during suction operation by the negative pressure source. a gas sensor that detects the concentration of the component gas to be detected generated from the oil and generates a corresponding detected concentration value signal s, and a B value that is the highest detected concentration value of the component gas to be detected generated from the type of refueling oil. a determination value setting circuit for setting a C value which is a smaller density value and outputting a setting value signal c indicating this C value; A refueling device with a gas sensor, comprising: a determination circuit that outputs a refueling stop signal r when the value of the detected concentration value signal s reaches the C value while decreasing.
(2)送油用ポンプと、このポンプで汲み出した油を計
量する流量計と、流量計に繋がる油流路でありハウジン
グ外に延長された給油ホースと給油ホース先端の給油ノ
ズルと、一方端が給油ノズルの吐出管近傍まで延長され
、他方端が負圧発生源に接続された送気管と、負圧発生
源による吸引動作中にこの送気管を介して吸引されるガ
スに接触する位置に設置され、油から発生する検知対象
成分ガスの濃度を検出し、対応する検出濃度値信号sを
発生するガスセンサーとこのガスセンサーの検出濃度値
の時間に対する変化率であり検出濃度値が小さくなつた
ときの値であるa値が設定されるとともにこのa値を示
す設定値信号dを出力する判定値設定回路と前記検出濃
度値信号sの値の時間に対する変化率と、前記設定値信
号dの値であるa値とを比較し両者が一致したとき給油
停止信号rを出力する判定回路とを備えたことを特徴と
するガスセンサー付給油装置。
(2) An oil supply pump, a flowmeter that measures the oil pumped by this pump, an oil supply hose that is an oil flow path connected to the flowmeter and extends outside the housing, and an oil supply nozzle at the tip of the oil supply hose, and one end is extended to the vicinity of the discharge pipe of the refueling nozzle, and the other end is in contact with the air supply pipe connected to the negative pressure generation source and the gas sucked through this air supply pipe during suction operation by the negative pressure generation source. A gas sensor that is installed to detect the concentration of the detection target component gas generated from oil and generate a corresponding detected concentration value signal s, and the rate of change in the detected concentration value of this gas sensor over time, and the detected concentration value becomes smaller. a determination value setting circuit that outputs a set value signal d indicating the a value, a rate of change over time of the value of the detected concentration value signal s, and the set value signal d. 1. A refueling device with a gas sensor, comprising: a determination circuit that compares the a value with the value a and outputs a refueling stop signal r when the two match.
(3)送油用ポンプと、このポンプで汲み出した油を計
量する流量計と、流量計に繋がる油流路でありハウジン
グ外に延長された給油ホースと給油ホース先端の給油ノ
ズルと、一方端が給油ノズルの吐出管近傍まで延長され
他方端が負圧発生源に接続された送気管と、負圧発生源
による吸引動作中にこの送気管を介して吸引されるガス
に接触する位置に設置され、油から発生する検知対象成
分ガスの濃度を検出し、対応する検出濃度値信号sを発
生するガスセンサーと、給油中の燃料タンクから発生す
る検知対象成分ガスの最高検出濃度値を記憶するととも
にその記憶値よりも小さい濃度値Fを示す設定値信号k
を出力する判定値設定回路と、前記検出濃度値信号sの
値と前記設定値信号kの値であるF値とを比較し検出濃
度値信号sの値が小さくなる途中でF値に至つたとき給
油停止信号rを出力する判定回路とを備えたことを特徴
とするガスセンサー付給油装置。
(3) An oil supply pump, a flowmeter that measures the oil pumped by this pump, an oil supply hose that is an oil flow path connected to the flowmeter and extends outside the housing, and an oil supply nozzle at the tip of the oil supply hose, and one end is installed near the discharge pipe of the refueling nozzle, and the other end is connected to the negative pressure source, and the gas sucked through the air tube is installed during suction operation by the negative pressure source. a gas sensor that detects the concentration of the detection target component gas generated from the oil and generates a corresponding detected concentration value signal s, and stores the maximum detected concentration value of the detection target component gas generated from the fuel tank during refueling. and a set value signal k indicating a density value F smaller than the stored value.
and a judgment value setting circuit that outputs the value of the detected concentration value signal s, and compares the value of the detected concentration value signal s with the value of the F value, which is the value of the set value signal k, and determines whether the value of the detected concentration value signal s reaches the F value while the value of the detected concentration value signal s is decreasing. 1. A refueling device with a gas sensor, comprising: a determination circuit that outputs a refueling stop signal r when
(4)給油停止信号rの発生によつて送油用ポンプの駆
動が停止されることを特徴とする第1項、第2項または
第3項記載のガスセンサー付給油装置。
(4) The oil supply device with a gas sensor according to item 1, 2, or 3, wherein the oil supply pump is stopped when the oil supply stop signal r is generated.
(5)給油停止信号rの発生によつて送油路に設けられ
た弁が閉止されることを特徴とする第1項、第2項また
は第3項記載のガスセンサー付給油装置。
(5) The oil supply device with a gas sensor according to item 1, 2, or 3, wherein a valve provided in the oil supply path is closed upon generation of the oil supply stop signal r.
(6)F値とは給油中の燃料タンクから発生する検知対
象成分ガスの最高検出濃度値からあらかじめ定めた値を
差し引いた値であることを特徴とする第3項記載のガス
センサー付給油装置。
(6) The refueling device with a gas sensor according to item 3, wherein the F value is a value obtained by subtracting a predetermined value from the maximum detected concentration value of the component gas to be detected generated from the fuel tank during refueling. .
(7)F値とは給油中の燃料タンクから発生する検知対
象成分ガスの最高検出濃度値にあらかじめ定めた1に満
たない数値を乗じた値であることを特徴とする第3項記
載のガスセンサー付給油装置。
(7) The gas according to item 3, wherein the F value is a value obtained by multiplying the maximum detected concentration value of the detection target component gas generated from the fuel tank during refueling by a predetermined value less than 1. Oil supply device with sensor.
JP30840387A 1987-12-05 1987-12-05 Refueling device with gas sensor Expired - Fee Related JPH0714760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30840387A JPH0714760B2 (en) 1987-12-05 1987-12-05 Refueling device with gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30840387A JPH0714760B2 (en) 1987-12-05 1987-12-05 Refueling device with gas sensor

Publications (2)

Publication Number Publication Date
JPH01153497A true JPH01153497A (en) 1989-06-15
JPH0714760B2 JPH0714760B2 (en) 1995-02-22

Family

ID=17980643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30840387A Expired - Fee Related JPH0714760B2 (en) 1987-12-05 1987-12-05 Refueling device with gas sensor

Country Status (1)

Country Link
JP (1) JPH0714760B2 (en)

Also Published As

Publication number Publication date
JPH0714760B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JP2004270573A (en) Device for detecting evaporating fuel gas leak and vent valve device applied to same
JPH01153497A (en) Oil feeder with gas sensor
GB2140091A (en) Fuel supply system for a diesel engine
JPH01199900A (en) Oil feed device with gas sensor and oil kind identification method in the same
JPH0117956B2 (en)
JP3206158B2 (en) Refueling device
JP2006118217A (en) Water supply system and control device
EP1557650A1 (en) Electronic air separation system
JPH06304087A (en) Bathtub water cleaning device
JP2542661B2 (en) Refueling device
JPH06315690A (en) Cleaning method for bathtub water
JPH0640497A (en) Oil feeder having oil kind identifying function
KR200267305Y1 (en) Injecter for auto chlorine supply
JP3262129B2 (en) Refueling device
JPH0692906B2 (en) Method and apparatus for alarm control of water level in tank
JPH01308797A (en) Method for refilling oil with automatic oil filling up device
JPH054696A (en) Oil supply apparatus equipped with oil type identifying function
JPH0231437Y2 (en)
JPH0712921Y2 (en) Water supply device for local water immersion flaw detection
JPH02191199A (en) Oil kind identification apparatus for use with oil feeder
JPH03289495A (en) Liquid feeder with fuel selecting function
JPH0637238B2 (en) Oil supply device with oil type sensor
JPH0958799A (en) Liquid conveying device
JPS6311235B2 (en)
JPH0741957B2 (en) Oil type discriminator installed alongside refueling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees