JPH01152400A - High anticorrosion device - Google Patents

High anticorrosion device

Info

Publication number
JPH01152400A
JPH01152400A JP62309636A JP30963687A JPH01152400A JP H01152400 A JPH01152400 A JP H01152400A JP 62309636 A JP62309636 A JP 62309636A JP 30963687 A JP30963687 A JP 30963687A JP H01152400 A JPH01152400 A JP H01152400A
Authority
JP
Japan
Prior art keywords
corrosion
resistant
joint
dissimilar
dissimilar material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62309636A
Other languages
Japanese (ja)
Inventor
Yoshiki Atsuno
熱野 良樹
Yasuhiro Sasada
佐々田 泰宏
Tsutomu Konuma
小沼 勉
Takuma Yoshida
拓真 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62309636A priority Critical patent/JPH01152400A/en
Publication of JPH01152400A publication Critical patent/JPH01152400A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To prevent radiation leakage from being emitted into the outside by making a piece of inner piping of high anticorrosion material, a device body of high anticorrosion stainless steel alloy and using a dissimilar metal joint structure at a connecting part. CONSTITUTION:The material of a dissimilar metal joint outside part 6 is the same anticorrosion stainless steel alloy as a device body 1. The material of a dissimilar metal joint inside part 7 is the same high anticorrosion one as a piece of inner piping 2. A dissimilar metal joint 4 is fixed on the device body 1 by both inner and outer faces in order that the joining face of the dissimilar metal joint outside part 6 and the dissimilar metal inside part 6 is positioned in solution 5. The inner piping 2 and an outside supply pipe 3 are joined to form a closed structure. Anticorrosion stainless steel alloy of the dissimilar metal joint part 4 and the thickness of a pipe of a part with which solution come into contact is determined in consideration for corrosion allowance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高腐食性溶液を処理する加熱器または冷却器な
どの高耐食性機器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to highly corrosion resistant equipment such as heaters or coolers for processing highly corrosive solutions.

(従来の技術〕 従来、使用済原子燃料再処理設備に用いられる高放射性
廃液の蒸発缶等の機器は、特開昭57−107201号
の蒸発器に記載されているように、機器本体内部に加熱
管を有し、該加熱管に外部より高温水蒸気等の熱媒体を
供給し、機器内部の液体を加熱する構造としている。ま
た、冷却器の場合は機器本体内部に冷却管を有し、該冷
却管に水等の冷却材を供給して、機器内部の溶液を冷却
することになる。
(Prior art) Conventionally, equipment such as evaporators for highly radioactive waste liquid used in spent nuclear fuel reprocessing equipment has been equipped with an evaporator inside the main body of the equipment, as described in the evaporator of JP-A-57-107201. It has a heating tube, and a heat medium such as high-temperature steam is supplied from the outside to the heating tube to heat the liquid inside the device.In addition, in the case of a cooler, it has a cooling tube inside the device body, A coolant such as water is supplied to the cooling pipe to cool the solution inside the device.

ここで該溶液は核分裂生成物を含む高放射性の高濃度硝
酸溶液であり、特に加熱器の場合は、加熱によって加熱
器内部は極めて高腐食環境となる。
Here, the solution is a highly radioactive, highly concentrated nitric acid solution containing fission products, and especially in the case of a heater, the interior of the heater becomes an extremely corrosive environment due to heating.

すなわち、硝酸溶液中における構造材の腐食は硝酸濃度
、温度が高くなると大きくなるということが明らかにさ
れており、また、加熱蒸気管等と接する伝熱面において
は特に腐食条件が厳しいことが明らかにされている。こ
のために先行例の蒸発缶等で腐食事例がある。これらの
問題点に対処するために5機器本体および内部配管は、
耐食性ステンレス合金等を用い、さらに腐食しろを考慮
した肉厚としていた。また、腐食しろを無くし、伝熱効
率を向上するためには、より高耐食性を有するZr等の
材料を用いる必要があるが、高放射性溶液を取扱う機器
であることから、漏洩等による溶液の外部流出を防ぐた
めに、内部配管と機器本体の接続部は溶接構造を用いた
密閉構造としなれればならず、配管を含む機器全体をZ
r等の高耐食性材料とする必要がある。
In other words, it has been shown that corrosion of structural materials in nitric acid solutions increases as the nitric acid concentration and temperature rise, and it is also clear that corrosion conditions are particularly severe on heat transfer surfaces that come into contact with heating steam pipes, etc. It is being done. For this reason, there have been cases of corrosion in evaporators and the like in previous examples. In order to deal with these problems, the 5 equipment bodies and internal piping are
A corrosion-resistant stainless steel alloy was used, and the wall thickness was designed to allow for corrosion. In addition, in order to eliminate corrosion margins and improve heat transfer efficiency, it is necessary to use materials such as Zr that have higher corrosion resistance, but since the equipment handles highly radioactive solutions, there is a risk of the solution leaking outside. In order to prevent
It is necessary to use a highly corrosion resistant material such as R.

〔発明が解決しようとする問題点〕 上記従来技術において、内部配管を耐食性ステンレス合
金製とした場合、腐食しろを考慮すると肉厚を大きくせ
ねばならず、内部配管の伝熱効率と上げることができな
いという問題があった。また、伝熱効率を上げる目的で
内部配管肉厚を薄くするためにZr等の高耐食性材料製
とした場合。
[Problems to be solved by the invention] In the above conventional technology, when the internal piping is made of a corrosion-resistant stainless alloy, the wall thickness must be increased in consideration of the corrosion margin, and the heat transfer efficiency of the internal piping cannot be improved. There was a problem. In addition, in order to reduce the internal pipe wall thickness in order to increase heat transfer efficiency, the pipe is made of a highly corrosion-resistant material such as Zr.

機器本体も同材質とせねばならず、機器のコストが高く
なるという問題があった。
The main body of the device must also be made of the same material, which poses a problem of increasing the cost of the device.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は内部配管を肉厚を小さくできるZr
等の高耐食性材料製とし、機器本体を必要な腐食しろを
考慮した高耐食ステレンス合金製とし、接続部に異材継
手構造を用いることにより達成される。
The solution to the above problem is Zr, which allows the wall thickness of the internal piping to be reduced.
This is achieved by making the device body made of highly corrosion-resistant stainless steel alloy with the required corrosion allowance in mind, and by using a dissimilar material joint structure for the connection part.

〔作用〕[Effect]

内部配管は肉厚の小さいZr等の高耐食性材料を用いて
おり、内部を通過する高温水蒸気または水等の冷却材に
より、機器内部の溶液を加熱または冷却する。したがっ
て熱部配管への腐食による溶液の漏洩を防止するととも
に、加熱または冷却のための伝熱効率を向上させること
ができる。内部配管と機器本体の接続構造は異材継手構
造を用いることにより、同材質同志となり、溶接等によ
り密示構造が保持できることから外部への放射能漏れが
発生することがない。
The internal piping is made of a highly corrosion-resistant material such as Zr with a small wall thickness, and the solution inside the device is heated or cooled by a coolant such as high-temperature steam or water that passes through the inside. Therefore, it is possible to prevent solution leakage due to corrosion to the hot section piping, and to improve heat transfer efficiency for heating or cooling. By using a dissimilar material joint structure for the connection structure between the internal piping and the main body of the device, they are made of the same material, and a sealed structure can be maintained by welding, etc., so no radioactivity leaks to the outside.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図ないし第5図により説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

第1図において高耐食性機器本体1内には溶液5が入っ
ており、内部配管2は溶液5内に浸されている。内部配
管2には外部供給管3より高温水蒸気等の加熱材または
水等の冷却材が供給され、溶液5を加熱または冷却する
。ここで高耐食性機器本体1および外部供給管3の材質
は耐食性ステンレス合金とし、必要な腐食しろを考慮し
た板厚とする。内部配管2の材質は、Zr、Ti、T’
i−5%Ta等の高耐食性材料とし、強度および製作性
を考慮した必要な肉厚とする。
In FIG. 1, a solution 5 is contained in the highly corrosion-resistant device main body 1, and the internal piping 2 is immersed in the solution 5. A heating material such as high-temperature steam or a cooling material such as water is supplied to the internal pipe 2 from an external supply pipe 3 to heat or cool the solution 5. Here, the material of the highly corrosion-resistant device main body 1 and the external supply pipe 3 is a corrosion-resistant stainless steel alloy, and the plate thickness is determined in consideration of the necessary corrosion margin. The material of the internal pipe 2 is Zr, Ti, T'
It is made of a highly corrosion-resistant material such as i-5% Ta, and has the necessary thickness considering strength and manufacturability.

第2図は第1図のア部配管接続部の一実施例を示す詳細
断面図である。第2図において異材継手部4は異材継手
外側部6と異材継手内側部7を爆発接合等の手段により
製作したものであり、異材継手外側部6の材質は機器本
体1と同じ耐食性ステレンス合金とし、異材継手内側部
7の材質は内部配管2と同じZr等の高耐食材料とする
。異材継手外側部6と異材継手内側部7の接合面は溶液
5内に位置するように異材継手部4を溶接等の手段によ
り機器本体1に内外両面で溶接等の手段により固定し、
内部配管2と外部供給管3とは同様に溶接等の手段によ
り密閉構造が形成されるように接合する。ここで異材継
手部4の耐食性ステンレス合金と溶液の接する部分の管
の肉厚は腐食しろを考慮した厚さとする。
FIG. 2 is a detailed sectional view showing an embodiment of the A part piping connection part of FIG. 1. In FIG. 2, the dissimilar material joint 4 is made by combining an outer dissimilar material joint 6 and an inner dissimilar material joint 7 by means such as explosive welding, and the material of the dissimilar material joint outer portion 6 is the same corrosion-resistant stainless alloy as the main body 1. The material of the dissimilar joint inner side 7 is the same highly corrosion-resistant material as the internal pipe 2, such as Zr. The dissimilar metal joint part 4 is fixed to the device main body 1 by means such as welding on both the inside and outside surfaces so that the joint surfaces of the dissimilar metal joint outer part 6 and the dissimilar metal joint inner part 7 are located in the solution 5,
The internal pipe 2 and the external supply pipe 3 are similarly joined by means such as welding so that a sealed structure is formed. Here, the wall thickness of the pipe at the portion where the corrosion-resistant stainless steel alloy of the dissimilar material joint 4 comes into contact with the solution is determined to take into account the corrosion margin.

本実施例によれば、内部配管2と溶液5の接する箇所は
高耐食性材料であり、しかも内部配管2の肉厚を最小限
に抑えることができ、内部配管肉厚と溶液は密閉しゃ断
できることから、溶液の漏洩防止による安全性確保、内
部配管を高耐食材料とすることにより、従来の内部配管
では機器の使用年数に応じた腐食しろを考慮した肉厚と
しなくてはならなかったところを、必要な強度を得るだ
けの肉厚とすることができるため、伝熱効率を高めるこ
とができ、性能の低下なしに機器の軽量小型化が可能と
なるという効果、異材継手部4の固定を強固にできる効
果がある。
According to this embodiment, the part where the internal piping 2 and the solution 5 come into contact is made of a highly corrosion-resistant material, and the wall thickness of the internal piping 2 can be minimized, and the internal piping wall thickness and the solution can be hermetically isolated. , by ensuring safety by preventing solution leakage, and by using highly corrosion-resistant material for internal piping, where conventional internal piping had to be made thicker to allow for corrosion over the years of use of the equipment, Since the wall thickness can be made thick enough to obtain the necessary strength, heat transfer efficiency can be increased, the equipment can be made lighter and smaller without deterioration of performance, and the dissimilar material joint part 4 can be firmly fixed. There is an effect that can be done.

また、腐食対策のために異材継手部の肉厚を一部大きく
しているが、管の肉厚の大きな箇所はごく一部であるの
で伝熱効率低下には至らない。
In addition, some of the wall thicknesses of the dissimilar material joints are increased to prevent corrosion, but since the wall thickness of the tube is only large in only a few areas, this does not result in a reduction in heat transfer efficiency.

第3図に第1図ア部の配管接続部の他の実施例を示す。FIG. 3 shows another embodiment of the piping connection part shown in part A of FIG.

第3図において異材継手部4は異材継手外側部6と異材
継手内側部7を異材継手内側部7の外周面を接合面8と
して爆発接合等の手段により製作し、たちのであり、材
質は前述の第2図の実施例と同様である。異材継手4の
外周部に耐食性ステレンス合金よりなるフランジ部13
を設け、該フランジ端部と機器本体1とを溶接等の手段
により固定し、内部配管2および外部供給管3と溶接等
の手段により接合し、内部配管と溶液を密閉しゃ新構造
とする。
In Fig. 3, the dissimilar material joint 4 is made by a method such as explosion welding, in which the dissimilar material joint outer part 6 and the dissimilar material joint inner part 7 are made with the outer peripheral surface of the dissimilar material joint inner part 7 as the joint surface 8, and the materials are as described above. This is similar to the embodiment shown in FIG. A flange portion 13 made of corrosion-resistant stainless steel is provided on the outer periphery of the dissimilar material joint 4.
The flange end and the main body 1 of the device are fixed by means such as welding, and the internal piping 2 and the external supply pipe 3 are joined by means such as welding, thereby sealing the internal piping and the solution to form a new structure.

本実施例によれば、前述の第2図の実施例と同様の効果
を得ることができる。加えて本方法は異材の接合面8の
面積が大きくできるという効果がある。
According to this embodiment, the same effects as the above-described embodiment shown in FIG. 2 can be obtained. In addition, this method has the effect of increasing the area of the joint surface 8 of dissimilar materials.

第4図に第1図ア部の配管接続部の他の実施例を示す。FIG. 4 shows another embodiment of the piping connection part shown in part A of FIG.

第4図において異材継手部4は異材継手外側部6と異材
継手内側部7を異材継手膜内側部7の外周面を接合面8
として爆発接合等の手段により製作したものであり、材
質は前述の第2図の実施例と同様である。異材継手部4
は機器本体1に溶接等の手段により固定し、内部配管2
および外部供給管3と溶接等の手段により接合し、内部
配管と溶液を密閉しゃ新構造とする。
In FIG. 4, the dissimilar material joint part 4 connects the dissimilar material joint outer part 6 and the dissimilar material joint inner part 7, and connects the outer peripheral surface of the dissimilar material joint membrane inner part 7 to the joint surface 8.
The material is the same as that of the embodiment shown in FIG. 2 described above. Dissimilar material joint part 4
is fixed to the device body 1 by means such as welding, and the internal piping 2
It is then joined to the external supply pipe 3 by means such as welding, and the internal pipe and solution are sealed to form a new structure.

本実施例によれば、前述の第3図の実施例と同様の効果
を得ることができる。
According to this embodiment, the same effects as the embodiment shown in FIG. 3 described above can be obtained.

第5図に第1図ア部配管接続部の他の実施例を示す。第
5図において異材継手部9は異材継手外側部10と異材
継手内側部11とから成り、爆発接合等の手段により製
作されたものである。材質は異材継手外側部10は耐食
性ステレンス合金。
FIG. 5 shows another embodiment of the piping connection section A in FIG. 1. In FIG. 5, the dissimilar material joint section 9 consists of a dissimilar material joint outer section 10 and a dissimilar material joint inner section 11, and is manufactured by means such as explosive welding. As for the material, the outer part 10 of the dissimilar joint is made of corrosion-resistant stainless steel alloy.

異材継手内側部11はZr等の高耐食性材料であり、異
材継手部9は機器本体1に同材質部で溶接等の手段で密
閉構造となるように固定される。異材継手部4は前述の
第2図の実施例で説明したものと同様の構造とする。こ
こで異材継手部4の接合面8は異材継手部9の接合面1
2と同位置となるようにし、異材継手外側部10と異材
継手外側部6および異材継手内側部11と異材継手内側
部7を溶接等の手段で密閉構造となるように固定する。
The dissimilar material joint inner part 11 is made of a highly corrosion-resistant material such as Zr, and the dissimilar material joint part 9 is fixed to the device main body 1 using the same material by means such as welding to form a sealed structure. The dissimilar material joint 4 has a structure similar to that described in the embodiment shown in FIG. 2 above. Here, the joint surface 8 of the dissimilar material joint 4 is the joint surface 1 of the dissimilar material joint 9.
2, and fix the dissimilar material joint outer part 10, the dissimilar material joint outer part 6, and the dissimilar material joint inner part 11, and the dissimilar material joint inner part 7 to form a hermetically sealed structure by means such as welding.

内部配管2および外部供給管3とは第2図で説明したと
同様に異材継手部4と接続する。
The internal pipe 2 and the external supply pipe 3 are connected to the dissimilar material joint 4 in the same manner as described in FIG.

本実施例によれば、前述の第2図の例で説明した効果に
加え、内部配管と溶液の接触面を全て高耐食性材料にで
きるので、内部配管の耐食性をさらに向上できるという
効果がある。
According to this embodiment, in addition to the effects described in the example of FIG. 2 above, all the contact surfaces between the internal piping and the solution can be made of highly corrosion-resistant materials, so there is an effect that the corrosion resistance of the internal piping can be further improved.

第6図ないし第7図に本発明の他の実施例を示す。第6
図において機器本体1のうち腐食環境の厳しい溶液と接
する部分14および内部配管2の材質をZr等の高耐食
性材料とし、機器本体1のうち溶液と接しない部分15
の材質を耐食性ステンレス合金とする。ここで1機器本
体の高耐食性材質部分14と耐食性ステンレス合金部分
15との問および内部配管2および外部供給管3の間に
爆発接合等の手段で製作されたZr等の高耐食材料と耐
食性ステレンス合金から成る異材継手16および17を
介して、各々の同材質部分で溶接等の密閉構造が形成さ
れる方法で接合、固定する。
Other embodiments of the present invention are shown in FIGS. 6 and 7. 6th
In the figure, a portion 14 of the device body 1 that comes into contact with a solution in a severe corrosive environment and the internal piping 2 are made of a highly corrosion-resistant material such as Zr, and a portion 15 of the device body 1 that does not come into contact with the solution.
The material is a corrosion-resistant stainless steel alloy. Here, between the highly corrosion-resistant material part 14 and the corrosion-resistant stainless steel alloy part 15 of the main body of one device, and between the internal piping 2 and the external supply pipe 3, a highly corrosion-resistant material such as Zr and corrosion-resistant stainless steel manufactured by means such as explosion bonding are used. The dissimilar material joints 16 and 17 made of alloy are used to join and fix the respective parts made of the same material by a method such as welding to form a sealed structure.

ここで機器本体の高耐食性材料部分14の板厚は機器本
体の強度、製作性を考慮した厚さとし、機器本体の耐食
性ステンレス合金部分15の板厚は、溶液の気相部分の
腐食しろのみ考慮した板厚とする。
Here, the plate thickness of the highly corrosion-resistant material portion 14 of the device body is a thickness that takes into consideration the strength and manufacturability of the device body, and the plate thickness of the corrosion-resistant stainless steel alloy portion 15 of the device body is determined by considering only the corrosion margin of the gas phase portion of the solution. The plate thickness is as follows.

本実施例によれば、配管を含む機器全体を最小限の板厚
で構成することができ1機器の高耐食性を達成するとと
もに軽量化を図ることができる。
According to this embodiment, the entire device including the piping can be configured with the minimum plate thickness, and high corrosion resistance and weight reduction can be achieved in one device.

また、機器全体の材質を高耐食性材料としたものに比ベ
コストの低下を図ることができる。
Furthermore, the cost can be reduced compared to when the entire device is made of a highly corrosion-resistant material.

第8図ないし第9図に本発明の他の実施例を示す。本実
施例は前述の第6図に示す高耐食性機器の高耐食性材料
部分15の外面に加熱または冷却のための外部ジャケッ
ト18を有するものである。
Other embodiments of the present invention are shown in FIGS. 8 and 9. In this embodiment, an external jacket 18 for heating or cooling is provided on the outer surface of the highly corrosion resistant material portion 15 of the highly corrosion resistant equipment shown in FIG. 6.

本発明によれば外部ジャケット18から機器本体1の内
部溶液5うの熱伝達ができるので1機器の加熱または冷
却の効率がさらに向上できる。また、外部からの加熱ま
たは冷却が、高耐食性材料を使用することにより、最小
限の板厚を通してできるので伝熱効率の向上を図ること
ができる。また、加熱器の場合、腐食環境の厳しい伝熱
面を高耐食性材料としていることにより、耐食性の面で
特に効果がある。
According to the present invention, heat can be transferred from the external jacket 18 to the internal solution 5 of the device main body 1, so that the efficiency of heating or cooling one device can be further improved. Further, by using highly corrosion-resistant materials, external heating or cooling can be performed through the minimum plate thickness, thereby improving heat transfer efficiency. Furthermore, in the case of a heater, the heat transfer surface, which is subjected to a severe corrosive environment, is made of a highly corrosion-resistant material, which is particularly effective in terms of corrosion resistance.

第10図に本発明の他の実施例を示す。第10図におい
て機器本体1は内部に伝熱のための伝熱管2と管板19
から成る管−管板部20を有し、外部供給管3より伝熱
管21の外面側に加熱水蒸気管の加熱材を供給し、内部
の溶液5を加熱沸騰させる蒸発器である。第10図にお
いて伝熱管21と上下の管板19から成る管−管板部2
0の材質はZr、Ti、Ti−5%Ta等の高耐食性材
料とする。機器本体の上下部1の材料は耐食性ステレン
ス合金とする。M機器本体1と管−管板部20との接続
部には爆発接合等により製作したZr、Ti、Ti−5
%Ta等の高耐食性材料と耐食性ステンレス合金との異
材継手16を介し、同材質部分で溶接等の密閉構造が形
成される手段で接合、固定する。外部供給管3と該管−
管板部20との間も同様に異材継手17を用いて接合す
る。
FIG. 10 shows another embodiment of the present invention. In FIG. 10, the device main body 1 includes heat transfer tubes 2 and a tube plate 19 for heat transfer.
This evaporator has a tube-tube plate section 20 consisting of a tube plate section 20, and supplies the heating material of the heating steam tube to the outer surface side of the heat transfer tube 21 from the external supply tube 3 to heat and boil the solution 5 inside. In FIG. 10, a tube-tube plate section 2 consisting of a heat transfer tube 21 and upper and lower tube plates 19 is shown.
The material of 0 is a highly corrosion resistant material such as Zr, Ti, Ti-5% Ta. The material of the upper and lower parts 1 of the device body is a corrosion-resistant stainless steel alloy. Zr, Ti, Ti-5 manufactured by explosion bonding etc. are used at the connection part between the M device main body 1 and the tube-tube plate part 20.
Through a dissimilar material joint 16 made of a highly corrosion-resistant material such as %Ta and a corrosion-resistant stainless alloy, parts of the same material are joined and fixed by means such as welding to form a sealed structure. External supply pipe 3 and the pipe
Similarly, a dissimilar material joint 17 is used to join the tube plate portion 20.

本実施例によれば、機器本体1のうち最も腐食環境の厳
しい伝熱面を有する伝熱管部のみ高級材料とすることが
できるので1機器のコストを低下できる効果がある。さ
らに伝熱管肉厚も最小限に小さくできるため、伝熱効果
を上げることができ。
According to this embodiment, only the heat transfer tube portion of the device main body 1 having the heat transfer surface subjected to the most severe corrosive environment can be made of high-grade material, which has the effect of reducing the cost of the device. Furthermore, the thickness of the heat transfer tube can be minimized, increasing the heat transfer effect.

機器の性能低下なしに軽量小型が可能となるという効果
がある。
This has the effect of making the device lighter and smaller without deteriorating its performance.

第1図ないし第10図に示す高耐食性機器の異材継手に
おいて、異材継手はZr、Ti、Ti−5%Ta等の高
耐食材料と耐食性ステンレス合金をTaを中間材として
爆発接合により製作したものとすれば強度、耐食性等に
おいて特に優れた性能を有する高耐食性機器を実現する
こができる。
In the dissimilar material joints of highly corrosion resistant equipment shown in Figs. 1 to 10, the dissimilar material joints are made by explosion bonding of highly corrosion resistant materials such as Zr, Ti, Ti-5% Ta, etc. and corrosion resistant stainless alloys using Ta as an intermediate material. If so, it is possible to realize highly corrosion-resistant equipment that has particularly excellent performance in terms of strength, corrosion resistance, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば腐食環境の特に厳しい内部配管等の部分
のみをZr等の高耐食材料とするので、機量全体を高耐
食材料とする場合に比べ、機器のコストを抑えることが
できる。又、内部配管、外部ジャケットなどの伝熱部分
の肉厚を腐食シロを考慮せず最少限に抑えることができ
るので、仮に熱伝導率が同じであるとして、肉厚を約1
/2にできるので、熱伝達による温度低下も1/2です
み約10%程度の熱効率の向上が期待できる。又。
According to the present invention, only the parts such as internal piping, which are exposed to a particularly severe corrosive environment, are made of highly corrosion-resistant material such as Zr, so the cost of the equipment can be reduced compared to the case where the entire equipment is made of highly corrosion-resistant material. In addition, the wall thickness of heat transfer parts such as internal piping and external jackets can be kept to a minimum without considering corrosion sills, so assuming that the thermal conductivity is the same, the wall thickness can be reduced to about 1
/2, the temperature drop due to heat transfer can be reduced to 1/2, and an improvement in thermal efficiency of about 10% can be expected. or.

内径を同じくして外径を細くできる事から、同一体積中
の伝熱管の本数を増やすことが可能であり機器の小型軽
量化が可能である。コイルの外径を従来のものに比べ1
0%小さくすることができるのでその減容は約20%で
あり、同一体積内のコイル表面積は20%向上すること
が可能である6以上のように効果が本発明において得ら
れる。
Since the outer diameter can be made thinner while keeping the inner diameter the same, it is possible to increase the number of heat exchanger tubes in the same volume, making it possible to make the equipment smaller and lighter. The outer diameter of the coil is 1 compared to the conventional one.
0%, the volume reduction is about 20%, and the coil surface area within the same volume can be increased by 20%.6 or more effects are obtained in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す高耐食性機器の縦断面
図、第2図ないし第5図は第1図のア部の詳細図、第6
図、第8図、第10図は本発明の他の実施例を示す高耐
食性機器の縦断面図、第7図は第6図のイ部の詳細図、
第9図は第8図のつ部の詳細図である。 1・・・高耐食性機器本体、2・・・内部配管、3・・
・外部供給管、4・・・異材継手部、5・・・溶液、6
・・・異材継手外側部、7・・・異材継手内側部、8・
・・接合面。 9・・・異材継手部、10・・・異材継手外側部、11
・・・異材継手内側部、12・・・接合面、13・・・
フランジ部、14・・・機器本体溶液接触部、15・・
・機器本体溶液非接触部、16・・・異材継手、17・
・・異材継手。 18・・・外部ジャケット、19・・・管板、20・・
・管−管板部、21・・・伝熱管。
FIG. 1 is a vertical sectional view of a highly corrosion-resistant device showing an embodiment of the present invention, FIGS. 2 to 5 are detailed views of the part A in FIG. 1, and FIG.
8 and 10 are longitudinal cross-sectional views of highly corrosion-resistant equipment showing other embodiments of the present invention, and FIG. 7 is a detailed view of part A in FIG. 6.
FIG. 9 is a detailed view of the section shown in FIG. 8. 1... Highly corrosion resistant equipment body, 2... Internal piping, 3...
- External supply pipe, 4... Dissimilar material joint, 5... Solution, 6
... Dissimilar material joint outer part, 7... Dissimilar material joint inner part, 8.
...joint surface. 9... Dissimilar material joint part, 10... Dissimilar material joint outer part, 11
... Inner side of dissimilar material joint, 12... Joint surface, 13...
Flange part, 14...Device body solution contact part, 15...
・Device main body solution non-contact part, 16... Dissimilar material joint, 17.
...Dissimilar material joints. 18...External jacket, 19...Tube plate, 20...
- Pipe-tube plate section, 21... heat exchanger tube.

Claims (1)

【特許請求の範囲】 1、機器本体と内部配管および外部供給管から成る高腐
食性溶液を処理する加熱器または冷却器等の高耐食性機
器において、機器本体の材質を耐食性ステンレス合金と
し、内部配管の材質をZr、Ti、Ti−5%Ta等の
高耐食性材料とし、該両材質から成る異材継手を内部配
管と外部供給管の間に介し、該配管と異材継手を同材質
部分において溶接等の密閉構造が形成される方法で接合
し、該異材継手の耐食性ステンレス合金部分を、耐食性
ステンレス合金からなる機器本体缶壁部分に溶接により
密閉構造が形成されるように接合、固定したことを特徴
とする高耐食性機器。 2、異材継手部の外部供給管側の肉厚を一部腐食しろを
考慮した肉厚とし、異材接合面を溶液内に位置させ、該
異材継手部耐食性ステンレス合金部分を機器本体の内外
面で該機器本体と溶接により密閉構造が形成される方法
で接合、固定したことを特徴とする特許請求の範囲第1
項記載の高耐食性機器。 3、異材継手部を該異材継手部の内部配管側の外周面と
該異材継手部の外部供給管側の内周面の一部を異材接合
面とし、該異材継手部外部供給管側の外周部に耐食性ス
テンレス合金のフランジ部を設け、該フランジ部端面と
機器本体とを機器本体の内外両面で該機器本体と溶接に
より密閉構造が形成される方法で接合、固定したことを
特徴とする特許請求の範囲第1項記載の高耐食性機器。 4、異材継手部を該異材継手部の内部配管側の外周面と
該異材継手部の外部供給管側の内周面を異材接合面とし
、該異材継手部内部配管側の両端面が機器本体の板厚よ
り溶液側および外部供給管側になるように位置させ、耐
食性ステンレス合金よりなる該異材継手部外周面と該機
器本体を該機器本体の板厚の内外両面で溶接により密閉
構造が形成される方法で接合、固定したことを特徴とす
る特許請求の範囲第1項記載の高耐食性機器。 5、該異材継手部を該異材継手部の管部分の外周に円板
状の同材質の異材継手部を該両異材継手部の異材接合面
が一致するように位置させ、該両異材継手部の同材質部
分で溶接等の密閉構造が形成される方法で接合し、さら
に該円板状異材継手の高耐食ステンレス合金部の端面と
該機器本体を該機器本体の板厚の内外面面で溶接により
密閉構造が形成される方法で接合、固定したことを特徴
とする特許請求の範囲第1項記載の高耐食性機器。 6、機器本体と内部配管および外部供給管から成る高耐
食性機器において、機器本体の溶液と接する範囲を含む
部分および内部配管の材質をZr、Ti、Ti−5%T
a等の高耐食材料とし、機器本体の溶液と接しない部分
の材質を耐食性ステンレス合金とし、機器本体の高耐食
性材料から成る部分と耐食性ステレンス合金から成る部
分及び内部配管と外部供給管の間に高耐食性材料と耐食
性ステレンス合金の異材継手を介し、該異材継手と機器
本体及び配管を同材質部で溶接により密閉構造が形成さ
れる方法で接合、固定したことを特徴とする高耐食性機
器。 7、外部にも加熱または冷却のためのジャケットを機器
本体外面に有することを特徴とする特許請求の範囲第6
項記載の高耐食性機器。 8、機器本体と内部伝熱管および外部供給管から成る高
耐食性機器において内部伝熱管と管板を有する管−管板
部の材質をZr、Ti、Ti−5%Ta等の高耐食材料
とし、機器本体および外部供給管を耐食性ステレンス合
金とし、該管−管板部と機器本体および外部供給管の間
にZr、Ti、Ti−5%Ta等の高耐食材料と耐食性
ステンレス合金から成る異材継手を介し、該異材継手と
該機器本体、外部供給管および管−管板部とを同材質部
において溶接等の密閉構造が形成される手段で接合、固
定したことを特徴とする高耐食性機器。 9、異材継手部分にTaを中間材としてZr、Ti、T
i−5%Ta等の高耐食材料と耐食性ステンレス合金を
爆発接合により製作した異材継手を用いたことを特徴と
する特許請求の範囲第8項記載の高耐食性機器。
[Scope of Claims] 1. Highly corrosion-resistant equipment such as a heater or cooler for treating highly corrosive solutions, which consists of an equipment body, internal piping, and external supply pipe, in which the equipment body is made of a corrosion-resistant stainless steel alloy, and the internal piping is made of a corrosion-resistant stainless steel alloy. The material is a highly corrosion-resistant material such as Zr, Ti, Ti-5%Ta, etc., a dissimilar material joint made of both materials is interposed between the internal piping and the external supply pipe, and the piping and the dissimilar material joint are welded at the same material part. The corrosion-resistant stainless steel alloy part of the dissimilar metal joint is joined and fixed by welding to the equipment body can wall made of corrosion-resistant stainless alloy in such a way that a sealed structure is formed. Highly corrosion resistant equipment. 2. The wall thickness on the external supply pipe side of the dissimilar metal joint is made thick enough to allow for some corrosion, the dissimilar metal joint surface is placed in the solution, and the corrosion-resistant stainless steel part of the dissimilar metal joint is placed on the inner and outer surfaces of the equipment body. Claim 1, characterized in that the device is joined and fixed to the main body of the device by welding to form a sealed structure.
Highly corrosion resistant equipment as described in section. 3. The dissimilar material joint has a part of the outer circumferential surface on the internal piping side of the dissimilar material joint and a part of the inner circumferential surface of the dissimilar material joint on the external supply pipe side, and the outer periphery of the dissimilar material joint on the external supply pipe side. A patent characterized in that a flange portion made of a corrosion-resistant stainless alloy is provided in the section, and the end face of the flange portion and the device body are joined and fixed by a method that forms a sealed structure by welding to the device body on both the inside and outside of the device body. A highly corrosion resistant device according to claim 1. 4. In the dissimilar material joint, the outer peripheral surface of the dissimilar material joint on the internal piping side and the inner peripheral surface of the dissimilar material joint on the external supply pipe side are the dissimilar material joining surfaces, and both end surfaces of the dissimilar material joint on the internal piping side are the main body of the device. A sealed structure is formed by welding the outer peripheral surface of the dissimilar metal joint made of a corrosion-resistant stainless alloy and the device body on both the inside and outside of the thickness of the device body. 2. The highly corrosion-resistant device according to claim 1, wherein the device is joined and fixed by a method described in the above. 5. Position the dissimilar material joint part on the outer periphery of the pipe portion of the dissimilar material joint part so that the dissimilar material joining surfaces of the two dissimilar material joint parts coincide with each other, and the dissimilar material joint part The parts made of the same material are joined by a method such as welding that forms a sealed structure, and the end face of the highly corrosion-resistant stainless alloy part of the disc-shaped dissimilar metal joint and the device body are joined at the inner and outer surfaces of the device body's plate thickness. 2. The highly corrosion-resistant device according to claim 1, wherein the device is joined and fixed by welding to form a sealed structure. 6. In highly corrosion-resistant equipment consisting of the equipment body, internal piping, and external supply pipe, the material of the parts of the equipment body including the area that comes into contact with the solution and the internal piping is Zr, Ti, Ti-5%T.
The parts of the equipment body that do not come in contact with the solution are made of corrosion-resistant stainless steel alloy, and the parts of the equipment body that are made of highly corrosion-resistant material and the parts that are made of corrosion-resistant stainless steel alloy, and between the internal piping and external supply pipe. A highly corrosion-resistant device, characterized in that the dissimilar material joint, the device main body, and piping are joined and fixed via a dissimilar material joint made of a highly corrosion-resistant material and a corrosion-resistant stainless steel alloy in such a manner that a sealed structure is formed by welding the parts of the same material. 7. Claim 6, characterized in that the device has a jacket for heating or cooling on the outer surface of the device body.
Highly corrosion resistant equipment as described in section. 8. In a highly corrosion-resistant device consisting of a device main body, an internal heat transfer tube, and an external supply pipe, the material of the tube-tube plate portion having the internal heat transfer tube and tube sheet is a highly corrosion-resistant material such as Zr, Ti, Ti-5% Ta, etc. The equipment body and external supply pipe are made of corrosion-resistant stainless steel alloy, and a dissimilar material joint made of highly corrosion-resistant materials such as Zr, Ti, Ti-5% Ta, etc., and corrosion-resistant stainless steel alloy is used between the tube-tube plate portion, the equipment body, and the external supply pipe. A highly corrosion-resistant device, characterized in that the dissimilar material joint, the main body of the device, the external supply pipe, and the tube-tube sheet portion are joined and fixed in the same material portion by means such as welding that forms a sealed structure. 9. Zr, Ti, T using Ta as an intermediate material in the joint of dissimilar materials
9. A highly corrosion-resistant device according to claim 8, characterized in that a dissimilar material joint is manufactured by explosively joining a highly corrosion-resistant material such as i-5% Ta and a corrosion-resistant stainless steel alloy.
JP62309636A 1987-12-09 1987-12-09 High anticorrosion device Pending JPH01152400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309636A JPH01152400A (en) 1987-12-09 1987-12-09 High anticorrosion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309636A JPH01152400A (en) 1987-12-09 1987-12-09 High anticorrosion device

Publications (1)

Publication Number Publication Date
JPH01152400A true JPH01152400A (en) 1989-06-14

Family

ID=17995423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309636A Pending JPH01152400A (en) 1987-12-09 1987-12-09 High anticorrosion device

Country Status (1)

Country Link
JP (1) JPH01152400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110229A (en) * 2004-08-02 2015-06-18 エイティーアイ・プロパティーズ・インコーポレーテッド Method for replacing corroded fluid conducting parts in apparatus by welding and parts obtained thereby
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110229A (en) * 2004-08-02 2015-06-18 エイティーアイ・プロパティーズ・インコーポレーテッド Method for replacing corroded fluid conducting parts in apparatus by welding and parts obtained thereby
US9662740B2 (en) 2004-08-02 2017-05-30 Ati Properties Llc Method for making corrosion resistant fluid conducting parts
JP2017094322A (en) * 2004-08-02 2017-06-01 エイティーアイ・プロパティーズ・エルエルシー Method for replacing corroded fluid conducting parts in equipment via welding, and parts obtained thereby
US10118259B1 (en) 2012-12-11 2018-11-06 Ati Properties Llc Corrosion resistant bimetallic tube manufactured by a two-step process

Similar Documents

Publication Publication Date Title
JP4865256B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JPH0527037B2 (en)
JPS622903B2 (en)
US2849387A (en) Corrosion resistant jacketed metal body
JPH01152400A (en) High anticorrosion device
US20100288478A1 (en) Remanufactured Exhaust Gas Recirculation Cooler and Method for Remanufacturing a Cooler
US3240266A (en) Heat exchangers
US2818995A (en) Vessel with protective metal lining
JPH0316590B2 (en)
JPS63143485A (en) Cylindrical multitubular type heat exchanger
JP3994304B2 (en) Piping connection device
JP2003222498A (en) Multitubular heat exchanger
JPH0325038Y2 (en)
JPH0464794A (en) Leak preventing structure for weld joint part of tube
JPH05141881A (en) Structure of jacket
JPS61130797A (en) Intermediate heat exchanger
JPS6241592A (en) Heat exchanger
JPH0233978Y2 (en)
JPS58176596A (en) Lining tube table of clad steel condenser for liquid waste
JPS61259054A (en) Hot water supplier
JPS5844199B2 (en) Multi-tube heat exchanger that can be blind plugged by welding
JPS6338909Y2 (en)
JP2587256Y2 (en) Multi-tube heat exchanger
JPS645677B2 (en)
JPH0232558B2 (en)