JPH01152374A - Mixer circuit - Google Patents

Mixer circuit

Info

Publication number
JPH01152374A
JPH01152374A JP31253187A JP31253187A JPH01152374A JP H01152374 A JPH01152374 A JP H01152374A JP 31253187 A JP31253187 A JP 31253187A JP 31253187 A JP31253187 A JP 31253187A JP H01152374 A JPH01152374 A JP H01152374A
Authority
JP
Japan
Prior art keywords
signal
terminal
frequency
mixer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31253187A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsuura
裕之 松浦
Satoshi Maruta
聡 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP31253187A priority Critical patent/JPH01152374A/en
Publication of JPH01152374A publication Critical patent/JPH01152374A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • G02F2001/133618
    • G02F2001/133626

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To allow the lower limit of the range of frequency to be measured to approach a CD as near as possible, by inputting a local oscillation input signal to adjust the phase and level thereof and adding the output thereof to the output signal of a mixer to negate the leak signal at the output terminal of the mixer. CONSTITUTION:The voltage applied to a variable capacity diode D1 is adjusted so that the phase thereof becomes reverses to that of the leakage signal of LO terminal input appearing at an RF terminal. Further, the level of said signal is adjusted on the basis of the resistance value of a PIN diode D2. Generally, since the leakage signal (LO leakage signal) from the LO terminal of a mixer 2 to the RF terminal is attenuated by several tens of dB as compared with an LO input level, the same attenuation is also required in level adjustment due to the PIN diode D2. The voltage applied to the variable capacity diode D1 and the PIN diode D2 is given from a processor through inductances L1, L2, L3. By the signal adjusted as mentioned above, the LO leakage signal can be negated before inputted to a BPF amplifier 4.

Description

【発明の詳細な説明】 [産業上の利用分野]         −本発明は、
スーパーへテロダイン方式のスペクトラムアナライザや
ネットワークアナライザにおける測定周波数範囲の下限
の改善に関するものである。
[Detailed description of the invention] [Industrial application field] - The present invention includes:
This paper relates to improving the lower limit of the measurement frequency range in superheterodyne spectrum analyzers and network analyzers.

[従来の技術] 第3図は、従来のスーパーヘテロダイン方式のスペクト
ラムアナライザの一例を示すブロック図である。第3図
において、1はスペクトラムアナライザめ測定周波数範
囲O〜f0の信号S、を通過させ、fOより旗い周波数
成分をカットする特性を持つローパスフィルタであり、
周波数ft(通常、f、は多数の周波数成分を含む)の
入力信号が加えられることにより周波数fLの出力信号
を出力する。2はミキサであり、一方の入力端子IPに
はローパスフィルタ1の出力信号が加えられ、他方の入
力端子LOには局部発振入力として電圧制御発振H(以
下VCOと呼ぶ)3の出力信号が加えられている1通常
のミキサの使用法と比べると、RF端子と■Ft4A子
を入れ換えているが、動作は全く変りない、一般にミキ
サのRF端子はDCまで帯域が無く、ここではローパス
フィルタ1の出力周波数fLについてDCまで扱いたい
ため、このような接続としている。VCO3には掃引発
振器4から第4図に示すような鋸歯状波が加えられて、
この印加電圧に応じて変化する周波数fvを出力する。
[Prior Art] FIG. 3 is a block diagram showing an example of a conventional superheterodyne spectrum analyzer. In FIG. 3, 1 is a low-pass filter that has the characteristic of passing a signal S in the frequency range O to f0 measured by the spectrum analyzer and cutting off frequency components higher than f0.
When an input signal of frequency ft (usually f includes many frequency components) is added, an output signal of frequency fL is output. 2 is a mixer, the output signal of the low-pass filter 1 is applied to one input terminal IP, and the output signal of the voltage controlled oscillator H (hereinafter referred to as VCO) 3 is applied as a local oscillation input to the other input terminal LO. 1 Compared to the usage of a normal mixer, the RF terminal and the This connection is used because it is desired to handle the output frequency fL up to DC. A sawtooth wave as shown in FIG. 4 is applied from the sweep oscillator 4 to the VCO 3.
It outputs a frequency fv that changes depending on this applied voltage.

この鋸歯状波はCRTIOの横軸にも加えられ、周波数
掃引に用いられる。
This sawtooth wave is also applied to the horizontal axis of the CRTIO and used for frequency sweeping.

ミキサ2はこれら周波数fv、fLの差の周波数f、を
有する出力信号を次段のバンドパスフィルタ(以下BP
Fという)を備えたBPF増幅器4に加える。このBP
F増幅器4は、ある周波数f、を中心とした周波数帯域
を選択して増幅し、ミキサ5の一方の入力端子に加える
。ミキサ5の他方の入力端子には発振器6の出力信号が
加えられ、ミキサ5の出力信号はBPF増幅器7に加え
られている。これにより、周波数の選択度を上げ、ゲイ
ンを稼ぐことのできるダブルス−パーヘテロダイン式が
構成されている。BPF増幅器7の出力は検波器8でそ
の振幅が検出され、ビデオフィルタ9でノイズ成分が除
かれてCRTIOの縦軸に加えられる。
The mixer 2 sends an output signal having a frequency f that is the difference between these frequencies fv and fL to the next stage bandpass filter (hereinafter referred to as BP).
F) is added to the BPF amplifier 4. This BP
The F amplifier 4 selects and amplifies a frequency band centered around a certain frequency f, and applies the amplified frequency band to one input terminal of the mixer 5. The output signal of the oscillator 6 is applied to the other input terminal of the mixer 5, and the output signal of the mixer 5 is applied to the BPF amplifier 7. As a result, a double superheterodyne system is constructed which can increase frequency selectivity and gain gain. The amplitude of the output of the BPF amplifier 7 is detected by a detector 8, noise components are removed by a video filter 9, and the output is added to the vertical axis of the CRTIO.

このような構成において、BPF増幅器4に印加される
周波数ft−1は、入力周波数ftの不要な成分(測定
対象外の成分)を除去した周波数fLを周波数fvでシ
フトさせたものになる。ここで、スペクトラムアナライ
ザの測定範囲を0〜foとすると、VCO3の可変周波
数範囲fvはfv=f、〜(fz+fo>に設定され、
ローパスフィルタ1の出力周波数fLはfL=o〜fo
、BPF増幅器4の中心周波数はflに設定される。従
って、周波数fMは、ある瞬時のVCO3の周波数を例
えばfvlとすると、この周波数fVtと0〜foの周
波数成分を含む周波数fLとをミキシングしたものであ
るから(fvl   fo)〜fV、の周波数成分を含
むものになる。このような帯域を持つ周波数fMのうち
、BPF増幅器4におけるバンドパスフィルタの中心周
波数f1に該当する周波数値のみが選択されて次段に送
出され、BPP増幅器4を通過できる周波数はVCO3
の出力周波数fvを掃引することによりシフトされるこ
とになる。
In such a configuration, the frequency ft-1 applied to the BPF amplifier 4 is the frequency fL, which is obtained by removing unnecessary components (components not to be measured) of the input frequency ft, shifted by the frequency fv. Here, if the measurement range of the spectrum analyzer is 0 to fo, then the variable frequency range fv of the VCO 3 is set to fv=f, ~(fz+fo>,
The output frequency fL of the low-pass filter 1 is fL=o~fo
, the center frequency of the BPF amplifier 4 is set to fl. Therefore, if the frequency of the VCO 3 at a certain moment is, for example, fvl, the frequency fM is a mixture of this frequency fVt and the frequency fL that includes frequency components from 0 to fo, so the frequency fM is the frequency component from (fvl fo) to fV. It will include. Among the frequencies fM having such a band, only the frequency value corresponding to the center frequency f1 of the bandpass filter in the BPF amplifier 4 is selected and sent to the next stage, and the frequency that can pass through the BPP amplifier 4 is the VCO 3.
is shifted by sweeping the output frequency fv of .

このように構成することにより、周波数スペクトラム波
形がCRTiOに表示されることになる。
With this configuration, the frequency spectrum waveform is displayed on the CRTiO.

[発明が解決しようとする問題点] ところで、第3図のようなスペクトラムアナライザにお
いて、ミキサ2のLO端子からRF端子へのアイソレー
シヲン(絶縁)は例えば30〜40dB程度である。こ
のためLO端子入力はRF端子(またはIP端子)に微
小な漏れを生じる。
[Problems to be Solved by the Invention] In the spectrum analyzer shown in FIG. 3, the isolation from the LO terminal to the RF terminal of the mixer 2 is, for example, about 30 to 40 dB. Therefore, the LO terminal input causes a slight leakage to the RF terminal (or IP terminal).

その結果、ミキサ2のRF出力端子には通常のミキシン
グ動作によるfL±fv成分の他に、VCO3の漏れ成
分子vが存在することになる。第5図に示すように、V
CO3がfv〜f、付近を周波数挿引しているときには
、VCO3の漏れ成分子vは次段のBPF#!!幅器4
を通過し、VCO3の周波数がf%から離れるにつれて
、その漏れ成分子vはBPF増幅器4により減衰してゆ
く。
As a result, the leakage component v of the VCO 3 is present at the RF output terminal of the mixer 2 in addition to the fL±fv component due to the normal mixing operation. As shown in Figure 5, V
When CO3 is subtracting the frequency around fv~f, the leakage component v of VCO3 is the next stage BPF#! ! Width board 4
, and as the frequency of the VCO 3 moves away from f%, the leakage component v is attenuated by the BPF amplifier 4.

BPF増幅器4の帯域f、±BW内においてVCO3の
漏れ成分レベルに比べ、スペクトラム・アナライザの被
測定信号レベルがかなり小さい場合、BPF増幅器4で
被測定信号を増幅しようとすると、大きな漏れ成分によ
り増幅器が飽和するため、被測定信号の増幅が不可能に
なってしまう。
If the measured signal level of the spectrum analyzer is considerably smaller than the leakage component level of the VCO 3 within the band f, ±BW of the BPF amplifier 4, when the BPF amplifier 4 attempts to amplify the measured signal, the amplifier will fail due to the large leakage component. saturates, making it impossible to amplify the signal under test.

したがって、BPF増幅器4の帯域幅Bw内では信号の
測定ができなくなる。すなわち、VCO3がf、から周
波数掃引を始めると、ft +BWまでの間、信号の測
定ができない、入力信号で考えれば、DCからBw[H
zlまでの信号が測定不可能となる。一般にBPF増幅
器4の中心周波数は数100M)(zのことが多く、帯
域幅Bwを狭くすることは容易ではない、その結果、ス
ペクトラム・アナライザの測定周波数範囲の下限はBW
[Hzlとなってしまう。
Therefore, the signal cannot be measured within the bandwidth Bw of the BPF amplifier 4. In other words, when VCO3 starts frequency sweep from f, the signal cannot be measured until ft + BW.If we consider the input signal, it is from DC to Bw[H
The signal up to zl becomes unmeasurable. Generally, the center frequency of the BPF amplifier 4 is several 100 M) (z), and it is not easy to narrow the bandwidth Bw. As a result, the lower limit of the measurement frequency range of the spectrum analyzer is BW
[It becomes Hzl.

本発明は上記の問題点を解決するためになされたもので
、スペクトラム・アナライザの測定周波数範囲の下限を
できるだけDCまで近付けるようにしたミキサ回路を実
現することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to realize a mixer circuit in which the lower limit of the measurement frequency range of a spectrum analyzer is brought as close to DC as possible.

[問題点を解決するための手段] 本発明は被測定入力信号と局部発振入力信号を混合する
ミキサ回路に係るもので、その特徴とするところは局部
発振入力信号を人力して位相およびレベルを調整しその
出力を前記ミキサの出力信号に加算する調整回路を備え
、ミキサ出力に含ま′  れる局部発振人力信号の漏れ
信号を調整回路により打消すように構成した点にある。
[Means for Solving the Problems] The present invention relates to a mixer circuit that mixes an input signal to be measured and a local oscillation input signal, and its feature is that the phase and level of the local oscillation input signal can be adjusted manually. The present invention is characterized in that it includes an adjustment circuit that adjusts and adds its output to the output signal of the mixer, and is configured so that the leakage signal of the local oscillation human signal contained in the mixer output is canceled by the adjustment circuit.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明にかかるミキサ回路の一実施例を示す構
成ブロック図であり、第3図と同一部分には同一符号を
付して、いる、第1図において、11.12.13はミ
キサ2の3つの端子に各一端が接続される反射低減のた
めの50Ωのアッテネータ、14はアッテネータ12の
他端に接続して局部発振入力としてVCO3信号を入力
し漏れ信号を打消す信号をアッテネータ13の他端に加
算する調整回路である。括弧内のIP、LO,RFはミ
キサ回路の端子名を表す、 tM*@路14において、
C1はLO端子に一端が接続しDC成分をカットするコ
ンデンサ、R1はこのコンデンサC1の他端にその一端
が接続する位相調整用の抵抗、D、はこの抵抗R1の他
端にそのカソード端子が接続し印加電圧により容量値が
変化する位相調整用の可変容量ダイオード、L、はこの
可変容態ダイオードD、のアノード端子にその一端が接
続しその他端がプロセッサに接続する高周波信号阻止用
のインダクタンス、C2は可変容量ダイオードD、のア
ノード端子にその一端が接続しその他端がコモンに接続
するDCカット用のコンデンサ、R2は可変容量ダイオ
ードD、のカソード端子にその一端が接続し他端がコモ
ンに接続する高周波信号阻止用のインダクタンス、D2
は可変容量ダイオードD1のカソード端子にそのカソー
ド端子が接続し印加電圧により抵抗値が変化するPIN
ダイオード、LmはこのPINダイオードD2のアノー
ド端子にその一端が接続し他端がプロセッサに接続する
高周波信号阻止用のインダクタンス、C3はPINダイ
オードD2のアノード端子にその一端が接続し他端がR
F端子に接続するDCカット用のコンデンサである。
FIG. 1 is a block diagram showing an embodiment of a mixer circuit according to the present invention, and the same parts as in FIG. 3 are denoted by the same reference numerals. A 50Ω attenuator is connected at one end to the three terminals of the mixer 2 to reduce reflections, and the attenuator 14 is connected to the other end of the attenuator 12 to input the VCO3 signal as a local oscillation input and output a signal to cancel the leakage signal. This is an adjustment circuit that adds to the other end of 13. IP, LO, and RF in parentheses represent the terminal names of the mixer circuit. In tM*@Route 14,
C1 is a capacitor whose one end is connected to the LO terminal and cuts the DC component, R1 is a phase adjustment resistor whose one end is connected to the other end of this capacitor C1, and D is a capacitor whose cathode terminal is connected to the other end of this resistor R1. A phase adjustment variable capacitance diode L, which is connected and whose capacitance value changes depending on the applied voltage, is an inductance for high frequency signal blocking, one end of which is connected to the anode terminal of the variable capacitance diode D, and the other end is connected to the processor. C2 is a DC cut capacitor whose one end is connected to the anode terminal of the variable capacitance diode D and the other end is connected to the common, and R2 is the capacitor for DC cutting whose one end is connected to the cathode terminal of the variable capacitance diode D and the other end is connected to the common. Connected inductance for blocking high frequency signals, D2
is a PIN whose cathode terminal is connected to the cathode terminal of the variable capacitance diode D1, and whose resistance value changes depending on the applied voltage.
A diode, Lm, is an inductance for blocking high frequency signals, one end of which is connected to the anode terminal of this PIN diode D2, and the other end is connected to the processor, and C3 is an inductance, one end of which is connected to the anode terminal of the PIN diode D2, and the other end of which is connected to R.
This is a DC cut capacitor connected to the F terminal.

上記のような構成のミキサ回路の動作を次に説明する。The operation of the mixer circuit configured as described above will be explained next.

 LOt4A子より分岐した信号は抵抗R1と可変容量
ダイオードD1の容量値によって位相調整が行われる。
The phase of the signal branched from the LOt4A terminal is adjusted by the capacitance values of the resistor R1 and the variable capacitance diode D1.

すなわち、RF端子に現れるLO端子入力の漏れ信号と
逆位相となるように可変容量ダイオードD、への印加電
圧を調整する。さらにPINダイオードD2の抵抗値に
よってレベル調整が行われる。一般にミキサ2のLO端
子からRF端子べの漏れ信号(以下LO漏れ(8号と呼
ぶ)は、LO人人力ベルより数10dB(例えば30〜
40dB)減衰しているので、PINダイオードD2に
よるレベル調整も同等の減衰が必要となる。可変容量ダ
イオードD、およびPINダイオードD2への印加電圧
はインダクタンスL、 、 R2、R3を介してプロセ
ッサから与えられる9以上のように1lltI整した信
号により、BPF増幅器4へ入力する前にLO漏れ信号
を打消すことができる。
That is, the voltage applied to the variable capacitance diode D is adjusted so that it has an opposite phase to the leakage signal input to the LO terminal appearing at the RF terminal. Furthermore, level adjustment is performed by the resistance value of the PIN diode D2. Generally, the leakage signal from the LO terminal to the RF terminal of mixer 2 (hereinafter referred to as LO leakage (No. 8)) is several 10 dB (for example, 30 to
40 dB), the level adjustment using the PIN diode D2 requires the same amount of attenuation. The voltage applied to the variable capacitance diode D and the PIN diode D2 is applied to the LO leakage signal before inputting it to the BPF amplifier 4 by a signal that is adjusted to 9 or more and is given from the processor via the inductance L, , R2, and R3. can be canceled out.

またLO漏れ信号はLO@子の入力周波数やミキサ2の
温度等により変化するので、それらの状況に対応してプ
ロセッサは各ダイオードへの印加電圧を決定する。プロ
セッサはVCO3の周波数をBPF増幅器4の中心周波
数f1に設定し、LO漏れ信号をモニタして、それが最
小となるようにダイオードへの印加電圧を決める。この
ようにして、常にLO漏れ信号が最小となるように打消
すことができる。
Furthermore, since the LO leakage signal changes depending on the input frequency of the LO@, the temperature of the mixer 2, etc., the processor determines the voltage applied to each diode in response to these conditions. The processor sets the frequency of the VCO 3 to the center frequency f1 of the BPF amplifier 4, monitors the LO leakage signal, and determines the voltage applied to the diode so as to minimize it. In this way, the LO leakage signal can always be canceled to a minimum.

このような構成のミキサ回路によれば、ミキサのLO端
子入力信号の漏れ成分を打消すことができるので、BP
F増幅器4の中心周波数付近をVCO3が掃引している
場合でも、漏れ成分による増幅器の飽和が起こらず、よ
りDCに近い周波数まで入力信号を測定することができ
る。したかって、スペクトラム・アナライザの下限測定
周波数の改善ができる。
According to the mixer circuit having such a configuration, it is possible to cancel the leakage component of the LO terminal input signal of the mixer, so that the BP
Even when the VCO 3 sweeps around the center frequency of the F amplifier 4, saturation of the amplifier due to leakage components does not occur, and the input signal can be measured up to a frequency closer to DC. Therefore, the lower limit measurement frequency of the spectrum analyzer can be improved.

第2図は本発明に係るミキサ回路の第2の応用例で、ネ
ットワーク・アナライザに適用したものを示す構成ブロ
ック図である。掃引発振器15から出力される鋸歯状波
信号により、VCOl6は0〜f、の周波数を掃引され
、出力の一方は被測定物17に印加される。VCOl 
6の他方の出力はミキサ18において周波数で1の発振
器1つの出力とミキシングされ、周波数f1〜fo十f
tの信号となる。この信号は被測定物17を通過してそ
の特性の影響を受けた信号と第1図と同様のミキサ回1
20でミキシングされ、中心周波数f、のBPF増幅器
を通過した後被測定物17の伝送特性がCRT22で表
示される。ミキサ回路20において、201は第1図の
2と同様のミキサ、202は14と同様の位相およびレ
ベルの調整回路である、 このようなtIi或のネットワーク・アナライザによれ
ば、第1図の実施例の場合と同様にして下限測定周波数
を改善することができる。
FIG. 2 is a configuration block diagram showing a second application example of the mixer circuit according to the present invention, which is applied to a network analyzer. A sawtooth wave signal outputted from the sweep oscillator 15 causes the VCO 16 to sweep frequencies from 0 to f, and one of the outputs is applied to the object under test 17 . VCOl
The other output of 6 is mixed in a mixer 18 with the output of one oscillator of 1 at a frequency of f1 to f0.
It becomes a signal of t. This signal passes through the object to be measured 17 and is affected by its characteristics, and mixer circuit 1 similar to that shown in FIG.
After the signals are mixed at 20 and passed through a BPF amplifier with a center frequency f, the transmission characteristics of the object under test 17 are displayed on the CRT 22. In the mixer circuit 20, 201 is a mixer similar to 2 in FIG. 1, and 202 is a phase and level adjustment circuit similar to 14. According to such a network analyzer, the implementation of FIG. The lower limit measurement frequency can be improved in the same manner as in the example.

なお上記の各実施例において、ミキサ回路の局部発振入
力として、周波数が変化するvco信号を用いたが、一
定周波数の信号を用いることもできる。
In each of the above embodiments, a VCO signal whose frequency changes is used as the local oscillation input of the mixer circuit, but a signal with a constant frequency may also be used.

また調整回路としては、入力信号を逆位相としレベルを
調整することのできる任意の構成の回路を用いることが
できる。
Further, as the adjustment circuit, a circuit having an arbitrary configuration that can make the input signal have an opposite phase and adjust the level can be used.

また、表示部はCRTに限るものではなく、液晶やEL
などのその他の表示器であってもよい。
In addition, the display section is not limited to CRT, but also liquid crystal and EL.
Other indicators such as the following may also be used.

〔本発明の効果〕[Effects of the present invention]

以上述べたように、本発明によればスペクトラム・アナ
ライザ等の測定周波数範囲の下限をできるだけDCまで
近付けることができるミキサ回路を簡単な構成で実現す
ることができる。
As described above, according to the present invention, a mixer circuit that can bring the lower limit of the measurement frequency range of a spectrum analyzer or the like as close to DC as possible can be realized with a simple configuration.

【図面の簡単な説明】 第1図は本発明に係るミキサ回路の一実施例を示した構
成ブロック図、第2図は第1図装置をネットワーク・ア
ナライザに用いた応用例を示す構成ブロック図、第3図
は従来のスペクトラムアナライザの一例を示した構成ブ
ロック図、第4図は鋸歯状波を示した図、第5図は第3
図装置の動作を説明するための図である。 2.201・・・ミキサ、14.202・・・調整回路
、20・・・ミキサ回路、St・・・被測定入力信号。 X v
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of the mixer circuit according to the present invention, and Fig. 2 is a block diagram showing an example of application of the device shown in Fig. 1 to a network analyzer. , Fig. 3 is a configuration block diagram showing an example of a conventional spectrum analyzer, Fig. 4 is a diagram showing a sawtooth wave, and Fig. 5 is a block diagram showing an example of a conventional spectrum analyzer.
FIG. 3 is a diagram for explaining the operation of the device. 2.201...Mixer, 14.202...Adjustment circuit, 20...Mixer circuit, St...Input signal to be measured. X v

Claims (2)

【特許請求の範囲】[Claims] (1)被測定入力信号と局部発振入力信号を混合するミ
キサ回路において、局部発振入力信号を入力して位相お
よびレベルを調整しその出力を前記ミキサの出力信号に
加算する調整回路を備え、ミキサ出力に含まれる局部発
振入力信号の漏れ信号を調整回路により打消すように構
成したことを特徴とするミキサ回路。
(1) A mixer circuit that mixes an input signal under test and a local oscillation input signal, which includes an adjustment circuit that inputs the local oscillation input signal, adjusts the phase and level, and adds the output to the output signal of the mixer. A mixer circuit characterized in that the mixer circuit is configured such that a leakage signal of a local oscillation input signal included in the output is canceled by an adjustment circuit.
(2)周囲温度および局部発振入力周波数の少なくとも
いずれか一方に対応して位相調整量およびレベル調整量
を制御する特許請求の範囲第1項記載のミキサ回路。
(2) The mixer circuit according to claim 1, wherein the amount of phase adjustment and the amount of level adjustment are controlled in response to at least one of ambient temperature and local oscillation input frequency.
JP31253187A 1987-12-10 1987-12-10 Mixer circuit Pending JPH01152374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31253187A JPH01152374A (en) 1987-12-10 1987-12-10 Mixer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31253187A JPH01152374A (en) 1987-12-10 1987-12-10 Mixer circuit

Publications (1)

Publication Number Publication Date
JPH01152374A true JPH01152374A (en) 1989-06-14

Family

ID=18030346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31253187A Pending JPH01152374A (en) 1987-12-10 1987-12-10 Mixer circuit

Country Status (1)

Country Link
JP (1) JPH01152374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060115A (en) * 2005-08-23 2007-03-08 Hitachi Kokusai Electric Inc Frequency conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060115A (en) * 2005-08-23 2007-03-08 Hitachi Kokusai Electric Inc Frequency conversion device

Similar Documents

Publication Publication Date Title
US5952834A (en) Low noise signal synthesizer and phase noise measurement system
FI91337C (en) Switching arrangement to eliminate spurious reproduction in the radiotelephone receiver
CN104536339B (en) High-speed-digital-demodulation-based power control system and method of vector network analyzer
US6480006B1 (en) Method for measuring phase noise using a low noise synthesizer
US5917315A (en) Receiver for spectrum analysis
JPH0335172A (en) Network analyzer
JPH01152374A (en) Mixer circuit
CN210183318U (en) Frequency spectrum receiving assembly
JPH0969731A (en) Frequency conversion circuit
JP3153077B2 (en) Spectrum analyzer
JP2000206165A (en) Device for measuring phase noise of measuring object
US4048559A (en) Method and apparatus for testing microwave repeaters for im distortion
JP3190864B2 (en) Selection level measuring device
JP3304325B2 (en) Band variable filter and signal analyzer using the filter
US4654886A (en) Local oscillator null circuit and method
US4682060A (en) Noise suppression in an I-F substitution loop
US20040070450A1 (en) Method and apparatus for compensation of cross modulation effects
JP2505653Y2 (en) Frequency characteristic measuring device
JPH0760976B2 (en) Signal suppressor
JPH10285063A (en) Band pass filter for communication equipment
JPH0634701Y2 (en) Spectrum analyzer
JP2579794Y2 (en) Spectrum analyzer
WO2021097463A1 (en) Frequency converter accessory for a test and measurement instrument
EP1227577A1 (en) Method and apparatus for compensation of cross modulation effects
JP3079729U (en) Spectrum analyzer