JPH0115122B2 - - Google Patents

Info

Publication number
JPH0115122B2
JPH0115122B2 JP55153861A JP15386180A JPH0115122B2 JP H0115122 B2 JPH0115122 B2 JP H0115122B2 JP 55153861 A JP55153861 A JP 55153861A JP 15386180 A JP15386180 A JP 15386180A JP H0115122 B2 JPH0115122 B2 JP H0115122B2
Authority
JP
Japan
Prior art keywords
conductor
solid
hollow
solid conductor
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55153861A
Other languages
Japanese (ja)
Other versions
JPS5778109A (en
Inventor
Teruhiro Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55153861A priority Critical patent/JPS5778109A/en
Publication of JPS5778109A publication Critical patent/JPS5778109A/en
Publication of JPH0115122B2 publication Critical patent/JPH0115122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Windings For Motors And Generators (AREA)

Description

【発明の詳細な説明】 本発明は電気巻線用導体に係り、たとえば核融
合装置等の如く、高電圧大電流で使用され、中実
導体と冷却媒体を通す冷媒流路を有する中空導体
を接着して構成する電気巻線用導体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductor for electric windings, which is used at high voltage and large current, such as in nuclear fusion devices, and is a hollow conductor having a solid conductor and a coolant passage through which a coolant passes. This invention relates to a conductor for electrical winding constructed by bonding.

一般に、核融合装置等に使用されるコイルに
は、大電流を流して強磁場を発生することが要請
される。また、コイル絶縁物の限界使用温度上か
らも電流によるジユール損失熱は、コイル導体の
直接冷却により除去する必要がある。同時に、コ
イル導体には、コイル電流と高磁場に起因する電
磁力が作用し高い機械的応力が発生する。
Generally, coils used in nuclear fusion devices and the like are required to flow a large current and generate a strong magnetic field. Furthermore, due to the limit operating temperature of the coil insulator, the heat loss caused by current must be removed by direct cooling of the coil conductor. At the same time, electromagnetic force due to the coil current and high magnetic field acts on the coil conductor, generating high mechanical stress.

通常、上記要請のために、コイル導体には大断
面導体が使用される。一方、冷媒流路を設けた大
断面長尺導体の製作は非常に困難な現状にあり、
大断面中実導体に冷却用の溝等を設けて、別々製
作した中空導体を中実導体の溝等に接着一体化し
て、大断面直冷コイル導体を構成するのが普通で
ある。高い機械的応力に耐えるコイル導体である
必要上、中実導体、中空導体とも冷間加工を加え
て、比例弾性限界を高めた導体材料を使用する。
従つて、中実導体と中空導体の接着一体化に当つ
ても、接着時の熱影響により導体が軟化し、比例
弾性限界が低下することが無い様にする必要があ
る。このことは、導体の接続部についても同様で
ある。
Generally, due to the above requirements, a large cross-section conductor is used as a coil conductor. On the other hand, it is currently extremely difficult to manufacture large cross-section long conductors with refrigerant channels.
Generally, a large cross-section solid conductor is provided with cooling grooves, and separately produced hollow conductors are bonded and integrated into the grooves of the solid conductor to form a large cross-section directly cooled coil conductor. Since the coil conductor must be able to withstand high mechanical stress, conductor materials that have been subjected to cold working to increase the proportional elastic limit are used for both the solid conductor and the hollow conductor.
Therefore, even when bonding and integrating a solid conductor and a hollow conductor, it is necessary to prevent the conductor from becoming soft due to the thermal influence during bonding and reducing the proportional elastic limit. This also applies to the conductor connections.

このようなことを考慮した、従来の電気巻線用
導体例を図を用いて説明する。
An example of a conventional electrical winding conductor will be explained with reference to the drawings, taking this into consideration.

第1図は大断面中空導体1に使用したコイル導
体2の例を示す。導体3内に設けられた冷却媒体
流路4に冷却媒体を流してコイル導体2を直接冷
却し、絶縁層5により電気絶縁を保持する。第2
図に示した例は、中実導体6と中空導体7を冷間
加工を加えた銅材で構成し、半田層13で一体化
した構造のコイル導体2を示す。中空導体6と中
空導体7の一体化に伴う熱影響による軟化(比例
弾性限界の低下を以下単に軟化と呼ぶ)を防止す
るため、半田は融点の低いものが使用され、半田
付時の加熱時間も必要最小限に抑えている。
FIG. 1 shows an example of a coil conductor 2 used in a large cross-section hollow conductor 1. The coil conductor 2 is directly cooled by flowing a cooling medium through a cooling medium flow path 4 provided in the conductor 3, and electrical insulation is maintained by the insulating layer 5. Second
The example shown in the figure shows a coil conductor 2 having a structure in which a solid conductor 6 and a hollow conductor 7 are made of cold-worked copper material and are integrated with a solder layer 13. In order to prevent softening due to thermal effects associated with the integration of the hollow conductors 6 and 7 (the decrease in the proportional elastic limit is simply referred to as softening hereinafter), solder with a low melting point is used, and the heating time during soldering is shortened. is also kept to the minimum necessary.

第3図に示す例は、中実導体6に冷却溝12を
設けた後銅溶接部8等で中実導体6同士を接続
し、中空導体7を冷却溝12内に半田付して一体
化したコイル導体2を示す。銅溶接部8は銅材の
再結晶温度以上に溶接部の温度を上げる必要があ
るため熱影響により軟化する。一方、銅溶接部8
に作用する機械的応力σは、通常、銅溶接部8に
対して垂直応力となるため、軟化部の機械的特性
は、コイル全体の最高使用応力を決定する結果と
なる。このため、熱影響の及ぶ領域を可能な限り
狭くする各種の溶接法が開発されているが、溶接
施工上、溶接棒(溶着金属)には銅の他各種の元
素が添加されているのが普通で、銅溶接部8の電
気固有抵抗は、この添加不純物元素のため母材で
ある中実導体6の2倍以上となるのが普通であ
る。
In the example shown in FIG. 3, cooling grooves 12 are provided in the solid conductors 6, and then the solid conductors 6 are connected to each other with copper welds 8, etc., and the hollow conductors 7 are soldered into the cooling grooves 12 to integrate them. The coil conductor 2 shown in FIG. The copper welded part 8 softens due to the influence of heat because it is necessary to raise the temperature of the welded part above the recrystallization temperature of the copper material. On the other hand, copper welded part 8
Since the mechanical stress σ acting on the copper weld 8 is normally a stress perpendicular to the copper weld 8, the mechanical properties of the softened portion result in determining the maximum working stress of the entire coil. For this reason, various welding methods have been developed to narrow the area affected by heat as much as possible. Normally, the electrical resistivity of the copper welded portion 8 is more than twice that of the solid conductor 6, which is the base material, due to the added impurity element.

第4図は導体の製造上の問題やコイルの分解、
組立上の要請等により、中実導体6と中空導体7
を同一の場所で最終的に接続する必要が生ずる場
合の接続例を示す。中実導体6の接続部は切欠か
れていて、中空導体7の接続作業空間を確保して
する銅溶接部8は第3図と同様に接続されてい
る。中空導体7も導体スリーブ9を介して銀ろう
10によりろう付一体化されている。この場合、
中空導体7と導体スリーブ9との接続部にも母材
同様大きな機械的応力が生ずるので、この接続を
半田等の低融点、低強度材料で行うことはできな
い。同時にろう付時の温度も銅材の再結晶温度よ
り高く軟化が起るため、ろう付時に中実導体6や
銅溶接部8が軟化しない様、中実導体6には、中
空導体7の接続加熱用の空間を充分確保するため
の切欠部11を設ける必要がある。このように、
従来のコイル導体の接続構造では、銅溶接部8の
固有抵抗増加すると同時に、この部分が中空導体
7の接続のため切欠かれて電流密度が増加し、直
接冷却ができなくなるため、通電時の接続部温度
が高くなつて絶縁物を熱的に劣化させる欠点があ
つた。
Figure 4 shows problems in the manufacture of conductors, disassembly of coils,
Due to assembly requirements, solid conductor 6 and hollow conductor 7
The following is an example of connection when it becomes necessary to ultimately connect both at the same location. The connecting portion of the solid conductor 6 is notched, and the copper welding portion 8, which secures a working space for connecting the hollow conductor 7, is connected in the same manner as shown in FIG. The hollow conductor 7 is also integrally soldered with silver solder 10 via a conductor sleeve 9. in this case,
Similar to the base material, a large mechanical stress is generated at the connection between the hollow conductor 7 and the conductor sleeve 9, so this connection cannot be made with a low melting point, low strength material such as solder. At the same time, since the temperature during brazing is higher than the recrystallization temperature of the copper material and softening occurs, a hollow conductor 7 is connected to the solid conductor 6 so that the solid conductor 6 and the copper welded part 8 do not soften during brazing. It is necessary to provide a notch 11 to ensure sufficient space for heating. in this way,
In the conventional coil conductor connection structure, the specific resistance of the copper welded part 8 increases, and at the same time, this part is cut out to connect the hollow conductor 7, increasing the current density and making direct cooling impossible. The disadvantage was that the temperature of the parts became high, which caused thermal deterioration of the insulators.

本発明は上述の点に鑑みなされたもので、その
目的とするところは、中実導体と中空導体を同一
場所で接続するものであつても、通電時に接続部
温度が高くなることなく、従つて、絶縁物が熱的
に劣化することのないようにした電気巻線用導体
を提供するにある。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to prevent the temperature of the connected portion from increasing when electricity is applied even when a solid conductor and a hollow conductor are connected at the same place. Another object of the present invention is to provide a conductor for electrical windings whose insulators are not thermally degraded.

本発明は複数の導体を冶金的接続してなる中実
導体と、該中実導体の接続部とほぼ同一位置で、
かつ、該接続部より適当距離はなした位置で導体
スリーブを介して接続されると共に、ほぼ中央部
に冷媒流路を有する中空導体の少なくとも接続部
分を、両者間に配置された熱伝導セグメントを介
して低融点合金で接続することにより、所期の目
的を達成するようになしたものである。
The present invention provides a solid conductor formed by metallurgically connecting a plurality of conductors;
At least the connecting portion of the hollow conductor is connected via the conductor sleeve at a position an appropriate distance from the connecting portion and has a refrigerant flow path approximately in the center, and a heat conductive segment disposed between the two is connected to the connecting portion via the conductive sleeve. The intended purpose is achieved by connecting with a low melting point alloy.

以下、図面の実施例に基づいて本発明を詳細に
説明する。尚、符号は従来と同一のものは同符号
を使用する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings. Incidentally, the same reference numerals are used for the same parts as in the past.

第5図は本発明の電気巻線用導体の一実施例で
ある。本実施例でも中実導体6には中空導体7接
続用の切欠部11が設けられ、中実導体6同志は
銅溶接部8で接続されている。中空導体7は中実
導体6の冷却溝12に半田付により半田層13で
固定接着され、中実導体6同志を接続により固定
した後、中空導体7を導体スリーブ9を介して銀
ろうによりろう付する。そして、本実施例では導
体スリーブ9と中実導体6の間に銅製の熱伝導セ
グメント14を配置し、導体スリーブ9、中実導
体6より低融点な合金、例えば半田層13を介し
て熱伝導セグメント14を導体スリーブ9と中実
導体6の接続部近傍に固定接着させている。
FIG. 5 shows an embodiment of the electrical winding conductor of the present invention. In this embodiment as well, the solid conductor 6 is provided with a notch 11 for connecting the hollow conductor 7, and the solid conductors 6 are connected to each other by a copper weld 8. The hollow conductor 7 is fixedly bonded to the cooling groove 12 of the solid conductor 6 with a solder layer 13 by soldering, and after the solid conductors 6 are fixed by connection, the hollow conductor 7 is soldered with silver solder via the conductor sleeve 9. Attach. In this embodiment, a heat conductive segment 14 made of copper is arranged between the conductor sleeve 9 and the solid conductor 6, and heat conduction is conducted through the conductor sleeve 9 and an alloy having a lower melting point than the solid conductor 6, such as a solder layer 13. The segment 14 is fixedly bonded near the connection between the conductor sleeve 9 and the solid conductor 6.

このような本実施例の構成とすることにより、
銅溶接部8の固有抵抗増加や切欠部11を設けた
ために生ずる電流密度増加、直接冷却不可能部の
長さ増加に起因する銅溶接部8での温度上昇増加
は、銅溶接部8で発生した熱が熱伝導セグメント
14に熱伝導で伝えられ、さらに導体スリーブ9
を介して冷却媒体に伝えられて除熱されるため相
当に低く抑えられ、通電時に接続部温度は高くな
らず、絶縁物が熟的に劣化することはなくなる。
By having the configuration of this embodiment as described above,
An increase in the temperature in the copper weld 8 due to an increase in the specific resistance of the copper weld 8, an increase in current density due to the provision of the notch 11, and an increase in the length of the part that cannot be directly cooled occurs in the copper weld 8. The heat is transferred to the heat conduction segment 14 by thermal conduction, and further to the conductor sleeve 9.
Since the heat is transferred to the cooling medium through the heat exchanger and removed, the temperature is kept to a considerably low level, and the temperature of the connecting portion does not rise when electricity is applied, and the insulator does not deteriorate over time.

第6図に本発明の他の実施例を示す。該図に示
す実施例も中実導体6と導体スリーブ9との間に
熱伝導セグメント14を配置し、半田層13を介
して熱伝導セグメント14を導体スリーブ9と中
実導体6の接続部近傍に固定接着しているが、本
実施例は中実導体6の接続部近付には切欠部を設
けないで、中空導体7の接続部分が略コ字形とな
るように形成し、その接続部分を中実導体6より
適当距離はなしている。このように構成して中空
導体7の接続作業空間を確保するようにしている
が、その効果は上述した実施例と全く同様であ
る。
FIG. 6 shows another embodiment of the invention. The embodiment shown in the figure also has a heat conduction segment 14 disposed between the solid conductor 6 and the conductor sleeve 9, and the heat conduction segment 14 is placed near the connection between the conductor sleeve 9 and the solid conductor 6 through the solder layer 13. However, in this embodiment, there is no cutout near the connection part of the solid conductor 6, and the connection part of the hollow conductor 7 is formed in a substantially U-shape. is placed at an appropriate distance from the solid conductor 6. With this configuration, a space for connecting the hollow conductor 7 is secured, and the effect is exactly the same as that of the embodiment described above.

なお、単に中空導体7のみを接続する必要が生
じた場合には、接続スペースを確保する上で中空
導体7を中実導体6より離す必要が生じ、中空導
体6の一部に直接冷却不可能な部分が生ずるが、
本実施例の如く、中空導体7と中実導体6を熱伝
導セグメント14を介して固着一体化すると、直
接冷却が可能となるのでこの場合にも有益であ
る。
Note that if it is necessary to simply connect only the hollow conductor 7, it will be necessary to separate the hollow conductor 7 from the solid conductor 6 in order to secure the connection space, and it will not be possible to directly cool a part of the hollow conductor 6. Although some parts occur,
If the hollow conductor 7 and the solid conductor 6 are fixed and integrated via the heat conductive segment 14 as in this embodiment, direct cooling becomes possible, which is also advantageous in this case.

以上説明した本発明の電気巻線用導体によれ
ば、複数の導体を冶金的接続してなる中実導体
と、該中実導体の接続部とほぼ同一位置で、か
つ、該接続部より適当距離をはなした位置で導体
スリーブを介して接続されると共に、ほぼ中央部
に冷媒流路を有する中空導体の少なくとも接続部
分を、両者間に配置された熱伝導セグメントを介
して低融点合金で接続するようにしたものである
から、中実導体の冶金的接続部分で発生する熱
は、熱伝導セグメントを介して直接冷却されてい
る中空導体に伝導されるため、この部分の温度上
昇は抑えられ絶縁物が熱的に劣化することがなく
なる効果がある。
According to the electrical winding conductor of the present invention described above, the solid conductor formed by metallurgically connecting a plurality of conductors is located at approximately the same position as the connection part of the solid conductor, and at a position more suitable than the connection part. At least the connection portion of a hollow conductor that is connected via a conductor sleeve at a distance and has a refrigerant flow path approximately in the center is made of a low melting point alloy through a heat conductive segment disposed between the two. Since the heat generated at the metallurgical connection of the solid conductor is conducted directly to the cooled hollow conductor through the heat-conducting segment, the temperature rise in this part is suppressed. This has the effect of preventing thermal deterioration of the insulator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、及び第3図は一般的な電気巻
線用導体を示し、第1図は一部断面した斜視図、
第2図は断面図、第3図は斜視図、第4図は従来
の電気巻線用導体を一部断面して示す斜視図、第
5図は本発明の電気巻線用導体の一実施例を示す
斜視図、第6図は本発明の他の実施例を示す斜視
図である。 1……大断面中空導体、2……コイル導体、3
……導体、4……冷媒流路、5……絶縁層、6…
…中実導体、7……中空導体、8……銅溶接部、
9……導体スリーブ、10……銀ろう部、11…
…切欠部、12……溝、13……半田層、14…
…熱伝導セグメント。
1, 2, and 3 show general electrical winding conductors, and FIG. 1 is a partially sectional perspective view;
FIG. 2 is a sectional view, FIG. 3 is a perspective view, FIG. 4 is a partially sectional perspective view of a conventional electric winding conductor, and FIG. 5 is an embodiment of the electric winding conductor of the present invention. FIG. 6 is a perspective view showing another embodiment of the present invention. 1...Large cross-section hollow conductor, 2...Coil conductor, 3
...Conductor, 4...Refrigerant channel, 5...Insulating layer, 6...
...Solid conductor, 7...Hollow conductor, 8...Copper welded part,
9... Conductor sleeve, 10... Silver solder part, 11...
...Notch, 12...Groove, 13...Solder layer, 14...
...Thermal conduction segment.

Claims (1)

【特許請求の範囲】 1 複数の導体を冶金的接続してなる中実導体
と、該中実導体の接続部とほぼ同一位置で、か
つ、該接続部より適当距離はなした位置で導体ス
リーブを介して接続されると共に、ほぼ中央部に
冷却媒体を通す冷媒流路を有する中空導体とより
なり、前記中実導体と中空導体とは、少なくとも
その接続部を除く部分を一体化されてなる電気巻
線用導体において、前記中実導体と中空導体の少
なくとも接続部分を、両者間に配置された熱伝導
セグメントを介して低融点合金で接続したことを
特徴とする電気巻線用導体。 2 前記熱伝導セグメントは、低融点合金である
半田層により前記導体スリーブと中実導体接続部
とを固着一体化していることを特徴とする特許請
求の範囲第1項記載の電気巻線用導体。
[Scope of Claims] 1. A solid conductor formed by metallurgically connecting a plurality of conductors, and a conductor sleeve located at approximately the same position as the connection part of the solid conductor and at an appropriate distance from the connection part. The solid conductor and the hollow conductor are connected to each other through a hollow conductor having a coolant flow path through which a coolant passes approximately in the center, and the solid conductor and the hollow conductor are integrated at least in a portion other than the connecting portion. 1. A conductor for electric winding, characterized in that at least a connecting portion of the solid conductor and the hollow conductor is connected by a low melting point alloy via a heat conductive segment disposed between the solid conductor and the hollow conductor. 2. The electrical winding conductor according to claim 1, wherein the thermally conductive segment has the conductor sleeve and the solid conductor connecting portion fixedly integrated with each other by a solder layer made of a low melting point alloy. .
JP55153861A 1980-11-04 1980-11-04 Conductor for electric winding Granted JPS5778109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55153861A JPS5778109A (en) 1980-11-04 1980-11-04 Conductor for electric winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55153861A JPS5778109A (en) 1980-11-04 1980-11-04 Conductor for electric winding

Publications (2)

Publication Number Publication Date
JPS5778109A JPS5778109A (en) 1982-05-15
JPH0115122B2 true JPH0115122B2 (en) 1989-03-15

Family

ID=15571700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55153861A Granted JPS5778109A (en) 1980-11-04 1980-11-04 Conductor for electric winding

Country Status (1)

Country Link
JP (1) JPS5778109A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51160260U (en) * 1975-06-16 1976-12-20
CN104319058B (en) * 2014-11-17 2017-01-04 中国科学院电工研究所 A kind of superconducting joint chiller

Also Published As

Publication number Publication date
JPS5778109A (en) 1982-05-15

Similar Documents

Publication Publication Date Title
JP4411543B2 (en) Magnetic parts
US3819418A (en) Thermoelectric generator and method of producing the same
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
CA1042053A (en) Dynamoelectric machine phase lead connectors
JPS61160901A (en) Compact resistance assembly
JPH0115122B2 (en)
JP3253526B2 (en) Aluminum stabilized superconducting device supported by aluminum alloy sheath and method of manufacturing the same
US4056880A (en) Method for connecting dynamoelectric machine coils
JPH0586053B2 (en)
JPS6225847Y2 (en)
JP2003037957A (en) Power lead of high temperature superconducting rotor
JP2523429Y2 (en) High frequency heating coil
JPH0748420B2 (en) Superconducting coil device
JP6816874B2 (en) Protective element
JPS6142264A (en) Cooling fin of linear induction motor
JP6816875B2 (en) Protective element
KR20060008868A (en) Travelling-wave machine
JPS605533Y2 (en) superconducting coil
US4630018A (en) Molded case circuit breaker current transformer with spiral bus
KR100239673B1 (en) Electric spot welder for terminal welding
JPS6220683B2 (en)
JPH0582357A (en) Water-cooled transformer
JPH05205544A (en) Forced refrigerating type superconductor and manufacture of the same
JPH0519937Y2 (en)
JPS6231315B2 (en)