JPH01150795A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH01150795A
JPH01150795A JP31055287A JP31055287A JPH01150795A JP H01150795 A JPH01150795 A JP H01150795A JP 31055287 A JP31055287 A JP 31055287A JP 31055287 A JP31055287 A JP 31055287A JP H01150795 A JPH01150795 A JP H01150795A
Authority
JP
Japan
Prior art keywords
air
heat
temperature
air guide
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31055287A
Other languages
Japanese (ja)
Inventor
Akira Ito
晃 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITO GIJUTSU KENKIYUUSHITSU KK
Original Assignee
ITO GIJUTSU KENKIYUUSHITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITO GIJUTSU KENKIYUUSHITSU KK filed Critical ITO GIJUTSU KENKIYUUSHITSU KK
Priority to JP31055287A priority Critical patent/JPH01150795A/en
Publication of JPH01150795A publication Critical patent/JPH01150795A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To enable regulation of temperature in an automobile and to enable saving of a power, by a method wherein a heat exchange unit in which spiral heat pipes are situated in upper and lower air guide passages is rotated in a casing having the upper and lower air guide passages through which air in a closed space and an external space respectively, flow. CONSTITUTION:When temperature in a car room is increased, a temperature sensor switch 70 is actuated, a blast fan 50 feeds air in a car room to the interior of an air guide passage 31b by means of a solar battery 60, and air outside a car is fed in an air guide passage 31a. A heat pipe 10 absorbs heat from high temperature air, and dissipates heat to low temperature air. An impeller 40 is rotated by means of an air flow passing the air guide passage 31b, and a heat exchange unit B is rotated around a central axis 21. Each heat pipe 10 is repeatedly rotate to move between the upper stream side and the downstream side in the air guide passages 31a and 31b, and is actuated high- efficiently.

Description

【発明の詳細な説明】 生l上■肌朋公界 本発明は、自動車の車室等の閉鎖空間と外部空間との間
で熱を移動させることにより、上記閉鎖空間を好適な温
度に調節する熱交換器に関するものである。
[Detailed Description of the Invention] The present invention is a system for adjusting the temperature of a closed space to a suitable temperature by transferring heat between a closed space such as an automobile cabin and an outside space. This relates to a heat exchanger.

従米豊肢血 例えば、夏季等に、直射日光の当たる場所に自動車を長
時間駐車放置しておくと、この自動車の車室内温度は外
気温に比べて著しく上昇し、再度の乗車を躊躇させるほ
どである。更に、上記車室内の温度を低下させるために
カークーラを作動させても所望の快適温度までの温度差
がきわめて大きいため、上記快適温度となるまでに長時
間を要し、また、この際エンジンがアイドルリング状態
であるためクーラコンプレッサに加わる負荷が大きく、
このカーコンプレッサを駆動するエンジンの負荷も大き
くて燃費を低下させる要因となっている。なお現状のカ
ークーラでは駐停車中で、運転者が車から離れている状
態でカークーラを駆動させておくことはできない。その
ため、上記の温度上昇を防止、あるいは緩和する種々の
提案がなされている。
For example, if a car is left parked in direct sunlight for a long time during the summer, the temperature inside the car will rise significantly compared to the outside temperature, to the point where people will hesitate to get in the car again. It is. Furthermore, even if the car cooler is operated to lower the temperature inside the vehicle, the temperature difference between the desired comfort temperature and the desired comfort temperature is extremely large, so it takes a long time to reach the comfort temperature, and in this case, the engine Due to the idling state, the load on the cooler compressor is large,
The load on the engine that drives this car compressor is also large, which is a factor in reducing fuel efficiency. Note that with current car coolers, it is not possible to keep the car cooler running while the vehicle is parked and the driver is away from the vehicle. Therefore, various proposals have been made to prevent or alleviate the above temperature rise.

上記の提案の内には、熱交換器を用いて自動車の車室内
と外部との間で熱を移動させ、上記温度上昇を防止しよ
うとしたものがあった。
Some of the above proposals attempted to prevent the temperature rise by using a heat exchanger to transfer heat between the interior of the vehicle and the outside.

13<”’l、よ゛と る。 占 ところで、上記従来の熱交換器は、棒状のビー1−パイ
プを用いたもので、このヒートパイプにフィンを配設し
てラジェータパネル状の熱交換ユニットを形成し、この
熱交換ユニットの吸熱側及び放熱側を夫々室内側並びに
室外側の循環送風路内に配置したものである。
It is read as 13<”'l. By the way, the above-mentioned conventional heat exchanger uses a rod-shaped B1-pipe, and fins are arranged on this heat pipe to create a radiator panel-like heat exchanger. A unit is formed, and the heat absorption side and the heat radiation side of this heat exchange unit are arranged in the circulation air passage on the indoor side and the outdoor side, respectively.

ところで、上記在来の熱交換器の熱交換ユニットはラジ
ェータパネル状であるため嵩張って重く、しかもこの熱
交換ユニットに均一に送風する必要性から送風用ファン
も大型化している。
By the way, the heat exchange unit of the conventional heat exchanger is shaped like a radiator panel and is therefore bulky and heavy, and the need for uniformly blowing air to the heat exchange unit has led to an increase in the size of the blowing fan.

従って、上記熱交換器の大形化は免れず、しかも上記送
風用ファンへの動力、即ち、電力供給の問題も生じてい
た。上記ファンの電力としては駐車時に作動させる必要
から、車載バッテリや太陽電池等が考えられるが、上記
車載バッテリでは、再スタート時のバッテリ上がりの問
題があり、上記太陽電池では大面積を必要とするために
、コストの上昇並びに美観の低下という問題を有してい
た。
Therefore, the size of the heat exchanger cannot be avoided, and the problem of power supply to the ventilation fan has also arisen. As the power for the above fan needs to be activated when the vehicle is parked, an in-vehicle battery or a solar battery can be considered, but the in-vehicle battery has the problem of running out of power when restarting, and the above solar battery requires a large area. Therefore, there have been problems of increased cost and decreased aesthetic appearance.

い 占−”° るための − 本発明は、上記問題点に鑑みてなされたもので、閉鎖空
間と外部空間との間で熱を移動させることにより、上記
閉鎖空間内の温度調節を行う熱交換器であって、上記閉
鎖空間内の空気が循環流通する導風路及び上記外部空間
の空気が循環流通する導風路を上下に形成したケーシン
グと、上記ケーシングの内部に回転自在に配設され、上
半部分並びに下半部分を上記2つの導風路に夫々位置さ
せた複数のスパイラル形状のヒートパイプを備えた熱交
換ユニトと、上記各導風路に閉鎖空間並びに外部空間の
空気を導入する送風ファンとで構成したことを特徴とす
る熱交換器。
The present invention has been made in view of the above problems, and is a heat generating system that adjusts the temperature inside the closed space by transferring heat between the closed space and the outside space. The exchanger includes a casing having upper and lower air guide passages for circulating air in the closed space and air guide passages for circulating air in the external space, and a casing rotatably disposed inside the casing. a heat exchange unit equipped with a plurality of spiral-shaped heat pipes whose upper half and lower half are respectively located in the two air guide channels, and air from the closed space and the external space into each of the air guide channels. A heat exchanger characterized by comprising a blower fan to be introduced.

昨朋 本発明に係る熱交換器は、熱交換ユニットの回転により
各ヒートパイプの上・下半部分を各導風路内で回転移動
させ、各導風路内に送風ファンによって導入される閉鎖
空間内の空気並びに外部空間の空気を上記各ヒートパイ
プに均一に接触させることによって、各ヒートパイプの
夫々に均一、かつ、効果的な熱伝達を行わせることがで
きると共に、上記各ヒートパイプはスパイラル形状であ
ることにより有効長が長く、吸放熱に関与する表面積が
大きくて、極めて熱伝達効率が高いため、閉鎖空間と外
部空間との間で効率よ(速やかに熱を移動させることが
できて、上記閉鎖空間の温度調整を速やかに行うことが
できる。
Yesterday, the heat exchanger according to the present invention rotates the upper and lower half portions of each heat pipe within each air guide path by rotation of the heat exchange unit, and closes the heat pipe introduced into each air guide path by a blower fan. By uniformly bringing the air in the space and the air in the outside space into contact with each of the heat pipes, uniform and effective heat transfer can be carried out in each heat pipe, and each heat pipe has The spiral shape has a long effective length, a large surface area involved in heat absorption and radiation, and extremely high heat transfer efficiency, so heat can be transferred efficiently (quickly) between the closed space and the outside space. Therefore, the temperature of the closed space can be quickly adjusted.

尖止孤 第1図乃至第4図は、本発明に係る熱交換器を自動車に
通用する場合の一実施例を示すものである。
Figures 1 to 4 show an embodiment in which a heat exchanger according to the present invention is used in an automobile.

上記本発明に係る熱交換器(A)は、熱交換ユニソl−
(B) 、この熱交換ユニット(B)を回転可能に収容
するケーシング(30) 、並びにケーシング(30)
内に空気を送り込む送風ファン(50)とで構成され、
上記送風ファン(50)に太陽電池(60)及び温度セ
ンサースイ・ノチ(70)を接続しである。
The heat exchanger (A) according to the present invention is a heat exchanger unisol l-
(B), a casing (30) rotatably housing this heat exchange unit (B), and a casing (30)
It consists of a blower fan (50) that blows air into the
A solar cell (60) and a temperature sensor (70) are connected to the blower fan (50).

上記熱交換ユニッ) (B)は、所定本数のヒートパイ
プ(10)と、このヒートパイプ(10)を保持するホ
ルダ(20)とで構成されている。
The heat exchange unit (B) includes a predetermined number of heat pipes (10) and a holder (20) that holds the heat pipes (10).

上記ヒートパイプ(10)は、図示するように、所定ピ
ッチで所定の外径寸法にIll!旋状に屈曲形成したも
のである。即ち、上記のヒートパイプ(10)は略コイ
ルスプリング形状とすることにより、作動流体を封入す
る密閉管の有効長さ並びに表面積を増大させである。
As shown in the figure, the heat pipe (10) has a predetermined outer diameter at a predetermined pitch. It is bent into a spiral shape. That is, by forming the heat pipe (10) into a substantially coil spring shape, the effective length and surface area of the sealed tube enclosing the working fluid are increased.

上記ホルダ(20)は、中心軸(21)の上下両端及び
中間位置に、夫々保持板(22a)(22b)(22C
)を固着して形成されている。そして、上記保持板(2
2a)(22b)(22c)の夫々に各ヒートパイプ(
10)の上下両端並びに中央部を支持させることにより
、上記ホルダ(20)の周縁に所定本数のヒートパイプ
(10)を等間隔で保持させである。
The holder (20) has holding plates (22a) (22b) (22C
) are fixed together. Then, the above retaining plate (2
2a) (22b) (22c), each heat pipe (
A predetermined number of heat pipes (10) can be held at equal intervals around the periphery of the holder (20) by supporting both upper and lower ends and the center of the holder (10).

上記ケーシング(30)は、上下に2つの導風路(31
a )  (31b )を有しており、上記ケーシング
(30)の中央部には上記の熱交換ユニット(B)が、
2つの導風路(31a )  (31b )に跨がって
配設される。即ち、上記ケーシング(30)の中央部に
おける土壁内側と底壁内側とに軸受(32)  (32
)を配設し、この軸受(32)  (32)にホルダ(
20)の中心軸(21)の両端を支持させることにより
、上記熱交換ユニット(B)はケーシング(30)内に
回転自在に収容される。
The casing (30) has two air guide paths (31
a) (31b), and the heat exchange unit (B) is located in the center of the casing (30).
It is arranged astride the two air guide paths (31a) and (31b). That is, bearings (32) (32
), and a holder (
The heat exchange unit (B) is rotatably accommodated in the casing (30) by supporting both ends of the central shaft (21) of the heat exchange unit (B).

上記の導風路(31a )  (31b )を区画する
隔壁(33)には中央部に円形の窓孔(33a)を形成
してあり、この窓孔(33a )には、上記ホルダ(2
0)の中央の保持板(22C)を位置させて各ヒートパ
イプ(10)の上半部分及び下半部分が、各導風路(3
1a )  (31b )に位置するように構成してい
る。
A circular window hole (33a) is formed in the center of the partition wall (33) that partitions the air guide path (31a) (31b), and the window hole (33a) is provided with the holder (2).
The upper and lower half parts of each heat pipe (10) are connected to each air guide path (3) by positioning the central retaining plate (22C) of
1a) (31b).

また、上記下方側の導風路(31b )の上流側(第1
図において左方側)には、上記熱交換ユニッl−(B)
に近接させて、羽根車(40)が配設されている。上記
羽根車り40)の回転軸(41)の下端には歯車(42
)を形成してあり、この歯車(42)は、ホルダ(20
)の下端側の保持板(22b )の外周の歯車部(g)
と噛合させである。
Moreover, the upstream side (the first
On the left side in the figure) is the heat exchange unit l-(B).
An impeller (40) is arranged close to. The lower end of the rotating shaft (41) of the impeller wheel 40) has a gear (42).
), and this gear (42) is connected to the holder (20
) Gear part (g) on the outer periphery of the retaining plate (22b) on the lower end side
It goes hand in hand with this.

上記送風ファン(50)は内部にモータ(M)を一体に
組み込んだ軸流タイプのもので、上記上方側の導風路(
31a)には第1図における右方側の開口端に、下方側
の導風路(31b )には第1図における左方側の開口
端に、取付けられる。ここで各送風ファン(50)は、
外気を各導風路(31a )  (31b )内に吹き
込むように作動する構造となっている。
The above-mentioned ventilation fan (50) is of an axial flow type with a motor (M) integrated therein, and the above-mentioned upper air guide path (
31a) is attached to the open end on the right side in FIG. 1, and the lower air guide path (31b) is attached to the open end on the left side in FIG. Here, each blower fan (50) is
It has a structure that operates to blow outside air into each air guide path (31a) (31b).

上記各送風ファン(50)のモータ(M)には太陽電池
(60)が温度センサースイッチ(70)を介して接続
されている。
A solar cell (60) is connected to the motor (M) of each of the blower fans (50) via a temperature sensor switch (70).

上記温度センサースイッチ(70)は、所定の設定温度
以上になると上記太陽電池(60)とモータ(M)とを
導通させるように機能するものである。
The temperature sensor switch (70) functions to connect the solar cell (60) and the motor (M) when the temperature exceeds a predetermined set temperature.

上記熱交換器(A)の自動車への取付けに際しては下方
側の導風路(31b )を車室内の温度上昇の著しい箇
所の空気が循環し得るように配管し、上方側の導風路(
31a ”)には車外でなるべく温度の低い箇所の空気
を循環させ得るように配管する。そして、上記太陽電池
(60)は、ルーフ、ダツシュボードの上面等直射日光
を有効に受光し得る場所に、上記温度センサースイッチ
(70)は、室温の最も高くなる位置に取付けておく。
When installing the heat exchanger (A) in a car, the lower air guide path (31b) is piped so that air can circulate in areas where the temperature rises significantly in the vehicle interior, and the upper air guide path (31b)
The solar cell (60) is placed in a place where it can effectively receive direct sunlight, such as the roof or the upper surface of the dash board. The temperature sensor switch (70) is installed at the position where the room temperature is highest.

そして、上記温度センサースイッチ(70)には、所望
の作動温度を設定しておく。
A desired operating temperature is set in the temperature sensor switch (70).

以下に、上記の自動車を直射日光下に放置した場合につ
いて、上記熱交換器の動作を説明する。
The operation of the heat exchanger will be described below when the vehicle is left in direct sunlight.

L記直射日光により自動車の車室内の温度が上昇して温
度センサースイッチ(70)の作動温度に達すると、上
記温度センサースイッチ(70)が作動して太陽電池(
60)からの電力が、各送風ファン(50)のモータ(
M)に供給される。
L: When the temperature inside the vehicle increases due to direct sunlight and reaches the operating temperature of the temperature sensor switch (70), the temperature sensor switch (70) is activated and the solar cell (
Electric power from the fan (60) is supplied to the motor (
M).

すると、下方側の導風路(31b )に取付けた送風フ
ァン(50)は、車室内の温度の高い空気を上記導風路
(31b )内に送り込み、上方側の導風路(31a 
)に取付けた送風ファン(50)は車外の温度の低6)
空気を上記導風路(31a )内に送り込む。
Then, the blower fan (50) attached to the lower air guide path (31b) sends the high-temperature air inside the vehicle into the air guide path (31b), and blows the air into the upper air guide path (31a).
) The blower fan (50) installed in
Air is sent into the air guide path (31a).

上記下方側の導風路(31b )を流通する高温の空気
は、この導風路(31b )内に位置する各ヒートパイ
プ(10)の下半部分に接触し、上方側の導風fi’3
(31a)を流通する低温の空気は、この導風路(31
a)内に位置する各ヒートパイプ(10)の上半部分に
接触する。すると、上記各ヒートパイプ(10)は、こ
の熱を上記高温の空気から極めて速やかに熱を吸収し、
上記低温の空気に極めて速やかに放出する。ここで、上
記各ヒートパイプ(10)は、前述したような略コイル
スプリング形状としであるため、夫々の有効長さは高さ
に比べて数倍の長さを有している。一般にヒートパイプ
の熱伝達効率は密閉管が同一径であれば長さの比の自乗
に比例することが種々の実験で知られており、また、上
記各ヒートパイプ(10)はコイルスプリング形状のス
パイラル形状であるため、同一外径寸法のヒートパイプ
に比べて熱の授受に関与する表面積が増大して、極めて
熱伝達効率が高い。従って、上記下方側の導風路(31
b )からは、熱を奪われ、冷却された空気が車室内に
吹き出すことになり、以後、車室内の空気は、上記導風
路(31b ”)を介して循環することにより、車室内
の温度が急激に降下する。一方、上記上方側の導風路(
31a )には、車外の新たな冷たい空気が連続して吸
込まれ、上記車室内の空気の熱を吸収した後、再び車外
に排出される。
The high-temperature air flowing through the lower air guide path (31b) comes into contact with the lower half of each heat pipe (10) located in this air guide path (31b), and the upper air guide fi' 3
The low temperature air flowing through (31a) is
a) contacting the upper half portion of each heat pipe (10) located within; Then, each of the heat pipes (10) absorbs this heat from the high temperature air very quickly,
Very quickly released into the cold air. Here, since each of the heat pipes (10) has a substantially coil spring shape as described above, the effective length of each of them is several times longer than the height. In general, it is known from various experiments that the heat transfer efficiency of a heat pipe is proportional to the square of the length ratio if the sealed pipes have the same diameter, and each of the heat pipes (10) has a coil spring shape. Because of the spiral shape, the surface area involved in heat exchange is increased compared to a heat pipe with the same outer diameter, resulting in extremely high heat transfer efficiency. Therefore, the lower air guide path (31
b), the heat is removed and the cooled air is blown into the passenger compartment.Then, the air in the passenger compartment is circulated through the air guide path (31b''), and the air inside the passenger compartment is blown out. The temperature drops rapidly.On the other hand, the upper air guide path (
31a), fresh cold air from outside the vehicle is continuously sucked in, absorbs the heat of the air inside the vehicle, and then is discharged to the outside of the vehicle again.

また、このとき、上記下方側の導風路(31b )を通
過する空気流により導風路(31b )に配設した羽根
車(40)が回転しており、この羽根車(40)の回転
動作は、互いに噛合している羽根車(40)の回転軸(
41)の歯車(42)及びホルダ(20)の下端側の係
止板(22b )の歯車部(g)を介して上記熱交換ユ
ニッ) (B)に伝達されて、熱交換ユニフ) (B)
を中心軸(21)を中心に回転させる。従って上記熱交
換ユニット(B)の回転により、各ヒートパイプ(1o
)は、各導風路(31a )  (31b )内の上流
側と下流側との間を繰り返し回転移動しており、これに
よって、上記下方側の導風路(31b )内に導入され
た車室内の高温状態の空気を各ヒートバイア”(10)
の下半部分に均一に接触させることができ、上方側の導
風路(31a )内に導入された車外の低温状態の空気
を各ヒートパイプ(1o)の上半部分に夫々均一に接触
させることができる。そして上記各導風路(31a )
  (31b )における空気の流通方向は、互いに逆
向きとなっているため、上記各ヒートパイプ(1o)を
全て均等な条件下で効率よく作動させることができ、前
述のヒートパイプ(1o)自体の効果と相俟って極めて
熱交換効率の高い熱交換器が得られることになる。換言
すれば上記した各送風ファン(50)による送風量が少
なくても、熱交換ユニットの熱交換効率が極めて高いた
め、十分な温度調整効果を発揮させることができ、従っ
て、上記送風ファン(50)の小型化、省電力化が図れ
ると共に、送風ファン(50)の駆動電源(太陽電池)
も極めて小容量のものですむ。また、上記したように熱
交換ユニット(B)の熱交換効率が極めて高いため、熱
交換ユニッl−(B)自体の小型軽量化、即ち、熱交換
器(A)自体の小型軽量化が容易であり、しかも送風フ
ァン(50)の小型化、省電力化が図れるため、運転者
が自動車から離れる場合でもバッテリー上がりの心配な
く車載バッテリー上−動させることも可能となる。また
これにより、自動車の車室内の温度上昇が効果的に抑制
されるため、再乗車時の暑さによる不快感を解消するこ
とができる他、カークーラによって快適温度まで極めて
短時間にで温度調整することができ、しかもカークーラ
に加わる熱負荷が減少するためクーラーコンプレッサや
エンジンの負荷の軽減並びに燃費の向上も図れる。
Moreover, at this time, the impeller (40) disposed in the air guide path (31b) is rotating due to the airflow passing through the air guide path (31b) on the lower side, and the rotation of this impeller (40) The operation is based on the rotating shaft (
41) and the gear portion (g) of the locking plate (22b) on the lower end side of the holder (20), the heat is transmitted to the heat exchange unit) (B). )
is rotated around the central axis (21). Therefore, by the rotation of the heat exchange unit (B), each heat pipe (1o
) rotates repeatedly between the upstream and downstream sides of each air guide path (31a) (31b), and thereby the vehicle introduced into the lower air guide path (31b) Each heat via” (10)
The low-temperature air outside the vehicle introduced into the upper air guide path (31a) can be brought into uniform contact with the upper half of each heat pipe (1o). be able to. And each of the above air guide paths (31a)
Since the air flow directions in (31b) are opposite to each other, each of the heat pipes (1o) can be operated efficiently under uniform conditions, and the heat pipe (1o) itself can be operated efficiently. Combined with this effect, a heat exchanger with extremely high heat exchange efficiency can be obtained. In other words, even if the amount of air blown by each of the above-mentioned blower fans (50) is small, the heat exchange efficiency of the heat exchange unit is extremely high, so a sufficient temperature adjustment effect can be exerted. ) can be made smaller and consume less power, as well as the drive power source (solar battery) for the blower fan (50).
It also requires an extremely small capacity. In addition, as mentioned above, since the heat exchange efficiency of the heat exchange unit (B) is extremely high, it is easy to reduce the size and weight of the heat exchange unit (B) itself, that is, the size and weight of the heat exchanger (A) itself. Furthermore, since the blower fan (50) can be made smaller and consume less power, it can be operated on the vehicle's battery without worrying about the battery running out even when the driver leaves the vehicle. This also effectively suppresses the rise in temperature inside the car, which eliminates the discomfort caused by the heat when re-boarding the car, and also allows the car cooler to adjust the temperature to a comfortable temperature in an extremely short time. Moreover, since the heat load applied to the car cooler is reduced, the load on the cooler compressor and engine can be reduced, and fuel efficiency can be improved.

上記構成の熱交換器(A)を用いた温度張設作用の実験
結果を示す線図を第5図乃至第8図に示し、以下に説明
する。向上記各線図において、曲線イば周囲の外気温度
、曲線口は閉鎖空間(箱形容器あるいは自動車の車室)
内の温度、曲線ハは熱交換器(A)の放熱側導風路(3
1a)における排気温度、曲線二は熱交換器(A)の吸
#)側導風路(31b )における排気温度を示してい
る。また、この各実験に際して用いた熱交換器(A)は
、直径3m鳳、長さ500鰭の密閉管を外径30龍長さ
10(hmのコイルスプリング状に屈曲形成し、作動液
をH2Oとしたヒートパイプ(10)を14本用いたも
ので、送風ファン(50)(50)は適宜に作動し得る
ようにしである。
Diagrams showing the experimental results of the temperature tensioning effect using the heat exchanger (A) having the above configuration are shown in FIGS. 5 to 8, and will be explained below. In each of the above diagrams, the curved line indicates the outside air temperature, and the curved opening indicates the closed space (box-shaped container or car interior).
The temperature in curve C is the temperature in the heat radiation side air guide path (3) of the heat exchanger (A).
Curve 2 shows the exhaust gas temperature in the intake air guide path (31b) of the heat exchanger (A). The heat exchanger (A) used in each of these experiments was made by bending a sealed tube with a diameter of 3 m and a length of 500 mm into a coil spring shape with an outer diameter of 30 mm and a length of 10 mm. 14 heat pipes (10) are used, and the blower fans (50) (50) can be operated as appropriate.

また各実験においては700W、 1200W切換式の
電気温風機を熱源として用い、実験条件の均一化、再現
の容易化を図っである。
In addition, in each experiment, a 700W/1200W switchable electric hot air fan was used as a heat source to ensure uniformity of experimental conditions and ease of reproduction.

第5財は、内寸が60emX60(1)×90(至)の
箱状容器内で上記電気温風機を700 Wで作動させ、
1時間後に上記熱交換機(A)の送風ファン(5o)を
作動させて、上記容器における温度m整作用を調べた実
験結果を示す線図である。図示するように、電気温風機
によって容器内の温度(曲線口)は室温の28℃から7
0℃近くまで上昇するが、送風ファン(50)  <5
0)を作動させると、約2分で60℃まで低下し、後は
外気温度(曲線ハ)と平衡すべく徐々に低下する。そし
てこの際に、熱交換器(A)から容器内に吹き出される
冷却後の空気の温度(曲線二)は、図示するように容器
内温度より極めて低く、熱交換器(A)の効率が極めて
高いことを示している。
The fifth item is a box-shaped container with internal dimensions of 60em x 60 (1) x 90 (to), in which the electric hot air fan is operated at 700 W.
FIG. 3 is a diagram showing the results of an experiment in which the effect of adjusting the temperature m in the container was investigated by operating the blower fan (5o) of the heat exchanger (A) after one hour. As shown in the figure, the temperature inside the container (at the curved opening) is changed from room temperature of 28°C to 7°C using an electric hot air fan.
The temperature rises to nearly 0℃, but the blower fan (50) <5
0), the temperature drops to 60°C in about 2 minutes, and then gradually drops to balance with the outside temperature (curve C). At this time, the temperature of the cooled air blown into the container from the heat exchanger (A) (curve 2) is extremely lower than the temperature inside the container, as shown in the figure, and the efficiency of the heat exchanger (A) is It shows that it is extremely high.

第6図乃至第8図は夫々自動車を用いた実際的な温度抑
制効果を調べたもので、上記の自動車の車室内容積は約
1.7mである。
FIGS. 6 to 8 show the actual temperature suppression effect using an automobile, and the interior volume of the above-mentioned automobile is about 1.7 m.

第6図は外気温(曲線イ)が28℃の条件下で車室内に
て上記電気温風器を700Wで作動させ、車室内温度(
曲線口)が61°Cとなった時点で、上記電気温風機を
OFFにすると共に熱交換機(A)を作動させたもので
、上記車室内温度は数分で20℃近く低下している。
Figure 6 shows that the electric air heater is operated at 700W in the vehicle interior under the condition that the outside temperature (curve A) is 28℃.
When the temperature at the curve opening) reached 61°C, the electric hot air fan was turned off and the heat exchanger (A) was activated, and the temperature inside the vehicle was reduced by nearly 20°C in a few minutes.

第7図は、外気温く曲線イ)が28℃の条件下で車室内
にて上記電気温風機を700Wで作動さると共に同時に
熱交換機(A)も作動させ、−定時間経過後、電気温風
機のみをOFFしたちのである。この場合車室温度(曲
線口)は略44℃で一定し、はとんど上昇傾向を示して
おらず、上記電気温風機をOFFとした時点以後は前述
同様数分で10℃以上急激に低下し、後は外気温(曲線
イ)と平衡すべく低下している。
Figure 7 shows that the above electric hot air fan is operated at 700W in the passenger compartment under the condition that the outside temperature is 28℃ and the heat exchanger (A) is also operated. Only the wind machine was turned off. In this case, the cabin temperature (at the beginning of the curve) remains constant at approximately 44 degrees Celsius, showing no rising trend, and after the electric warm air fan is turned off, it rapidly increases by more than 10 degrees Celsius in a few minutes as described above. After that, it decreases to balance with the outside temperature (curve A).

第8図は、外気温20°Cの条件下で車室内にて電気温
風機700Wで作動させ、所定時間TI後、車室内に乗
車した乗員により車室内の空気を攪拌させて車室内での
温度分布を均一化させ、更に所定時間T2後、電気温風
機を1200Wで作動させ、一定時間Ta後に熱交換器
(A)を作動させたものである。この場合も電気温風器
を1200Wで作動させているにもかかわらず熱交換器
(A)の作動後数分で10“C近い車室内温度(曲線口
)の低下が見られ、後は前記と同様に外気温(曲線イ)
と平衡すべく低下している。
Figure 8 shows that an electric hot air fan of 700 W is operated inside the vehicle at an outside temperature of 20°C, and after a predetermined time TI, the air inside the vehicle is stirred by the occupant inside the vehicle. After making the temperature distribution uniform, the electric hot air fan was operated at 1200 W after a predetermined time T2, and the heat exchanger (A) was operated after a predetermined time Ta. In this case as well, even though the electric air heater was operating at 1200W, the cabin temperature (curve opening) decreased by nearly 10"C within a few minutes after the heat exchanger (A) was activated, and the rest was as described above. Similarly, the outside temperature (curve A)
It is decreasing in order to balance it.

以上の実施例では本発明に係る熱交換器を夏期等におけ
る自動車の車室内の温度の上昇を押さえるために用いた
が、逆に冬期等の外気温が低い場合に、適宜の熱源から
の熱を利用することにより、車室内の温度低下を防止す
ることもできる。
In the above embodiments, the heat exchanger according to the present invention was used to suppress the rise in temperature inside the vehicle cabin during the summer season, etc., but conversely, when the outside temperature is low during the winter season, etc., the heat exchanger according to the present invention By using this, it is also possible to prevent the temperature inside the vehicle from decreasing.

更に、本発明に係る熱交換器は上記の如き自動車の車室
内の温度調節のほか、例えばコンピュータ等の電子装置
や倉庫等の閉鎖空間の温度制御に用いることができる。
Further, the heat exchanger according to the present invention can be used not only for controlling the temperature inside the vehicle interior as described above, but also for controlling the temperature of electronic devices such as computers and closed spaces such as warehouses.

特に、上−記コンピュータ等の電子装置に通用した場合
、一般的な冷却用ファンのように外気を電子装置のケー
ス内に導入することなく温度調整することができるため
、従来問題となっていたほこり等の進入による機能障害
等が防止でき、コンピュータの信頼性をも向上させるこ
とができる。
In particular, when applied to electronic devices such as the computers mentioned above, it is possible to adjust the temperature without introducing outside air into the case of the electronic device like a general cooling fan, which has previously been a problem. Malfunctions caused by ingress of dust and the like can be prevented, and the reliability of the computer can also be improved.

発ユ■立宋 以上説明したように本発明に係る熱交換器は熱交換ユニ
ットの回転により各ヒートパイプは各導風路を流通する
空気に均一に接触して、夫々均一に効果的に作動し、し
かも、ヒートパイプ自体の熱伝達効率が高いため、熱交
換ユニット自体の熱交換効率が極めて高く、上記閉鎖空
間と外部空間の間で熱を短時間で、速やかに移動させる
ことができて、上記閉鎖空間の温度調整を速やかに行う
ことができる。
As explained above, in the heat exchanger according to the present invention, each heat pipe uniformly contacts the air flowing through each air guide path due to the rotation of the heat exchange unit, so that each heat pipe operates uniformly and effectively. Moreover, since the heat transfer efficiency of the heat pipe itself is high, the heat exchange efficiency of the heat exchange unit itself is extremely high, and heat can be quickly transferred between the closed space and the outside space in a short time. , the temperature of the closed space can be quickly adjusted.

更に本発明に係る熱交換器は、熱交換効率が極めて高い
ため小型のものでも充分温度調整を発揮させることがで
き、しかも、上記ヒートパイプによる熱伝導効率も掘め
て高いため、導風路への空気流量は少なくてもよく、従
って送風ファンの小型化、低出力化が図れる。従って本
発明によれば、小型軽量でわずかな駆動駆動力で作動さ
せることができ、温度調節能力の極めて高い熱交換器を
提供することができる。
Furthermore, the heat exchanger according to the present invention has an extremely high heat exchange efficiency, so even a small one can sufficiently control the temperature.Furthermore, since the heat transfer efficiency by the heat pipe is also significantly high, the heat exchanger has an extremely high heat exchange efficiency. The air flow rate to the fan may be small, so the blower fan can be made smaller and have lower output. Therefore, according to the present invention, it is possible to provide a heat exchanger that is small and lightweight, can be operated with a small driving force, and has an extremely high temperature control ability.

また、本発明に係る熱交換器は小型軽量化、及び送風フ
ァンの小型化省電力化が図れるから、前述したように自
動車に適用した場合、運転者が自動車から離れる場合で
もバッテリー上がりの心配なく車載バッテリーで作動さ
せることも可能となる。
Furthermore, since the heat exchanger according to the present invention can be made smaller and lighter, and the blower fan can be made smaller and more energy efficient, when applied to a car as described above, there is no need to worry about the battery dying even when the driver leaves the car. It can also be operated using the car's on-board battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明に係る熱交換器の一実施例
を示すもので、第1図は平面図、第2図は第1図のr−
I線断面図、第3図並びに第4図は上記熱交換器に用い
るヒートバイブの正面図並びに平面図である。 第5図乃至第8図は、夫々上記熱交換器による温度調整
作用の実験結果を示す線図である。 (A)−熱交換器、(B)・・−熱交換ユニット、(1
0) −ヒートパイプ、 (30)−ケーシング、 (31a)(31b)−−一導虱路、 (50)−−−送風ファン。 代    理    人   江   原   省  
 吾!〕ニーう(−町番−^−−例一一 第1図 第3図 ′i35図 第6図 伺工唾B%M C−、t)
1 to 4 show an embodiment of the heat exchanger according to the present invention, FIG. 1 is a plan view, and FIG. 2 is a
The I-line sectional view, FIG. 3, and FIG. 4 are a front view and a plan view of a heat vibrator used in the heat exchanger. FIGS. 5 to 8 are diagrams showing the experimental results of the temperature adjustment effect of the heat exchanger, respectively. (A) - heat exchanger, (B)... - heat exchange unit, (1
0) - heat pipe, (30) - casing, (31a) (31b) - one channel, (50) - ventilation fan. Agent Gangwon Province
Me! ] Niu (-Town number-^--Example 11 Figure 1 Figure 3'i35 Figure 6 Visitor spit B%MC C-, t)

Claims (1)

【特許請求の範囲】[Claims] (1)閉鎖空間と外部空間との間で熱を移動させること
により、上記閉鎖空間内の温度調節を行う熱交換器であ
って、 上記閉鎖空間内の空気が循環流通する導風路及び上記外
部空間の空気が循環流通する導風路を上下に形成したケ
ーシングと、 上記ケーシングの内部に回転自在に配設され、上半部分
並びに下半部分を上記2つの導風路に夫々位置させた複
数のスパイラル形状のヒートパイプをすなえた熱交換ユ
ニットと、 上記各導風路に閉鎖空間並びに外部空間の空気を導入す
る送風ファンとで構成したことを特徴とする熱交換器。
(1) A heat exchanger that controls the temperature in the closed space by transferring heat between the closed space and the outside space, comprising an air guide path through which air in the closed space circulates; A casing having upper and lower air guide channels through which air from the outside space circulates; and a casing rotatably disposed inside the casing, with the upper half and lower half positioned in the two air guide channels, respectively. A heat exchanger comprising a heat exchange unit including a plurality of spiral heat pipes, and a blower fan that introduces air from a closed space and an outside space into each of the air guide paths.
JP31055287A 1987-12-07 1987-12-07 Heat exchanger Pending JPH01150795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31055287A JPH01150795A (en) 1987-12-07 1987-12-07 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31055287A JPH01150795A (en) 1987-12-07 1987-12-07 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH01150795A true JPH01150795A (en) 1989-06-13

Family

ID=18006610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31055287A Pending JPH01150795A (en) 1987-12-07 1987-12-07 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH01150795A (en)

Similar Documents

Publication Publication Date Title
US7181918B2 (en) Vehicle cooler
US6205805B1 (en) Motor vehicle dehumidifier with drying agent and drying agent regenerative control
US8966913B2 (en) Auxiliary air conditioner for vehicle
WO2019062553A1 (en) Automobile thermal management system, and automobile having same
KR101200754B1 (en) Device assistance a cooling and heating for vehicle using thermoelectric element
JP2008215795A (en) Movable heat exchange system, and air conditioner, hot water storage device, electric fan, other heat exchanger and heat exchange system applying the system
CN102019866A (en) Heat exchanger having thermoelectric element
US20120125013A1 (en) Air conditioner
JPH05178070A (en) Air conditioner for electric automobile
CN113071288B (en) Solar vehicle-mounted auxiliary air conditioning system
CN106574793A (en) Humidifier
JP2009291008A (en) Heat management system of electric drive vehicle
KR101193898B1 (en) Device assistance a cooling and heating for vehicle using thermoelectric element
KR20190136930A (en) Hvac extended condensing capacity
JP2006321269A (en) Heat source distribution system for vehicle
JP2004142596A (en) Air conditioning device for vehicle
CN207523396U (en) A kind of automobile and air conditioning system for vehicle
CN211641761U (en) Automobile air conditioner mechanism
JPH0789334A (en) Air-conditioning device for automobile jointly using electricity and fossil fuel
JPH01150795A (en) Heat exchanger
CN211641760U (en) Automobile air conditioner
CN212827784U (en) Novel bus air-conditioning system
RU2142371C1 (en) Automobile interior local air conditioning system
JP2004237907A (en) Air-conditioning system for automobile
JPH01153321A (en) Regenerative type air-conditioning device for vehicle