JPH0115000B2 - - Google Patents

Info

Publication number
JPH0115000B2
JPH0115000B2 JP57223693A JP22369382A JPH0115000B2 JP H0115000 B2 JPH0115000 B2 JP H0115000B2 JP 57223693 A JP57223693 A JP 57223693A JP 22369382 A JP22369382 A JP 22369382A JP H0115000 B2 JPH0115000 B2 JP H0115000B2
Authority
JP
Japan
Prior art keywords
triphenylphosphine
reaction
reaction solution
benzene
aluminum chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57223693A
Other languages
Japanese (ja)
Other versions
JPS59116387A (en
Inventor
Tadashi Umebayashi
Isahiro Matsumura
Koichi Iwabuchi
Masamitsu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEI AI KASEI KK
Original Assignee
KEI AI KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEI AI KASEI KK filed Critical KEI AI KASEI KK
Priority to JP57223693A priority Critical patent/JPS59116387A/en
Publication of JPS59116387A publication Critical patent/JPS59116387A/en
Publication of JPH0115000B2 publication Critical patent/JPH0115000B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電解反応を利用してトリフエニルホス
フインを高収率で製造する方法に関する。 トリフエニルホスフインは、オキソ法の触媒と
して使用されるほか各種有機合成の中間体として
用いられている。 このトリフエニルホスフインの製造方法として
はクロロベンゼンとナトリウムから合成したフ
エニルアルカリと三ハロゲン化リンを溶媒の存在
下に反応させる方法(特公昭57−26676号)ク
ロロベンゼンとマグネシウムを反応させて調製し
た塩化フエニルマグネシウムを三塩化リンと、テ
トラヒドロフラン中で反応させる方法(英国特許
第1495246号)及び無水塩化アルミニウムの存
在下、三塩化リンと、これに対し3倍モル以上の
ベンゼンとを加圧下で加熱反応させる方法(特公
昭46−39337号)−などが知られている。 しかし、及びの方法は、収率は高いが、金
属ナトリウム又は金属マグネシウムを使用するた
め、原料、溶媒中の完全な脱水が必要となるとい
う難点がある。また、クロロベンゼンと金属ナト
リウム又は金属マグネシウムとの反応が不均一系
であるため、反応の開始が円滑にゆかず、時には
爆発の危険さえ伴なうことがある。したがつて
及びのいずれも操作上の難点があり、工業的に
実施するには問題の多い方法である。またの方
法はフリーデルクラフツ反応を利用するもので、
上記のような操作上の欠点はないが、目的のトリ
フエニルホスフインの収率が低く、方法、に
比べコスト高となり、生成トリフエニルホスフイ
ンの純度も低い。この方法の収率の低い理由とし
ては、トリフエニルホスフインが塩化アルミニウ
ムと強く結合して錯体を形成しているため、これ
を水で分解しなければならないがこの分解により
ホスフインオキシドが副生することがある。しか
し、このホスフインオキシドを副生させない方法
はこれまでのところ存在しなかつた。 本発明者らはこのような従来のトリフエニルホ
スフインの製造方法の欠点を克服するため種々研
究を重ねた結果、フリーデルクラフツ反応を利用
して生成させたトリフエニルホスフインを含有す
る反応液を電解還元した後加水分解することによ
りトリフエニルホスフインの収率を顕著に向上さ
せることができ、上記目的を満足し得ることを見
出した。本発明はこの知見に基づきなされるに至
つたものである。 すなわち本発明は、無水塩化アルミニウムの存
在下、ハロゲノジフエニルホスフイン又はジハロ
ゲノフエニルホスフインとベンゼンとを反応さ
せ、次いで反応生成物を電解還元することを特徴
とするトリフエニルホスフインの製造方法を提供
するものである。 本発明において用いられるハロゲノジフエニル
ホスフイン又はジハロゲノフエニルホスフイン
は、ベンゼンと三ハロゲン化リンとを無水塩化ア
ルミニウムの存在下で反応させることにより容易
に調製することができる。ハロゲノジフエニルホ
スフイン又はジハロゲノフエニルホスフイン中の
ハロゲンの例としては、塩素、臭素、ヨウ素など
があげられる。 本発明においてハロゲノジフエニルホスフイン
又はジハロゲノフエニルホスフインとベンゼンを
無水塩化アルミニウムの存在下で反応させてトリ
フエニルホスフインが無水塩化アルミニウムとの
錯体として得られる。 このようにして得られたトリフエニルホスフイ
ンと無水塩化アルミニウムとの錯体を含む反応生
成物は反応液そのままで、もしくは未反応物を除
去したのち電解還元処理に付される。 電解は、窒素ガス導入管、ガス排出口、及び隔
膜を有する電解槽を用い、上記反応生成物を有機
溶媒と共に陰極室に入れて行う。 この場合の電極としては、白金、炭素、二酸化
鉛、鉛、チタン、水銀などが用いられる。 電解溶媒としては塩化メチレン、クロロホルム
1,2−ジクロロエタン、1,1,2,2−テト
ラクロロエタン、トリクロロエチレンなどのハロ
ゲン化炭化水素、アセトン、メチルエチルケト
ン、メチルイソブチルケトンなどのケトン類、ジ
エチルエーテル、テトラヒドロフラン、ジオキサ
ンなどのエーテル類、メタノール、エタノール、
イソプロパノールなどのアルコール類、アセトニ
トリル、プロピオニトリル、フエニルアセトニト
リル、ベンゾニトリルなどのニトリル類及び二硫
化炭素、ニトリロメタン、ニトロベンゼン、ジメ
チルホルムアミド、ジメチルアセトアミド、ベン
ゼン、トルエン、キシレン、クロロベンゼン、ジ
クロロベンゼンなどが単独もしくは混合して用い
られる。 支持電解質としては、一般式(R14NX、
MX、(R23N・HX、(R33PR4Yで表わ
される化合物もしくは、電解に供するフリーデル
クラフツ反応液の一部が用いられる。ここで、
R1は、水素、メチル、エチル、プロピル、ブチ
ルを、R2は、エチル、プロピル、ブチルをそれ
ぞれ表わし、(R23Nとしてピリジン、ピペリジ
ンなども含む。また、R3はブチル、フエニル、
トリルを、R4はメチル、エチルをそれぞれ表わ
し、Mはアルカリ金属、Xは、クロル、ブロム、
ヨード、ベンゼンスルホネート
The present invention relates to a method for producing triphenylphosphine in high yield using an electrolytic reaction. Triphenylphosphine is used as a catalyst in the oxo process and as an intermediate in various organic syntheses. The method for producing triphenylphosphine is a method in which phenyl alkali synthesized from chlorobenzene and sodium is reacted with phosphorus trihalide in the presence of a solvent (Japanese Patent Publication No. 57-26676).It is prepared by reacting chlorobenzene and magnesium. A method in which phenylmagnesium chloride is reacted with phosphorus trichloride in tetrahydrofuran (British Patent No. 1495246), and in the presence of anhydrous aluminum chloride, phosphorus trichloride and benzene in an amount more than three times the molar amount thereof are reacted under pressure. A heating reaction method (Japanese Patent Publication No. 46-39337) is known. However, although the yield is high in the method and, since metallic sodium or metallic magnesium is used, there is a drawback that complete dehydration of the raw materials and the solvent is required. Furthermore, since the reaction between chlorobenzene and metallic sodium or metallic magnesium is a heterogeneous system, the reaction does not start smoothly and sometimes even poses a risk of explosion. Therefore, both methods have operational difficulties and are problematic to implement industrially. Another method uses the Friedel-Crafts reaction,
Although there are no operational disadvantages as described above, the yield of the target triphenylphosphine is low, the cost is higher than that of the method, and the purity of the produced triphenylphosphine is also low. The reason for the low yield of this method is that triphenylphosphine strongly binds to aluminum chloride to form a complex, which must be decomposed with water, but this decomposition produces phosphine oxide as a by-product. There are things to do. However, so far, there has been no method that does not produce phosphine oxide as a by-product. The present inventors have conducted various studies to overcome the drawbacks of conventional methods for producing triphenylphosphine, and as a result, a reaction solution containing triphenylphosphine produced using the Friedel-Crafts reaction has been developed. It has been found that by electrolytically reducing and then hydrolyzing, the yield of triphenylphosphine can be significantly improved and the above object can be satisfied. The present invention has been made based on this knowledge. That is, the present invention provides a method for producing triphenylphosphine, which is characterized by reacting halogenodiphenylphosphine or dihalogenophenylphosphine with benzene in the presence of anhydrous aluminum chloride, and then electrolytically reducing the reaction product. The present invention provides a method. The halogenodiphenylphosphine or dihalogenophenylphosphine used in the present invention can be easily prepared by reacting benzene and phosphorus trihalide in the presence of anhydrous aluminum chloride. Examples of halogens in the halogenodiphenylphosphine or dihalogenophenylphosphine include chlorine, bromine, and iodine. In the present invention, triphenylphosphine is obtained as a complex with anhydrous aluminum chloride by reacting halogenodiphenylphosphine or dihalogenophenylphosphine with benzene in the presence of anhydrous aluminum chloride. The reaction product containing the complex of triphenylphosphine and anhydrous aluminum chloride thus obtained is subjected to an electrolytic reduction treatment either as a reaction solution or after removing unreacted substances. Electrolysis is performed using an electrolytic cell having a nitrogen gas inlet pipe, a gas outlet, and a diaphragm, and placing the reaction product together with an organic solvent in a cathode chamber. As the electrode in this case, platinum, carbon, lead dioxide, lead, titanium, mercury, etc. are used. Examples of electrolytic solvents include methylene chloride, chloroform, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, halogenated hydrocarbons such as trichloroethylene, acetone, ketones such as methyl ethyl ketone and methyl isobutyl ketone, diethyl ether, tetrahydrofuran, Ethers such as dioxane, methanol, ethanol,
Alcohols such as isopropanol, nitriles such as acetonitrile, propionitrile, phenylacetonitrile, benzonitrile, carbon disulfide, nitrilomethane, nitrobenzene, dimethylformamide, dimethylacetamide, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, etc. Used alone or in combination. As a supporting electrolyte, the general formula (R 1 ) 4 NX,
A compound represented by MX, (R 2 ) 3 N·HX, (R 3 ) 3 PR 4 Y or a part of the Friedel-Crafts reaction solution to be subjected to electrolysis is used. here,
R 1 represents hydrogen, methyl, ethyl, propyl, or butyl, R 2 represents ethyl, propyl, or butyl, and (R 2 ) 3 N also includes pyridine, piperidine, and the like. Also, R 3 is butyl, phenyl,
tolyl, R 4 represents methyl and ethyl, M is an alkali metal, X is chloro, bromine,
Iodine, benzene sulfonate

【式】p−トルエンスルホネー ト[Formula] p-toluenesulfone to

【式】メタンスルホネー ト(CH3SO3)、Yは、クロル、ブロム、ヨー
ドからなる。 また、隔膜としては素焼の円筒、イオン交換
膜、グラスタフイルターなどが使用される。 電解反応の反応温度は0〜100℃の範囲で溶媒
の沸点以下の範囲に設定される。好ましくは5〜
20℃の範囲である。 陰極室のトリフエニルホスフインと無水塩化ア
ルミニウムとの錯体の濃度は特に制限はないが、
5〜50重量%の範囲が好ましい。 このように電解反応を基質1モル当り、1フア
ラデーの電気量を通電したのち、得られた陰極室
の電解液を加水分解して目的のトリフエニルホス
フインを高収率で生成させることができる。この
反応液からトリフエニルホスフインは公知の方
法、例えば減圧蒸留などにより分離回収すること
ができる。 本発明方法によれば、フリーデルクラツク反応
により高収率かつ高純度でトリフエニルホスフイ
ンを製造することができる。本発明方法は従来の
金属ナトリウムや金属マグネシウムを用いる方法
のような操作上の面倒さや危険性がなく工業的に
実施するのに好適である。 次に本発明を実施例に基づきさらに詳細に説明
する。なお以下の例中%は重量%を表わす。 実施例 1 300ml容オートクレーブに、ジクロロフエニル
ホスフイン25g、ベンゼン100g及び無水塩化ア
ルミニウム18.7gを仕込み、窒素置換後220℃で
3時間反応させた。 次に、白金電極、隔膜、温度計、窒素導入管、
ガス排出口を備えた電解槽の陰極室に上記の反応
液25mlとアセトニトリル50mlを入れ、陽極室にア
セトニトリル40ml、塩化メチレン20ml及びテトラ
エチルアンモニウム p−トルエンスルホネート
1gを入れ、窒素気流下、10〜20℃で0.3A定電
流電解を行つた。2時間後、陰極室の電解液を加
水分解し、ガスクロマトグラフイーで分析したと
ころ、トリフエニルホスフイン(以下TPPと記
す)73%、ジフエニルホスフイン(以下DPPと
記す)12%、トリフエニルホスフインオキシド
(以下TPPOと記す)3%であつた。 比較例 1 実施例1の電解処理しない反応液を直接加水分
解し、ガスクロマトグラフイーで分析したところ
TPP43%、DPP26%、TPPO30%であつた。 実施例 2 実施例1と同様にしてフリーデルクラフツ反応
を行つてTPP52%、DPP14%、TPPO30%の組
成の反応液を調製した。実施例1と同様の電解槽
を用い、この反応液25mlと塩化メチレン50mlを陰
極室に入れ、アセトニトリル20ml、塩化メチレン
5ml、テトラエチルアンモニウムp−トルエンス
ルホネート1gを陽極室に入れ、0.3A定電流電
解を行つた。2時間後反応液を加水分解し、ガス
クロマトグラフイーで分析したところ、TPP79
%、DPP10%、TPPO5%であつた。 実施例 3 還流冷却器、温度計及び窒素導入管を有する
100ml容四ツ口フラスコにベンゼン10.9g、三塩
化リン45.8g、無水塩化アルミニウム14.9gをと
り、窒素気流下2時間還流反応させた。反応後減
圧下過剰のベンゼン及び三塩化リンを留去した。
この濃縮残渣とベンゼン115gを300ml容オートク
レーブに仕込み窒素置換後220℃で5時間反応さ
せた。 この反応液を実施例1と同様の電解槽を用いて
電解還元した。まず、反応液25mlとアセトニトリ
ル50mlを陰極室に、アセトニトリル10mlと塩化メ
チレン10mlとテトラエチルアンモニウムp−トル
エンスルホネート1gを陽極室に、それぞれと
り、窒素気流下0.3A定電流電解を行う。2.5時間
後陰極室の電解液を加水分解し、ガスクロマトグ
ラフイーで分析したところ、TPP80%、DPP4
%、TPPO3%であつた。 比較例 2 実施例3の電解処理に付す前の反応液を直接加
水分解しガスクロマトグラフイーで分析したとこ
ろTPP64%、DPP7%、TPPO26%であつた。 実施例 4 実施例1と同様にして、フリーデルクラフツ反
応を行つて、TPP50%、DPP12%、TPPO27%
の組成の反応液を調整した。この反応液50mlとア
セトニトリル25mlを陰極室に入れ、アセトニトリ
ル10ml、塩化メチレン10ml、テトラブチルアンモ
ニウムブロミド1gを陽極室に入れ、0.3A定電
流電解を行つた。5時間後、反応液を加水分解
し、ガスクロマトグラフイーで分析したところ
TPP78%、DPP10%、TPPO2%であつた。 実施例 5 テトラブチルアンモニウムブロミド1gの代り
にフリーデルクラフツ反応液1mlを用いた以外は
実施例4と全く同様にして電解を行つたところ、
TPP81%、DPP9%、TPPO2%であつた。
[Formula] Methanesulfonate (CH 3 SO 3 ), Y consists of chlor, bromo, and iodo. Further, as the diaphragm, an unglazed cylinder, an ion exchange membrane, a glass filter, etc. are used. The reaction temperature of the electrolytic reaction is set within the range of 0 to 100°C and below the boiling point of the solvent. Preferably 5~
It is in the range of 20℃. There is no particular limit to the concentration of the complex of triphenylphosphine and anhydrous aluminum chloride in the cathode chamber, but
A range of 5 to 50% by weight is preferred. In this way, after the electrolytic reaction is carried out by applying an amount of electricity of 1 faraday per mole of substrate, the resulting electrolyte in the cathode chamber can be hydrolyzed to produce the target triphenylphosphine in high yield. . Triphenylphosphine can be separated and recovered from this reaction solution by a known method such as vacuum distillation. According to the method of the present invention, triphenylphosphine can be produced in high yield and with high purity by the Friedelkrack reaction. The method of the present invention is suitable for industrial implementation because it is free from the operational troubles and dangers of conventional methods using sodium metal or magnesium metal. Next, the present invention will be explained in more detail based on examples. In addition, % in the following examples represents weight %. Example 1 A 300 ml autoclave was charged with 25 g of dichlorophenylphosphine, 100 g of benzene, and 18.7 g of anhydrous aluminum chloride, and after purging with nitrogen, the autoclave was reacted at 220° C. for 3 hours. Next, platinum electrode, diaphragm, thermometer, nitrogen introduction tube,
Put 25 ml of the above reaction solution and 50 ml of acetonitrile into the cathode chamber of an electrolytic cell equipped with a gas outlet, put 40 ml of acetonitrile, 20 ml of methylene chloride, and 1 g of tetraethylammonium p-toluenesulfonate into the anode chamber, and heat for 10 to 20 minutes under a nitrogen stream. 0.3A constant current electrolysis was performed at ℃. After 2 hours, the electrolyte in the cathode chamber was hydrolyzed and analyzed by gas chromatography, which revealed 73% triphenylphosphine (hereinafter referred to as TPP), 12% diphenylphosphine (hereinafter referred to as DPP), and triphenyl. The amount of phosphine oxide (hereinafter referred to as TPPO) was 3%. Comparative Example 1 The reaction solution of Example 1 without electrolytic treatment was directly hydrolyzed and analyzed by gas chromatography.
TPP was 43%, DPP was 26%, and TPPO was 30%. Example 2 A Friedel-Crafts reaction was carried out in the same manner as in Example 1 to prepare a reaction solution having a composition of 52% TPP, 14% DPP, and 30% TPPO. Using the same electrolytic cell as in Example 1, put 25 ml of this reaction solution and 50 ml of methylene chloride into the cathode chamber, put 20 ml of acetonitrile, 5 ml of methylene chloride, and 1 g of tetraethylammonium p-toluenesulfonate into the anode chamber, and conduct 0.3A constant current electrolysis. I went there. After 2 hours, the reaction solution was hydrolyzed and analyzed by gas chromatography, and it was found that TPP79
%, DPP 10%, and TPPO 5%. Example 3: Includes reflux condenser, thermometer and nitrogen inlet pipe
10.9 g of benzene, 45.8 g of phosphorus trichloride, and 14.9 g of anhydrous aluminum chloride were placed in a 100 ml four-necked flask, and the mixture was refluxed for 2 hours under a nitrogen atmosphere. After the reaction, excess benzene and phosphorus trichloride were distilled off under reduced pressure.
This concentrated residue and 115 g of benzene were charged into a 300 ml autoclave, and the autoclave was purged with nitrogen and reacted at 220° C. for 5 hours. This reaction solution was electrolytically reduced using the same electrolytic cell as in Example 1. First, 25 ml of the reaction solution and 50 ml of acetonitrile are placed in the cathode chamber, and 10 ml of acetonitrile, 10 ml of methylene chloride, and 1 g of tetraethylammonium p-toluenesulfonate are placed in the anode chamber, and electrolysis is performed at a constant current of 0.3 A under a nitrogen stream. After 2.5 hours, the electrolyte in the cathode chamber was hydrolyzed and analyzed by gas chromatography, and it was found that TPP80% and DPP4
%, TPPO3%. Comparative Example 2 The reaction solution before being subjected to the electrolytic treatment of Example 3 was directly hydrolyzed and analyzed by gas chromatography, and it was found that TPP was 64%, DPP was 7%, and TPPO was 26%. Example 4 A Friedel-Crafts reaction was performed in the same manner as in Example 1, and TPP50%, DPP12%, TPPO27%
A reaction solution having the composition was prepared. 50 ml of this reaction solution and 25 ml of acetonitrile were placed in the cathode chamber, and 10 ml of acetonitrile, 10 ml of methylene chloride, and 1 g of tetrabutylammonium bromide were placed in the anode chamber, and 0.3A constant current electrolysis was performed. After 5 hours, the reaction solution was hydrolyzed and analyzed by gas chromatography.
TPP was 78%, DPP was 10%, and TPPO was 2%. Example 5 Electrolysis was carried out in the same manner as in Example 4, except that 1 ml of Friedel-Crafts reaction solution was used instead of 1 g of tetrabutylammonium bromide.
TPP was 81%, DPP was 9%, and TPPO was 2%.

Claims (1)

【特許請求の範囲】[Claims] 1 無水塩化アルミニウムの存在下、ハロゲノジ
フエニルホスフイン又はジハロゲノフエニルホス
フインとベンゼンとを反応させ、次いで反応生成
物を電解還元することを特徴とするトリフエニル
ホスフインの製造方法。
1. A method for producing triphenylphosphine, which comprises reacting halogenodiphenylphosphine or dihalogenophenylphosphine with benzene in the presence of anhydrous aluminum chloride, and then electrolytically reducing the reaction product.
JP57223693A 1982-12-22 1982-12-22 Manufacture of triphenylphosphine Granted JPS59116387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57223693A JPS59116387A (en) 1982-12-22 1982-12-22 Manufacture of triphenylphosphine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57223693A JPS59116387A (en) 1982-12-22 1982-12-22 Manufacture of triphenylphosphine

Publications (2)

Publication Number Publication Date
JPS59116387A JPS59116387A (en) 1984-07-05
JPH0115000B2 true JPH0115000B2 (en) 1989-03-15

Family

ID=16802163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57223693A Granted JPS59116387A (en) 1982-12-22 1982-12-22 Manufacture of triphenylphosphine

Country Status (1)

Country Link
JP (1) JPS59116387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236502A (en) * 2010-04-16 2011-11-24 Asahi Kasei Chemicals Corp Method for directly producing phosphine derivative from phosphine oxide derivative

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606427B1 (en) * 1986-11-10 1989-01-13 Poudres & Explosifs Ste Nale ELECTROSYNTHESIS PROCESS OF ARYL ALKYL TERTIARY PHOSPHINES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236502A (en) * 2010-04-16 2011-11-24 Asahi Kasei Chemicals Corp Method for directly producing phosphine derivative from phosphine oxide derivative

Also Published As

Publication number Publication date
JPS59116387A (en) 1984-07-05

Similar Documents

Publication Publication Date Title
FI58908C (en) PROCEDURE FOR FRAMSTATION OF 2- (2-FLUOR-4-BIPHENYL) PROPIONYRA
GB2230782A (en) Process for the electrosynthesis of beta, gamma-unsaturated esters
JPH0115000B2 (en)
Wiberg et al. Electrochemical and metal-ammonia reduction of 1, 4-dihalonorbornanes
Budnikova et al. Arylation and alkylation of white phosphorus in the presence of electrochemically generated nickel (0) complexes
Elinson et al. Electrocatalytic transformation of malononitrile and cycloalkylidenemalononitriles into spirotricyclic and spirotetracyclic compounds containing cyclopropane and pyrroline fragments
CA1093097A (en) Process for the production of cyanopinacolone
JP4423730B2 (en) Method for synthesizing tetrakis (acyloxy) borate (1-) and substituted onium tetrakis (acyloxy) borate (1-)
US3312606A (en) Process for the production of organic phosphine halides
US3943170A (en) Process for the preparation of halo-methylphosphinic acid halides
US4374770A (en) Process for preparation of aromatic acid chlorides
EP0417720B1 (en) Process for preparing 2-chloro-4-fluorophenol
JP5440692B2 (en) Method for producing 3-chloro-pentafluoropropene
JP2599746B2 (en) Cleavage method of epoxy ketone
JP2598010B2 (en) Cleavage method of epoxy ketone
JPH09278704A (en) Production of monochloropinacolone
JPS6232188B2 (en)
JP3560790B2 (en) Method for producing 2,2-difluoroenolsilyl ether
JPS62185891A (en) Production of pyrazole
JPH05279885A (en) Halogenated pyridine carbaldehyde derivative and its production
SU1157797A1 (en) Method of producing solutions of cyclopentadiene ionic compounds
JPH01157924A (en) Production of bromofluoromethane
JP4839540B2 (en) Method for producing N, N'-dialkylimidazolinium organic acid salt for aluminum electrolytic capacitor
US2769814A (en) Process for making dialkyl (3-indolyl-methyl) malonates
Ilovaisky et al. Electrooxidative coupling of salts of nitro compounds with halide, nitrite, cyanide, and phenylsulfinate anions