JPH01149718A - Liposome preparation easily passing through blood-brain barrier - Google Patents

Liposome preparation easily passing through blood-brain barrier

Info

Publication number
JPH01149718A
JPH01149718A JP62307701A JP30770187A JPH01149718A JP H01149718 A JPH01149718 A JP H01149718A JP 62307701 A JP62307701 A JP 62307701A JP 30770187 A JP30770187 A JP 30770187A JP H01149718 A JPH01149718 A JP H01149718A
Authority
JP
Japan
Prior art keywords
blood
galactosidase
brain
prepared
liposome preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62307701A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Eto
衛藤 義勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62307701A priority Critical patent/JPH01149718A/en
Publication of JPH01149718A publication Critical patent/JPH01149718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a liposome preparation capable of easily passing through a blood-brain barrier and prepared by the use of a p-aminophenyl sugar derivative. CONSTITUTION:The objective liposome preparation can be prepared by embedding a beta-galactosidase originated from trumpet shell (Charonia lumpus), jack bean, etc., in a liposome prepared from a p-aminophenyl sugar derivative, e.g., corresponding mannose derivative or galactose derivative. The preparation passes through a blood-brain barrier to supply a brain oligo-dendroglia cell with beta-galactose and is useful as a remedy for Krabbe's disease caused by the deficiency of the galactose.

Description

【発明の詳細な説明】 本発明はβ−ガラクトシダーゼの包埋担体として各種p
−アミノフェニルII!誘導体から調製したリポゾーム
を使用して成るβ−ガラクトシダーゼ含有の、脳血液関
門を通過し易いリポゾーム製剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes various p-galactosidase embedding carriers.
-Aminophenyl II! The present invention relates to a liposome preparation containing β-galactosidase, which uses liposomes prepared from a derivative, and which easily passes through the blood-brain barrier.

本発明の製剤を腹腔内注射によって投与すれば、血液中
から脳のオリゴデンドログリア細胞にβ−ガラクトシダ
ーゼを補給することができる。リポゾームはリン脂質も
しくはある種の糖脂質を主体として形成されているもの
であって、これはリン脂質溶液を水に懸濁させ、これを
超音波処理することによって生ずる内抱を持った2層膜
または多層膜である。
If the preparation of the present invention is administered by intraperitoneal injection, β-galactosidase can be supplied from the blood to brain oligodendroglial cells. Liposomes are mainly composed of phospholipids or certain types of glycolipids, and are formed by suspending a phospholipid solution in water and treating it with ultrasound. It is a membrane or multilayer membrane.

さて、β−ガラクトシダーゼのような酵素(エンチーム
)は高分子化合物であるがため、これを脳のオリゴデン
ドログリア細胞に到達させようとしても脳血液関門と呼
ばれる障壁によってその侵入が阻止される。従って、従
来酵素類は脳の疾病治療目的から全て限外されていた。
Enzymes such as β-galactosidase (enzymes) are polymeric compounds, so even if they attempt to reach the brain's oligodendroglial cells, their entry is blocked by a barrier called the brain-blood barrier. Therefore, enzymes have traditionally been excluded from the use of therapeutics for brain diseases.

しかるに本発明による新規形態のβ−ガラクトシダーゼ
含有リポゾーム製剤はこれを腹腔内注射によって投与す
れば上述の困難が全く排除されるので、これは脳疾患例
えば脳白質変性症殊に小児に起り易いヒト(人)クラッ
ペ(Krabbe)病の治療に一新機軸を開いたものと
して翳療上極めて有用なものである。
However, the novel form of β-galactosidase-containing liposome preparation according to the present invention completely eliminates the above-mentioned difficulties when administered by intraperitoneal injection. It is extremely useful in clinical therapy as it opens up a new direction in the treatment of Krabbe's disease (in humans).

そもそも、クラツバ病は先天代謝異常によって起る脳の
変性疾患の一つであって、これは中枢神経のオリゴデン
ドロダリア細胞中に中性糖脂質のガラクトセレブロシド
が異常に蓄積している疾患であり、これはβ−ガラクト
シダーゼの欠損によって起った現象である。この欠損β
−ガラクトシダーゼの補給は本発明の製剤の投与によっ
て可能となった。
In the first place, Kratsuba disease is a degenerative brain disease caused by an inborn error of metabolism, and is a disease in which the neutral glycolipid galactocerebroside abnormally accumulates in the oligodendrodarian cells of the central nervous system. , this is a phenomenon caused by a deficiency of β-galactosidase. This defect β
- Supplementation of galactosidase was made possible by administration of the formulation according to the invention.

本発明の完成に到るまでに行った種々の動物実験に使用
したリポゾームは直井氏等の方法に従ってレシチン:コ
レステロール:サルファチド(7: 2 : 1. v
/v)または各種p−アミノフェニル糖誘導体(マンノ
ース、フコース、ガラクトース)を用いて調製した。
The liposomes used in the various animal experiments conducted until the completion of the present invention were prepared using lecithin:cholesterol:sulfatide (7:2:1.v) according to the method of Mr. Naoi et al.
/v) or various p-aminophenyl sugar derivatives (mannose, fucose, galactose).

これらのリポゾームにて包埋するβ−ガラクトシダーゼ
としてはジャック・ビーン、アスパーギルス・オリーザ
、チャロニア・ランプス、ボビン0リバー(Jack 
bean、 Aspergillus 01izae 
Charo−nia Lumpus、 Bovine 
Liver)等を用いた。これらの実験用供動物として
は普通のマウス(はっがねずみ)および特にクラツバ病
のモデル動物であるツウイチェル・マウスCTwitc
her mouseンを使用し、それらのマウス抜根神
経節細胞の培養はキム(Kim)氏等の方法によって行
った。
Examples of β-galactosidase to be embedded in these liposomes include Jack bean, Aspergillus oryza, Charonia lumpus, and Bobbin 0 River (Jack
bean, Aspergillus 01izae
Charo-nia Lumpus, Bovine
Liver) et al. The animals used for these experiments include ordinary mice (Hagane mouse) and especially the Twitchel mouse CTwich, which is a model animal for Clatsva disease.
Using a her mouse, the mouse root ganglion cells were cultured according to the method of Kim et al.

また脂質の分析は、レディーン(Ledeen)氏等の
方法に従い、糖脂の薄層クロマト法またはガスクロマド
法によって行った。
Lipid analysis was performed by thin layer chromatography or gas chromatography of glycolipids according to the method of Ledeen et al.

これらは後で述べる動物実験の具体的結果から綜合的に
次のようにのべることができる。
These can be summarized as follows based on the specific results of animal experiments described later.

(イ)ツウイチェル・マウスについてはその大脳以外の
組織にもガラクトセレブロシードの蓄積が起っている。
(a) In Twitchel mice, galactocerebroseeds accumulate in tissues other than the cerebrum.

ヒト(人)クラツバ病においても、腎について分析する
と対照におけるよりも2〜3倍のガラクトセレプロシー
ドの蓄積が認められた。
In human Clatsuba disease, when kidneys were analyzed, galactosereproseed accumulation was found to be 2 to 3 times higher than in controls.

(El)  リポゾームを用いてのマウスのクラッペ病
治療にはホラ貝(チャロニア・ランプス)由来のβ−ガ
ラクトシダーゼがガラクトセレブロシードの過剰蓄積を
解消させるのに最も有効であることが判明した。
(El) For the treatment of Krappe's disease in mice using liposomes, β-galactosidase derived from the conch shell (Charonia lumpus) was found to be most effective in eliminating excessive accumulation of galactocerebroseeds.

(ハ)ホラ貝由来のβ−ガラクトシダーゼをサルファチ
ド含有リポゾームにて包埋すると肝臓および肺臓の組織
中にも有意なβ−ガラクトシダーゼ活性の上昇が認めら
れた。
(c) When β-galactosidase derived from conch shell was embedded in sulfatide-containing liposomes, a significant increase in β-galactosidase activity was also observed in liver and lung tissues.

(ニ) 3H−ガラクトセレブロシドをリポソ゛−ムで
ラベルしてツウイチェル・マウスに投与し、2日後にそ
の各臓器組織の放射活性を測定したところ、肝臓および
肺臓では正常対照の40〜60倍の上昇が認められ、こ
れによって、ガラクトセレブロシードの蓄積を軽減させ
うることか判明した。
(d) When 3H-galactocerebroside was labeled with liposomes and administered to Twitchel mice, radioactivity in each organ tissue was measured two days later, and radioactivity in the liver and lungs was 40 to 60 times higher than in normal controls. It was found that this could reduce the accumulation of galactocerebroseed.

(ネ)β−ガラクトシダーゼが脳血液関門を効率よく通
過するための包埋用リポゾームとしてはマンノース含有
リポゾームが他の糖類含有リポゾームよりも有効である
ことが判明した。
(f) It has been found that mannose-containing liposomes are more effective than other saccharide-containing liposomes as embedding liposomes for allowing β-galactosidase to efficiently pass through the brain-blood barrier.

以下、本発明で行った動物実験を具体的に説明する。Hereinafter, the animal experiments conducted in the present invention will be specifically explained.

(a)その第1実験ではツウイチェル・マウスと、普通
のマウスとの各組織に3H−ガラクトセレブロシード含
有リポゾームの20X103cp重量を腹腔内注射し、
2日経過後に、リポゾームにて包埋したβ−ガラクトセ
レプロシードをこれらのマウスの半数だけに更に補給投
与し、以後24時間および48時間経過してこれらマウ
スの各臓器組織内の3H−ガラクトセレプロシードの蓄
積および崩壊の程度を測定観察した。但しこの実験に使
用したリポゾームはいずれも直井氏等の方法に従ってサ
ルファタイドを用いて調製したものである。 この実験
結果を次の第1表に示す。
(a) In the first experiment, 20×10 cp of 3H-galactocerebroseed-containing liposomes were injected intraperitoneally into each tissue of Twitchel mice and normal mice;
After 2 days, liposome-embedded β-galactosereproseeds were further administered to only half of these mice, and 3H-galactosereproseeds in each organ tissue of these mice were increased over the next 24 and 48 hours. The degree of accumulation and decay of proseed was measured and observed. However, all liposomes used in this experiment were prepared using sulfatide according to the method of Mr. Naoi et al. The results of this experiment are shown in Table 1 below.

この表かられかるように、ツウイチェル・マウスの組織
内の蓄積3H−ガラクトセレブロシードの放射活性度は
対照の普通マウスの肝臓および肺臓の相当する放射活性
度の40〜60倍であり、これらの値は48時間後には
該エンチーム含有リポゾームを注射投与したマウスにつ
いては65〜85%に減少した。
As can be seen from this table, the radioactivity of accumulated 3H-galactocerebroseed in the tissues of Twichel mice is 40 to 60 times higher than the corresponding radioactivity in the liver and lungs of normal control mice; Values decreased by 65-85% after 48 hours for mice injected with the enzyme-containing liposomes.

この事実はマウスの組織に外部からエンチームを補給す
ることによって組織内に蓄積したガラクトセレプロシー
ドが崩壊されることを示すものと理解できる。但し、こ
の場合脳細胞内のガラクトセレプロシードの崩壊は全く
起らないことが注目されるが、これは使用したリポゾー
ムがサルファタイドの使用によって調製したものであり
、これが脳血液関門を通過し得なかったことに帰因する
ことが次に示す第2実験(b)の結果から理解できる。
This fact can be understood to indicate that galactosereproseeds accumulated in mouse tissues are destroyed by externally supplying enzyme to mouse tissues. However, it is noteworthy that in this case, no breakdown of galactosereproseed in brain cells occurs, but this is because the liposomes used were prepared by using sulfatide, which could pass through the brain-blood barrier. It can be understood from the results of the second experiment (b) shown below that this is attributable to the fact that

(b)この第2実験ではそれに使用したリポゾームは各
種p−アミノフェニルfPm導体として、相当するマン
ノース誘導体を用いて調製したものであり、このリポゾ
ームにて包埋した3H−ガラクトセレブロシードを注射
によって投与した後、そのマウスの脳細胞および肝臓細
胞をクレンデノン氏等の方法に従う細胞分画によって得
た各区分について、12時間、24時間、48時間およ
び96時間経過毎に放射活性度の分布を測定した。
(b) In this second experiment, the liposomes used were prepared using the corresponding mannose derivatives as various p-aminophenyl fPm conductors, and 3H-galactocerebro seeds embedded in these liposomes were injected. After administration, the brain cells and liver cells of the mice were obtained by cell fractionation according to the method of Clendenon et al., and the distribution of radioactivity was measured every 12 hours, 24 hours, 48 hours, and 96 hours. did.

その結果を次の第2表に示す。The results are shown in Table 2 below.

第   2   表 脳 この表で括弧内の数値は各細胞分画区分における放射活
性度によるガラクトセレプロシードの分布割合(%)を
示すものである。かくてミトコンドリアおよびリゾソム
ス分画区分の放射活性は脳組織では10〜30%、また
肝臓組織では10〜40%であり、これらのピークは注
射後12〜24時間内に認められる。
2nd Table Brain In this table, the numbers in parentheses indicate the distribution ratio (%) of galactosereproseeds according to radioactivity in each cell fraction. Thus, the radioactivity of the mitochondrial and Rhisosomal fractions is 10-30% in brain tissue and 10-40% in liver tissue, and these peaks are observed within 12-24 hours after injection.

(c)第3実験では先ずホラ貝由来のβ−ガラクトシダ
ーゼだけを普通マウスに腹腔内注射によって投与した後
の経過時間(直後、3時間、12時間および24時間後
)に、このマウスの各臓器中のモレプロシードβ−ガラ
クトシダーゼ活性度を測定した。その結果を添付の第1
図のAに示す。
(c) In the third experiment, β-galactosidase derived from conch shell was first administered to normal mice by intraperitoneal injection, and at the elapsed time (immediately, 3 hours, 12 hours, and 24 hours later), each organ of the mouse was The moleproseed β-galactosidase activity was measured. The results are attached in the first part.
Shown in A of the figure.

他方また、前記のβ−ガラクトシダーゼを、直井氏にそ
の他方法に従ってレシチン、コレステロールおよびスル
ファタイドを用いて調製したリポゾームにて包埋したも
のを、前記と同様な方法で投与して、同様な方法で測定
したマウスの各臓器中のセレブロシードβ−ガラクトシ
ダーゼ活性度を添付の第1図のBに示す。
On the other hand, the β-galactosidase described above was embedded in liposomes prepared using lecithin, cholesterol and sulfatide according to other methods and administered to Mr. Naoi in the same manner as above. The measured Cerebroseed β-galactosidase activity in each organ of the mouse is shown in B of the attached Figure 1.

この第1図かられかるように、Aではすべての臓器中で
の活性度は殆んど不変であるが、Bでは注射後24時間
以内では肝臓、肺臓および腎臓においては可成りの活性
度の上昇が認められ、それらは3日間(72時間)保持
した。しかし脳ではA、B、いずれの場合でも活性度の
変化が殆んど認められなかった。これは該β−ガラクト
シダーゼはこれをサルファタイド含有リポゾーム中に包
埋して投与しても脳血液関門を通過することが不可能で
あることを示すものであると理解できる。
As can be seen from Figure 1, in case A, the activity in all organs is almost unchanged, but in case B, the activity in the liver, lungs and kidneys is considerably reduced within 24 hours after injection. Increases were observed and they persisted for 3 days (72 hours). However, in the brain, almost no change in activity was observed in either case A or B. This can be understood to indicate that the β-galactosidase is unable to pass through the blood-brain barrier even if it is embedded in a sulfatide-containing liposome and administered.

(d)第4実験ではサルファタイドの代りにマンノース
、フコース(L−型)、ガラクトースおよびフコース(
D−型)をそれぞれ使用して調製した4種類のリポゾー
ムの各々に3H−ガラクトセレプロシードを包埋させた
ものを普通のマウスの組織に注射投与した後、12時間
、24時間、48時間および72時間それぞれ経過して
、(A)脳、(B)肝臓、(C)腎臓および(D)肺臓
の放射活性度を測定した。その結果を添付の第2図およ
び第3図に示す。
(d) In the fourth experiment, mannose, fucose (L-form), galactose and fucose (
12 hours, 24 hours, 48 hours and After 72 hours, the radioactivity of (A) brain, (B) liver, (C) kidney, and (D) lung was measured. The results are shown in the attached FIGS. 2 and 3.

この図の(A)かられかるように、マンノース含有リポ
ゾームを使用したものの脳組織における活性度は他の臓
器(B) 、(C)および(D)におけるいずれの活性
度よりも特に顕著に大きく、またその活性度は血管の上
皮細胞の中にも認識された。
As can be seen from (A) in this figure, the activity in brain tissue using mannose-containing liposomes is particularly significantly higher than that in other organs (B), (C), and (D). , and its activity was also recognized in vascular epithelial cells.

このように糖含有リポゾームにて包埋されたβ−ガラク
トシダーゼのような高分子量のエンチームでも脳血液関
門をよく通過し得ることが判明したので、本発明による
酵素、殊にβ−ガラクトシダーゼ含有リポゾームは脳白
質変性症すなわちクラツバ病の治療薬としての用途が大
いに期待される。
It has been found that even high molecular weight enzymes such as β-galactosidase embedded in sugar-containing liposomes can easily pass through the blood-brain barrier. is highly expected to be used as a therapeutic agent for cerebral white matter degeneration, or Clatsuba disease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はマウス臓器内における酵
素の含有量の時間的変化を示す線グラフである。
FIGS. 1, 2, and 3 are line graphs showing temporal changes in enzyme content in mouse organs.

Claims (4)

【特許請求の範囲】[Claims] (1)p−アミノフェニル糖誘導体を用いて調製した脳
血液関門を通過し易いリポゾーム製剤。
(1) A liposome preparation prepared using a p-aminophenyl sugar derivative that easily passes through the brain-blood barrier.
(2)p−アミノフェニル糖誘導体を用いて調製したリ
ポゾームがβ−ガラクトシダーゼ含有リポゾームである
特許請求の範囲(1)に記載のリポゾーム製剤。
(2) The liposome preparation according to claim (1), wherein the liposome prepared using the p-aminophenyl sugar derivative is a β-galactosidase-containing liposome.
(3)p−アミノフェニル糖誘導体として相当するp−
アミノフェニルマンノース誘導体を用いて調製した特許
請求の範囲(1)または(2)に記載のリポゾーム製剤
(3) Corresponding p- as a p-aminophenyl sugar derivative
The liposome preparation according to claim (1) or (2), prepared using an aminophenylmannose derivative.
(4)β−ガラクトシダーゼとしてホラ貝(charo
−nialumpus)由来のβ−ガラクトシダーゼを
含有した特許請求の範囲(1)、(2)または(3)に
記載のリポゾーム製剤。
(4) Conch shell (charo) as β-galactosidase
The liposome preparation according to claim (1), (2) or (3), containing β-galactosidase derived from P. -nialumpus.
JP62307701A 1987-12-07 1987-12-07 Liposome preparation easily passing through blood-brain barrier Pending JPH01149718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62307701A JPH01149718A (en) 1987-12-07 1987-12-07 Liposome preparation easily passing through blood-brain barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62307701A JPH01149718A (en) 1987-12-07 1987-12-07 Liposome preparation easily passing through blood-brain barrier

Publications (1)

Publication Number Publication Date
JPH01149718A true JPH01149718A (en) 1989-06-12

Family

ID=17972194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62307701A Pending JPH01149718A (en) 1987-12-07 1987-12-07 Liposome preparation easily passing through blood-brain barrier

Country Status (1)

Country Link
JP (1) JPH01149718A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004014A1 (en) * 1989-09-21 1991-04-04 Synergen, Inc. Method for transporting compositions across the blood brain barrier
JPH04211099A (en) * 1990-02-16 1992-08-03 D D S Kenkyusho:Kk Glycosyl-protein derivative
WO2007009404A1 (en) 2005-07-22 2007-01-25 Centro de Investigación y Desarrollo de Medicamentos (CIDEM) Rh-epo nasal formulations with low sialic acid concentration for the treatment of diseases of the central nervous system
CN104735976A (en) * 2012-08-07 2015-06-24 Ace生物科学公司 Animal model of krabbe's disease
WO2019221189A1 (en) 2018-05-18 2019-11-21 Lee Mihwa Cover, and method for using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004014A1 (en) * 1989-09-21 1991-04-04 Synergen, Inc. Method for transporting compositions across the blood brain barrier
JPH04211099A (en) * 1990-02-16 1992-08-03 D D S Kenkyusho:Kk Glycosyl-protein derivative
WO2007009404A1 (en) 2005-07-22 2007-01-25 Centro de Investigación y Desarrollo de Medicamentos (CIDEM) Rh-epo nasal formulations with low sialic acid concentration for the treatment of diseases of the central nervous system
CN104735976A (en) * 2012-08-07 2015-06-24 Ace生物科学公司 Animal model of krabbe's disease
US9986722B2 (en) 2012-08-07 2018-06-05 Chiesi Farmaceutici S.P.A. Animal model of Krabbe's disease
WO2019221189A1 (en) 2018-05-18 2019-11-21 Lee Mihwa Cover, and method for using same

Similar Documents

Publication Publication Date Title
Svennerholm Gangliosides--a new therapeutic agent against stroke and Alzheimer's disease
JP4750947B2 (en) Method of treating cerebral ischemia and use of erythropoietin or erythropoietin derivatives for the treatment of cerebral ischemia
AU628116B2 (en) Use of acetyl d-carnitine in the therapeutic treatment of glaucoma
US5972995A (en) Compositions and methods for cystic fibrosis therapy
US5013558A (en) Pharmaceutical treatments for cerebral and neuronal diseases
Williams et al. Exogenous nerve growth factor increases the activity of high‐affinity choline uptake and choline acetyltransferase in brain of Fisher 344 male rats
DE69535593T2 (en) USE OF HGF FOR THE MANUFACTURE OF A MEDICAMENT FOR THE TREATMENT OF LUNG FIBROSIS
DE602006000511T2 (en) DERMATOLOGICAL USE OF PROTEINS FROM MILK
WO2001015717A1 (en) Brain cell or nerve cell protecting agents comprising ginseng
US7544853B2 (en) C1 inhibitor with short half-life transient treatment
JP2002513383A (en) Methods for increasing the concentration of ascorbic acid in a patient's brain tissue
EP0388226B1 (en) Means for the treatment of senile dementia, memory disorders and related conditions
Blaustein Sodium–Calcium Exchange in Cardiac, Smooth, and Skeletal Muscles: Key to Control of Contractility
JPH01149718A (en) Liposome preparation easily passing through blood-brain barrier
Aldinio et al. Monosialoganglioside internal ester stimulates the dopaminergic reinnervation of the striatum after unilateral hemitransection in rat
KR20010101616A (en) Cerebrovascular regeneration/reconstruction promoters and nerve tissue secondary degeneration inhibitors comprising ginsenoside Rb1
DE60006548T2 (en) HIGH DENSITY LIPOPROTEIN FOR COMBATING ORGANDY FUNCTION AS A RESULT OF HEMORRHAGIC SHOCKS
Karpiak et al. Ganglioside treatment: reduction of CNS injury and facilitation of functional recovery
EP1057489B1 (en) Use of midkine family proteins in the treatment of ischemic diseases
Nozari et al. Intra-aortic administration of epinephrine above an aortic balloon occlusion during experimental CPR does not further improve cerebral blood flow and oxygenation
JPH0912475A (en) Preventing and therapeutic agent for disorder in ischemia-reperfusion
Lüllmann-Rauch Lysosomal glycogen storage mimicking the cytological picture of Pompe’s disease as induced in rats by injection of an α-glucosidase inhibitor: II. Alterations in kidney, adrenal gland, spleen and soleus muscle
US5830857A (en) Method of treating epilepsy
JP2001139483A (en) Protecting agent for brain cell or nerve cell, consisting of ginseng
KR20030079783A (en) Human transferrin for the treatment of anemia of chronic disease(ACD) and of functional iron deficiency