JPH01148752A - Electric conductive ceramic - Google Patents

Electric conductive ceramic

Info

Publication number
JPH01148752A
JPH01148752A JP62304607A JP30460787A JPH01148752A JP H01148752 A JPH01148752 A JP H01148752A JP 62304607 A JP62304607 A JP 62304607A JP 30460787 A JP30460787 A JP 30460787A JP H01148752 A JPH01148752 A JP H01148752A
Authority
JP
Japan
Prior art keywords
powder
weight
parts
sintered body
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62304607A
Other languages
Japanese (ja)
Other versions
JP2505833B2 (en
Inventor
Etsuro Udagawa
悦郎 宇田川
Mineharu Tsukada
峰春 塚田
Koji Omote
孝司 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62304607A priority Critical patent/JP2505833B2/en
Publication of JPH01148752A publication Critical patent/JPH01148752A/en
Application granted granted Critical
Publication of JP2505833B2 publication Critical patent/JP2505833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the title ceramic which is useful as the conductive material of a multilayered ceramic circuit substrate contg. AlN as the insulating material and has high melting point and low electric resistance by compounding ZrB2 and/or TiB2, B4C and Al4C3 in the specific ratios. CONSTITUTION:(A) ZrB2 and/or TiB2, (B) B4C and (C) Al4C3 are compounded in such a manner that 0.5-10 pts.wt. C components are regulated for 100 pts.wt. of the total amounts of A+B and the ratio of A/B weight ratio=80-90/20-10 is regulated. The material is sufficiently mixed and is thereafter sintered at about 1800 deg.C, by which said ceramic having almost equal sheet resistance as that of copper even at the high sintering temp. of about 1800 deg.C is obtd.

Description

【発明の詳細な説明】 〔概 要〕 本発明は導電性セラミックス、さらに特定すれば、窒化
アルミニウムを絶縁材料とする多層セラミック回路基板
の導体材料として利用できる導電性セラミックスに関し
、 熱伝導率が高い窒化アルミニウムを絶縁材料として一体
焼成できる、高融点であり、かつ電気抵抗が低い導体材
料を提供することを目的とし、ほう化ジルコニウム(Z
rB2)および/またはほう化チタン(TiB2)と、
炭化ほう素(B、4C)と、炭化アルミニウム(A l
2cc’s”)とを含む導電性セラミックスであって、
該ZrB2および/またはTiBzと、B4Cとの合量
100重量部に対して該^(la03を0.5〜10重
量部を含み、かつ、8gZrBzおよび/またはTiB
zと、該B4Cとの重量比が80〜90対10〜20で
あるように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to conductive ceramics, and more particularly, to conductive ceramics that can be used as conductive materials for multilayer ceramic circuit boards using aluminum nitride as an insulating material, and which have high thermal conductivity. With the aim of providing a conductive material with a high melting point and low electrical resistance that can be integrally fired with aluminum nitride as an insulating material, zirconium boride (Z
rB2) and/or titanium boride (TiB2),
Boron carbide (B, 4C) and aluminum carbide (Al
2cc's''),
Based on 100 parts by weight of the total amount of ZrB2 and/or TiBz and B4C, 8g of ZrBz and/or TiB
The weight ratio of z and the B4C is 80 to 90 to 10 to 20.

〔産業上の利用分野〕[Industrial application field]

本発明は導電性セラミックス、さらに特定すれば窒化ア
ルミニウムを絶縁材料とする多層セラミック回路基板の
導体材料として利用できる導電性セラミックスに関する
The present invention relates to conductive ceramics, and more particularly to conductive ceramics that can be used as conductive materials for multilayer ceramic circuit boards using aluminum nitride as an insulating material.

多層セラミック回路基板の導体材料としては電気抵抗が
低いことが望まれ、この点で銅が適当である。また絶縁
材料は熱伝導率が高いことが望まれ、アルミナは熱伝導
率が17w/m−にであり、窒化アルミニウムは180
w/m−にとさらに高い。
It is desired that the conductor material for the multilayer ceramic circuit board has low electrical resistance, and copper is suitable in this respect. It is also desirable that the insulating material has high thermal conductivity; alumina has a thermal conductivity of 17 w/m-, and aluminum nitride has a thermal conductivity of 180 w/m-.
Even higher, w/m-.

しかし、焼結温度がアルミナは約1500℃、窒化アル
ミニウムは約1800℃である。このような絶縁材料に
対して、銅は融点が1083℃であるので、一体焼結す
ることができない。従って従来は高融点金属としてタン
グステンまたはモリブデンを使用していた。しかしこれ
らの金属はシート抵抗がそれぞれ25mΩ/口、10〜
20mΩ/口であって、銅の3mΩ/口より著しく高い
欠点がある。
However, the sintering temperature is about 1500°C for alumina and about 1800°C for aluminum nitride. Copper cannot be integrally sintered with such an insulating material because its melting point is 1083°C. Therefore, conventionally, tungsten or molybdenum has been used as the high melting point metal. However, these metals have sheet resistances of 25mΩ/mouth and 10~
It has the disadvantage of 20 mΩ/hole, significantly higher than the 3 mΩ/hole of copper.

〔従来の技術〕[Conventional technology]

一般に、非酸化物系セラミックスは難焼結性という欠点
を存するが、遷移金属ほう化物は電気および熱の良導体
という、セラミックス中では異質の性質をもっている。
In general, non-oxide ceramics have the disadvantage of being difficult to sinter, but transition metal borides have a unique property among ceramics: they are good electrical and thermal conductors.

この遷移金属ほう化物の焼結性を改良するために、炭化
ほう素と共焼結することが知られており、たとえばほう
化チタンTiBz−炭化ほう素B4C系2相複合型セラ
ミックスは、従来のセラミックス中で硬度および強度が
著しく高く、かつ酸化抵抗性も大きい。
In order to improve the sinterability of transition metal borides, it is known that they are co-sintered with boron carbide. For example, titanium boride TiBz-boron carbide B4C two-phase composite ceramics are It has extremely high hardness and strength among ceramics, and also has high oxidation resistance.

西山勝広は、TiB2− B4C系2相複合型セラミッ
クスを焼結するときに、カーボンを少量添加して助剤と
することを紹介している(BOUNDARY、1980
年3月号24〜27頁)。また渡辺忠彦、徳永洋−は、
ほう化チタンTiB2の焼結に、NiPや斜方晶系のC
oB + FeB + N1tBsを使用するが.ほう
化ジルコニウムZrB=の焼結については文献が少なく
て詳細は不明であることを紹介している(日本金属学会
会報第25巻第12号(1986) 1018〜102
5頁)。
Katsuhiro Nishiyama introduced the use of a small amount of carbon as an auxiliary agent when sintering TiB2-B4C two-phase composite ceramics (BOUNDARY, 1980).
(March issue, pages 24-27). Also, Tadahiko Watanabe and Hiroshi Tokunaga,
NiP and orthorhombic C are used for sintering titanium boride TiB2.
Although oB + FeB + N1tBs is used. Regarding the sintering of zirconium boride ZrB=, it is introduced that there are few documents and the details are unknown (Bulletin of the Japan Institute of Metals Vol. 25, No. 12 (1986) 1018-102
(page 5).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

熱伝導率が高い窒化アルミニウムを絶縁材料として一体
焼成できる高融点であり、かつ電気抵抗が低い導体材料
を提供することを目的とする。
It is an object of the present invention to provide a conductive material having a high melting point and low electrical resistance, which can be integrally fired with aluminum nitride having high thermal conductivity as an insulating material.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は.ほう化ジルコニウム(ZrB2)および
/またはほう化チタン(TiB2)と、炭化ほう素(8
4C)と、炭化アルミニウム(A (l act)とを
含む導電性セラミックスであって、該ZrB2および/
またはTiB2と、B4Cとの合量100重量部に対し
、て該A ff 4C3を0.5〜10重量部を含み、
かつ、該ZrB2および/またはTiBzと、該B4C
との重量比が80〜90対10〜20であることを特徴
とする導電性セラミックスによって解決することができ
る。
The above problem is. Zirconium boride (ZrB2) and/or titanium boride (TiB2) and boron carbide (8
4C) and aluminum carbide (A (l act)), the conductive ceramics containing ZrB2 and/or
or containing 0.5 to 10 parts by weight of the A ff 4C3 with respect to 100 parts by weight of the total amount of TiB2 and B4C,
and the ZrB2 and/or TiBz and the B4C
This can be solved by using conductive ceramics characterized by a weight ratio of 80 to 90 to 10 to 20.

〔作 用〕[For production]

本発明の導電性セラミックスは、三成分のうちの炭化ア
ルミニウムが、絶縁材料の窒化アルミニウムと結合しや
すく、炭化アルミニウムは炭化ほう素と、さらに炭化ほ
う素はほう化ジルコニウムまたはほう化チタンと結合し
やすい利点を有する。
In the conductive ceramic of the present invention, among the three components, aluminum carbide easily combines with aluminum nitride, which is an insulating material, and aluminum carbide easily combines with boron carbide, and further, boron carbide combines with zirconium boride or titanium boride. It has the advantage of being easy to use.

こうして炭化アルミニウムは.ほう化ジルコニウムまた
はほう化チタンと、炭化ほう素どの密着性を向上させる
ことができ、さらに、熱膨張係数を窒化アルミニウムの
4. ’OX 10−6/ kに近づけることが可能で
ある。ZrB2および/またはTiBzに対する炭化ほ
う素の割合が10重量比より少ないと焼結性が悪く、2
0重量比より多いと抵抗が高くなる。またZrB2およ
び/またはTiB2とB4Cとの合量100重量部に対
して炭化アルミニウムが0.5重量部より少ないと密着
性が悪くなり、10重量部より多いと抵抗が高くなる。
Thus aluminum carbide. It is possible to improve the adhesion between zirconium boride or titanium boride and boron carbide, etc., and furthermore, the coefficient of thermal expansion is 4.5% higher than that of aluminum nitride. It is possible to approach 'OX 10-6/k. If the ratio of boron carbide to ZrB2 and/or TiBz is less than 10% by weight, sinterability is poor;
When the weight ratio is greater than 0, the resistance becomes high. Further, if the amount of aluminum carbide is less than 0.5 parts by weight with respect to 100 parts by weight of the total amount of ZrB2 and/or TiB2 and B4C, the adhesion will be poor, and if it is more than 10 parts by weight, the resistance will be high.

なお.ほう化ジルコニウムは融点が約3040°C1ま
たほう化チタンは融点が2800℃と高いばかりでなく
、いずれも電気抵抗が6Ω・cmと低いので、得られる
三成分焼結体のシート抵抗も銅に近い4mΩ/口を示す
In addition. Zirconium boride has a melting point of approximately 3040°C1, and titanium boride not only has a high melting point of 2800°C, but also has a low electrical resistance of 6Ωcm, so the sheet resistance of the resulting three-component sintered body is also similar to that of copper. Showing close to 4 mΩ/mouth.

〔実施例1〕 ほう化ジルコニウムZrBz粉末:炭化ほう素B4c粉
末の重量比90 : 10の混合粉末100重量部に対
して炭化アルミニウムA E nci粉末10重量部を
添加し、V型混合機で乾式混合した。得られた三成分混
合物粉末100gに、バインダ(PMMA) 20 g
と溶剤エタノール30gとを混合し、らいかい機で混練
してペーストとし、これを窒化アルミニウムグリーンシ
ートにスクリーン印刷して翼体パターンを形成し、70
℃で15分間乾燥したものを10層重ね、150℃で4
5MPaに加圧して積層体とし、窒素雰囲気中で、60
0°Cで4時間予備焼成し、続いて1800℃で6時間
本焼成を行なって積層焼結体を得た。
[Example 1] 10 parts by weight of aluminum carbide A Enci powder was added to 100 parts by weight of mixed powder with a weight ratio of zirconium boride ZrBz powder: boron carbide B4c powder of 90:10, and the mixture was dry-mixed using a V-type mixer. Mixed. 20 g of binder (PMMA) was added to 100 g of the obtained three-component mixture powder.
and 30 g of solvent ethanol were mixed and kneaded in a milling machine to form a paste, which was then screen printed on an aluminum nitride green sheet to form a wing body pattern.
Dry for 15 minutes at ℃, stack 10 layers, and dry at 150℃ for 4
It was pressurized to 5 MPa to form a laminate, and heated at 60° C. in a nitrogen atmosphere.
Preliminary firing was performed at 0°C for 4 hours, followed by main firing at 1800°C for 6 hours to obtain a laminated sintered body.

また、この三成分混合物粉末5gを、60MPaに加圧
して圧粉体とし、窒素雰囲気中で1800℃で4時間焼
成して圧粉焼結体を得た。
Further, 5 g of this three-component mixture powder was pressurized to 60 MPa to form a green compact, which was then fired at 1800° C. for 4 hours in a nitrogen atmosphere to obtain a compact sintered body.

〔実施例2つ ほう化チタンTiBz粉末:炭化ほう素B4C粉末の重
量比80 : 20の混合粉末100重景重量対して炭
化アルミニウムAβ4C,l粉末0.5重量部を添加し
たセラミック原料を使用したことの他は、実施例1と同
様にして、積層焼結体および圧粉焼結体を作製した。
[Example 2] A ceramic raw material was used in which 0.5 part by weight of aluminum carbide Aβ4C,L powder was added to 100 parts by weight of a mixed powder with a weight ratio of titanium boride TiBz powder: boron carbide B4C powder of 80:20. Other than that, a laminated sintered body and a powder sintered body were produced in the same manner as in Example 1.

これらの積層焼結体の導体パターンのシート抵抗、およ
び圧粉焼結体の体積抵抗を測定した結果を第1表に示す
Table 1 shows the results of measuring the sheet resistance of the conductor pattern of these laminated sintered bodies and the volume resistance of the compacted sintered body.

なお、比較のために、この三成分混合物粉末の代りに、
タングステン粉末を使用したペーストを導体とするセラ
ミック積層体、およびこのタングステン粉末を使用した
圧粉体をそれぞれ1800℃で4時間焼成して焼結体を
得た。積層焼結体の導体層のシート抵抗、および圧粉焼
結体の体積抵抗を測定し、その結果も第1表に示す。
For comparison, instead of this three-component mixture powder,
A ceramic laminate using a paste using tungsten powder as a conductor and a green compact using this tungsten powder were each fired at 1800° C. for 4 hours to obtain a sintered body. The sheet resistance of the conductor layer of the laminated sintered body and the volume resistance of the compacted sintered body were measured, and the results are also shown in Table 1.

実施例1および2の 導電性セラミックス     46 タングステン       25    5本発明の導
電性セラミックス導体層はシート抵抗がタングステン層
の1/6であった。なお、ZrBzとTiBzとの合量
と、B4Cとの重量比が80〜90対10〜20であり
、ZrB、とTiBzとB4Cとの合量100重量部に
対してA 1 tc30.5〜10重量部を含む焼結体
も、実施例1と同様な結果を得た。
The conductive ceramic conductor layers of Examples 1 and 2 46 Tungsten 25 5 The sheet resistance of the conductive ceramic conductor layers of the present invention was 1/6 that of the tungsten layer. Note that the weight ratio of the total amount of ZrBz and TiBz to B4C is 80 to 90 to 10 to 20, and A 1 tc is 30.5 to 10 with respect to 100 parts by weight of the total amount of ZrB, TiBz, and B4C. The same results as in Example 1 were obtained for the sintered body containing parts by weight.

〔実施例3〕 ほう化ジルコニウムZrBz扮末:炭化ほう素B4C粉
末の重量比80 : 20の混合粉末100重量部に対
して炭化アルミニウムA I24C3粉末10重量部を
添加したことの他は、実施例1と同様にして、積層焼結
体および圧粉焼結体を作製した。
[Example 3] Example 3 except that 10 parts by weight of aluminum carbide A I24C3 powder was added to 100 parts by weight of mixed powder of zirconium boride ZrBz powder: boron carbide B4C powder in a weight ratio of 80:20. A laminated sintered body and a compacted sintered body were produced in the same manner as in Example 1.

〔実施例4〕 ほう化ジルコニウムZrBz粉末:炭化ほう素B4C粉
末の重量比90 : 10の混合粉末100重量部に対
して炭化アルミニウムA 14.C:l粉末0.5重量
部を添加したことの他は、実施例1と同様にして、積層
焼結体および圧粉焼結体を作製した。
[Example 4] Aluminum carbide A was added to 100 parts by weight of mixed powder with a weight ratio of zirconium boride ZrBz powder to boron carbide B4C powder of 90:10. A laminated sintered body and a compacted sintered body were produced in the same manner as in Example 1, except that 0.5 parts by weight of C:l powder was added.

〔実施例5〕 ほう化ジルコニウムZrBz粉末:炭化ほう素B4C粉
末の重量比80 : 20の混合粉末100重量部に対
して炭化アルミニウムANA4C3粉末0.5重量部を
添加した、ことの他は、実施例1と同様にして積層焼結
体および圧粉焼結体を作製した。
[Example 5] 0.5 parts by weight of aluminum carbide ANA4C3 powder was added to 100 parts by weight of mixed powder with a weight ratio of zirconium boride ZrBz powder: boron carbide B4C powder of 80:20. A laminated sintered body and a powder sintered body were produced in the same manner as in Example 1.

〔実施例6〕 ほう化チタンTiB2粉末:炭化ほう素B4C粉末の重
量比80 : 20の混合粉末100重量部に対して炭
化アルミニウムへβtc3粉末10重量部を添加したセ
ラミック原料を使用したことの他は、実施例1と同様に
して、積層焼結体および圧粉焼結体を作製した。
[Example 6] In addition to using a ceramic raw material in which 10 parts by weight of βtc3 powder was added to aluminum carbide for 100 parts by weight of a mixed powder of titanium boride TiB2 powder: boron carbide B4C powder in a weight ratio of 80:20. A laminated sintered body and a compacted sintered body were produced in the same manner as in Example 1.

〔実施例7〕 ほう化チタンTiBz粉末:炭化ほう素84C粉末の重
量比90 : 10の混合粉末100重量部に対して炭
化アルミニウムA 1 a03粉末0.5重量部を添加
したセラミック原料を使用したことの他は、実施例1と
同様にして、積層焼結体および圧粉焼結体を作製した。
[Example 7] A ceramic raw material was used in which 0.5 parts by weight of aluminum carbide A 1 a03 powder was added to 100 parts by weight of a mixed powder of titanium boride TiBz powder: boron carbide 84C powder in a weight ratio of 90:10. Other than that, a laminated sintered body and a powder sintered body were produced in the same manner as in Example 1.

〔実施例日〕[Example date]

ほう化チタンTiBz粉末:炭化ほう素84C粉末の重
量比90 : 10の混合粉末100重量部に対して炭
化アルミニウムA 124ct粉末10重量部を添加し
たセラミンク原料を使用したことの他は、実施例1と同
様にして、積層焼結体および圧粉焼結体を作製した。
Example 1 except that a ceramic raw material was used in which 10 parts by weight of aluminum carbide A 124ct powder was added to 100 parts by weight of a mixed powder with a weight ratio of titanium boride TiBz powder: boron carbide 84C powder of 90:10. A laminated sintered body and a compacted sintered body were produced in the same manner as above.

実施例3〜8においても、実施例1.2と同様の結果を
得た。
In Examples 3 to 8, the same results as in Example 1.2 were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の導電性セラミックスは焼結温度が1800℃と
高いにも拘らず、シート抵抗が銅とほぼ等しい利点を有
する。
Although the conductive ceramic of the present invention has a high sintering temperature of 1,800° C., it has the advantage that its sheet resistance is almost equal to that of copper.

Claims (1)

【特許請求の範囲】[Claims] 1.ほう化ジルコニウム(ZrB_2)および/または
ほう化チタン(TiB_2)と、 炭化ほう素(B_4C)と、 炭化アルミニウム(Al_4C_3)とを含む導電性セ
ラミックスであって、 該ZrB_2および/またはTiB_2と、B_4Cと
の合量100重量部に対して該Al_4C_3を0.5
〜10重量部を含み、 かつ、該ZrB_2および/またはTiB_2と、該B
_4Cとの重量比が80〜90対10〜20であること
を特徴とする導電性セラミックス。
1. A conductive ceramic containing zirconium boride (ZrB_2) and/or titanium boride (TiB_2), boron carbide (B_4C), and aluminum carbide (Al_4C_3), the ZrB_2 and/or TiB_2, B_4C and 0.5 parts by weight of Al_4C_3 per 100 parts by weight
~10 parts by weight, and the ZrB_2 and/or TiB_2 and the B
A conductive ceramic characterized by having a weight ratio of _4C to 80 to 90 to 10 to 20.
JP62304607A 1987-12-03 1987-12-03 Conductive ceramics Expired - Lifetime JP2505833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304607A JP2505833B2 (en) 1987-12-03 1987-12-03 Conductive ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304607A JP2505833B2 (en) 1987-12-03 1987-12-03 Conductive ceramics

Publications (2)

Publication Number Publication Date
JPH01148752A true JPH01148752A (en) 1989-06-12
JP2505833B2 JP2505833B2 (en) 1996-06-12

Family

ID=17935041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304607A Expired - Lifetime JP2505833B2 (en) 1987-12-03 1987-12-03 Conductive ceramics

Country Status (1)

Country Link
JP (1) JP2505833B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543503A (en) * 2021-09-16 2021-10-22 新恒汇电子股份有限公司 Preparation method of novel carrier band with conductive ceramic coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113543503A (en) * 2021-09-16 2021-10-22 新恒汇电子股份有限公司 Preparation method of novel carrier band with conductive ceramic coating

Also Published As

Publication number Publication date
JP2505833B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US4837231A (en) Sintered non-oxide ceramic composite
JPS63190761A (en) Aluminum nitride-base sintered body
JPS6341165B2 (en)
JPH01148752A (en) Electric conductive ceramic
CN101182212B (en) YAG/ZrB2 series multi-phase ceramics and preparation method thereof
Samanta et al. Near net shape SiC–mullite composites from a powder precursor prepared through an intermediate Al-hydroxyhydrogel
CN105585324A (en) Whisker toughened and reinforced carbon-ceramic composite material
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
CA2060979C (en) Ceramic composite material and process for producing the same
JPH069264A (en) Wc-al2o3 sintered composite compact
JPS63156068A (en) Manufacture of boron carbide-silicon carbide composite sintered body
JPH04325462A (en) Paste for heating resistor for aln ceramic heater
JPS635352B2 (en)
KR970010354B1 (en) Ceramic depositing vessel having improved strength and electrical physical propertyfor its production
JPH0632658A (en) Silicon nitride-based sintered compact
JP2891518B2 (en) Manufacturing method of aluminum nitride multilayer wiring board
JPH0331669B2 (en)
JP2541150B2 (en) Aluminum nitride sintered body
JP3709062B2 (en) Aluminum nitride wiring board and manufacturing method thereof
JPS6136164A (en) Electroconductive ceramics
JP2536448B2 (en) Aluminum nitride sintered body
JPS63190133A (en) Aluminum nitride sintered compact and its production
JPS62132762A (en) Ceramic composition
JPH0348153B2 (en)
JPS61281059A (en) Manufacture of electroconductive ceramic sintered body