JPH01148069A - Power converting circuit - Google Patents

Power converting circuit

Info

Publication number
JPH01148069A
JPH01148069A JP62304584A JP30458487A JPH01148069A JP H01148069 A JPH01148069 A JP H01148069A JP 62304584 A JP62304584 A JP 62304584A JP 30458487 A JP30458487 A JP 30458487A JP H01148069 A JPH01148069 A JP H01148069A
Authority
JP
Japan
Prior art keywords
phase
transformer
voltage
load
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62304584A
Other languages
Japanese (ja)
Inventor
Ikutaro Hanaka
花香 郁太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62304584A priority Critical patent/JPH01148069A/en
Publication of JPH01148069A publication Critical patent/JPH01148069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To obtain a power converting circuit with a small power loss by using an auto-transformer having a necessary minimum capacity as an output transformer. CONSTITUTION:As to a three-phase load, the required capacity per phase of a three phase auto-transformer Tb is expressed by the equation I. When a secondary side phase voltage V2P is a little larger than a primary side phase voltage V1P, V2P V1P, that is, the required capacity W1P may be sufficiently smaller than the product of the secondary side phase voltage V2P and a three-phase balanced load phase circuit I3. As to a single-phase load, on the other hand, there is a small unbalance in load capacities between respective phases, because load equipment groups are distributed and connected between respective phases. Said auto-transformer Tb works as a reactor having a neutral-point for the load and each phase capacity W1l is expressed by the equation II. Therefore, the total capacity W1 per phase of the auto-transformer Tb is expressed by the equation III and the capacity per phase of the auto-transformer Tb may be a little larger than the required capacity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電力変換回路の改良に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in power conversion circuits.

[従来の技術] 3相交流電源例えば3相200 V rms交流電源を
、この電源とは異なる周波数を有する3相4線式200
Vr■S電源に変換する場合、入力電源を先ず3相全波
整流後平滑して270vの直流電源を得、ついでこれを
3相ブリツジ型パワ一スイツチング回路及びLC平滑回
路により一定周波数の3相交流に変換して得るのが普通
である。こうして得られた3相交流は、線間電圧が最高
約175v rms程度で3相3線式である。このため
3相4線式200/115Vrssの出力を得るには上
記3相3線式出力から3相変圧器を使用し、電圧を昇圧
させるとともに3相変圧器の2次側をY結線とすること
により、中性点を得る方法が採用されている。
[Prior Art] A three-phase AC power supply, for example, a three-phase 200 V rms AC power supply, is connected to a three-phase four-wire type 200 Vrms AC power supply having a frequency different from that of the power supply.
When converting to a Vr■S power source, the input power source is first 3-phase full-wave rectified and smoothed to obtain a 270V DC power source, and then this is converted into a 3-phase constant frequency power source using a 3-phase bridge type power switching circuit and an LC smoothing circuit. It is usually obtained by converting it to alternating current. The three-phase alternating current thus obtained is a three-phase, three-wire type with a maximum line voltage of about 175 V rms. Therefore, to obtain a 3-phase 4-wire output of 200/115 Vrss, use a 3-phase transformer from the above 3-phase 3-wire output, step up the voltage, and connect the secondary side of the 3-phase transformer to a Y-connection. A method of obtaining a neutral point has been adopted.

第3図は従来の電力変換回路の一例を示すもので、図中
1は3相全波整流電源回路、2はブリッジ型スイッチン
グ回路、3はリアクタLu=LvとヤバシタCu−Cv
よりなる平滑回路である。
Figure 3 shows an example of a conventional power conversion circuit, in which 1 is a three-phase full-wave rectifier power supply circuit, 2 is a bridge type switching circuit, and 3 is a reactor Lu=Lv and a Yabashita Cu-Cv.
This is a smoothing circuit consisting of:

図に見るように、3相全波整流電源回路1により整流さ
れた直流電圧は、パワースイッチング回路2において、
・トランジスタQup−Qvnによる高周波チョッパ動
作によりパルス幅変調され、3相交流電圧を発生する。
As shown in the figure, the DC voltage rectified by the three-phase full-wave rectifier power supply circuit 1 is transferred to the power switching circuit 2.
- Pulse width modulation is performed by high frequency chopper operation by transistors Qup-Qvn to generate a three-phase AC voltage.

この3相交流電圧は平滑回路3により平滑され正弦波3
相交流電圧を得る。
This three-phase AC voltage is smoothed by a smoothing circuit 3 and a sine wave 3 is generated.
Obtain the phase AC voltage.

図のTaは3相変圧器で該3相交流電圧を昇圧し線間に
て所定の電圧を得るとともに、Y結線の接続点から中性
点を得る。またインバータ制御回路4は出力電圧をパワ
ースイッチング回路2にフィードバックし、パワースイ
ッチング回路2の各スイッチング素子にチョッパ動作信
号を送る。
Ta in the figure is a three-phase transformer that boosts the three-phase AC voltage to obtain a predetermined voltage between the lines, and also obtains a neutral point from the connection point of the Y connection. Further, the inverter control circuit 4 feeds back the output voltage to the power switching circuit 2 and sends a chopper operation signal to each switching element of the power switching circuit 2.

次に動作について説明する。入力電源に例えば200 
V rtrsの3相電源が供給されると、3相全波整流
電源回路1に約270vの直流電圧が発生する。なお配
電系の母線として270vの直流電圧が配設されている
場合は、この電源回路は省略される。パワースイッチン
グ回路2は、U相用パワートランジスタQup、 Qu
nSV相用Q vpSQ vn。
Next, the operation will be explained. For example 200 to input power supply
When a three-phase power supply of V rtrs is supplied, a DC voltage of approximately 270V is generated in the three-phase full-wave rectified power supply circuit 1. Note that this power supply circuit is omitted when a DC voltage of 270 V is provided as a bus bar of the power distribution system. The power switching circuit 2 includes U-phase power transistors Qup and Qu.
nSV phase Q vpSQ vn.

W相用Q V[)SQ wn及び各パワートランジスタ
に逆並列接続されたダイオードにより構成されており、
それぞれ上記インバータ制御回路4からの駆動信号によ
り高周波チョッパ動作を行ない、各線間ともその平滑値
が正弦波状になるようにパルス幅変調されている。
It is composed of a diode connected anti-parallel to the W-phase QV[)SQwn and each power transistor,
A high frequency chopper operation is performed by a drive signal from the inverter control circuit 4, and the pulse width is modulated so that the smoothed value between each line becomes a sine wave.

平滑回路3はローパスフィルタを形成し、上記パワース
イッチング回路2からのパルス幅変調出力電圧を平滑し
、基本正弦波を取り出している。
The smoothing circuit 3 forms a low-pass filter, smoothes the pulse width modulated output voltage from the power switching circuit 2, and extracts a fundamental sine wave.

この正弦波の電圧は、入力電源電圧が3相200V r
msを全波整流して得られた電圧または270Vの直流
電圧の場合は、3相線間電圧としては最大の175 V
 r+ms程度となる。また平滑回路3からの出力は3
相3線式である。したがって変圧器Taを設けて線間電
圧が200 V ragsとなるように昇圧するととも
に、変圧器Taの2次側をY結線となし中性点を得て、
3相4線式の200V/115Vrmsを得るようにし
、この出力を3相200 V rms及び単相115V
r+ms電源として使用することができる。
This sine wave voltage has an input power supply voltage of 3-phase 200V r
In the case of a voltage obtained by full-wave rectification of ms or a DC voltage of 270 V, the maximum three-phase line voltage is 175 V.
It will be about r+ms. Also, the output from smoothing circuit 3 is 3
It is a phase 3-wire system. Therefore, a transformer Ta is provided to boost the line voltage to 200 V rags, and the secondary side of the transformer Ta is Y-connected to obtain a neutral point.
200V/115Vrms of 3-phase 4-wire system is obtained, and this output is converted to 3-phase 200V rms and single-phase 115V.
Can be used as r+ms power supply.

インバータ制御回路4は、出力電圧をフィードバック値
として検出し、これによりパルス幅変調における各パル
ス幅を制御して、これをパワースイッチング回路2へ駆
動信号として送ることにより、出力電圧値が所定の値に
保持されるように機能している。
The inverter control circuit 4 detects the output voltage as a feedback value, controls each pulse width in pulse width modulation using the feedback value, and sends this to the power switching circuit 2 as a drive signal, so that the output voltage value is set to a predetermined value. It functions so that it is maintained.

[発明が解決しようとする問題点] ところで上記のように構成された電力変換回路において
、変圧器Taの容量はこの電力変換回路の出力に等しい
かあるいはそれ以上でなければならない。9のため変圧
器Taの形状、重量が大きくなるとともに、変圧器Ta
の部分において、[出力VAX (1−η)] の損失が発生する。なおηは変圧器Taの効率である。
[Problems to be Solved by the Invention] In the power conversion circuit configured as described above, the capacity of the transformer Ta must be equal to or greater than the output of the power conversion circuit. 9, the shape and weight of the transformer Ta increase, and the transformer Ta
A loss of [output VAX (1-η)] occurs in the part. Note that η is the efficiency of the transformer Ta.

これは車載用や航空機用の電力変換器としては好ましい
ことではない。
This is not desirable for power converters for vehicles and aircraft.

本発明は従来装置の上記問題点を解消するためになされ
たもので、変圧器の容量が小さくて済み、かつ変圧器内
の電力損失の少ない電力変換回路を提供しようとするも
のである。
The present invention has been made in order to solve the above-mentioned problems of conventional devices, and aims to provide a power conversion circuit that requires a small transformer capacity and reduces power loss within the transformer.

[問題点を解決するための手段] 上記目的を達成するため、本発明に係る電力変換回路に
おいては、出カドランスに必要最小限の容量を有する単
巻変圧器を使用した。
[Means for Solving the Problems] In order to achieve the above object, in the power conversion circuit according to the present invention, an autotransformer having the minimum required capacity is used for the output transformer.

[作用] 電力変換回路を上記のように構成したので、単巻変圧器
の容量は基本的には昇圧分容量だけで済み、変圧器を小
型軽量にすることができ、変圧器内の損失分も少なくて
済む。また単巻変圧器を中性点形成りアクタとして中性
点を得るのに利用することも可能である。
[Function] Since the power conversion circuit is configured as described above, the capacity of the autotransformer is basically only the step-up capacity, which allows the transformer to be made smaller and lighter, and reduces the loss within the transformer. It also requires less. It is also possible to use an autotransformer as a neutral point forming actor to obtain the neutral point.

[発明の実施例〕 第1図は本発明の一実施例を示す電力変換回路の構成図
で、図中1〜4は従来装置と同一部品、Tbは単巻変圧
器である。また第2図は該単巻変圧器Tbの負荷状態を
示す構成図である。
[Embodiment of the Invention] FIG. 1 is a block diagram of a power conversion circuit showing an embodiment of the present invention, in which numerals 1 to 4 are the same parts as in the conventional device, and Tb is an autotransformer. Further, FIG. 2 is a configuration diagram showing the load state of the autotransformer Tb.

第2図において、Vllは平滑回路3の出力端子U′、
v′、W′の線間電圧、V tpハ3 個(7) 単s
変圧器よりなる3相半巻変圧器Tbの入力側端子と中性
点Nとの間の電圧すなわち1次側相電圧、V2pは変圧
器Tbの出力側端子と中性点Nとの間の電圧すなわち2
次側相電圧、またV2eは出力端子U、V、Wにおける
線間電圧である。図におい。
In FIG. 2, Vll is the output terminal U' of the smoothing circuit 3,
Line voltage of v', W', V tp 3 (7) Single s
V2p is the voltage between the input terminal of the three-phase half-turn transformer Tb and the neutral point N, that is, the primary phase voltage, and V2p is the voltage between the output terminal of the transformer Tb and the neutral point N. voltage i.e. 2
The next phase voltage, also V2e, is the line voltage at the output terminals U, V, W. Figure smell.

て3相負荷Z 3u、 Z 3v、 Z 3wは3相平
衡負荷であり、この中には各線間に接続された平衡負荷
分及び相電圧平衡負荷分を含んでいる。なおZluは相
電圧負荷である。
The three-phase loads Z 3u, Z 3v, and Z 3w are three-phase balanced loads, which include a balanced load connected between each line and a phase voltage balanced load. Note that Zlu is a phase voltage load.

第1図において、例えば入力電源電圧が200v ru
nsであれば、第3図の場合と同様に平滑回路3の出力
電圧Vllは約175Vra+sである。
In FIG. 1, for example, the input power supply voltage is 200v ru
ns, the output voltage Vll of the smoothing circuit 3 is about 175Vra+s, as in the case of FIG.

3相負荷に対して3相半巻変圧器Tbの各相当たりの所
要容量Wlpは により表示される。このことはV2pがvlpより若干
大きい程度の場合には V 2pS?V lp となり、WlpはV2p−13より十分小さい値でよい
ことになる。なお13は3相平衡負荷に対する相電流を
示しており、V2p・13はは相出力を示している。
The required capacity Wlp for each equivalent of the three-phase half-wound transformer Tb for a three-phase load is expressed as follows. This means that when V2p is slightly larger than vlp, V2pS? V lp , and Wlp may be a value sufficiently smaller than V2p-13. Note that 13 indicates a phase current for a three-phase balanced load, and V2p·13 indicates a phase output.

入力電圧が200 V rmsの時は 出力電圧が200 V risの時は これより 一〇、125X115xI3 よって単巻変圧器Tbの3相平衡負荷に対する容量は本
実施例においては0.125の容量でよいことを示して
いる。
When the input voltage is 200 V rms, when the output voltage is 200 V ris, this is 10, 125 x 115 x I3 Therefore, the capacity of the autotransformer Tb for the three-phase balanced load can be 0.125 in this example. It is shown that.

一方単相負荷は負荷機器群をできるだけ各相間に分配し
て接続するようにしたため、各相間の負荷容量のアンバ
ランスは少なくなる。Zluはこのアンバランス負荷分
を示すものである。この負荷に対して単巻変圧器Tbは
中性点形成りアクタの作用をしている。
On the other hand, for single-phase loads, load equipment groups are distributed and connected between each phase as much as possible, so the imbalance in load capacity between each phase is reduced. Zlu indicates this unbalanced load. For this load, the autotransformer Tb acts as a neutral point forming actor.

このリアクタとしての各相客=Wt+はWll−V2p
@I l で十分である。なお■1は負荷Zluに流れる電流であ
る。
Each customer as this reactor = Wt+ is Wll-V2p
@I l is sufficient. Note that 1 is the current flowing through the load Zlu.

したがって単巻変圧器Tbの各相当たりの合計容量Wl
は W I −W 1p+ W 11 となり、通常WllはWlpに比較して非常に小さいの
で、変圧器Tbの各相当たりの容量はwtpより若干大
きければよいことになる。
Therefore, the total capacity Wl for each equivalent of the autotransformer Tb
is W I −W 1p+ W 11 , and since Wll is usually much smaller than Wlp, the capacity of each equivalent of transformer Tb only needs to be slightly larger than wtp.

またこの単巻変圧器Tbの効率は第3図で示す通常の変
圧器と同等であるから、その発生損失Wl  ・ηは十
分小さいものになる。
Furthermore, since the efficiency of this autotransformer Tb is equivalent to that of the ordinary transformer shown in FIG. 3, the loss Wl·η generated therein is sufficiently small.

以上述べたように、単巻変圧器Tbは小容量のものでよ
く、変圧器の発生損失も少なくて済むため、本発明に係
る電力変換回路の全体としての効率も高くすることが出
来るのである。
As described above, the autotransformer Tb can be of small capacity and the loss generated by the transformer can be reduced, so that the overall efficiency of the power conversion circuit according to the present invention can be increased. .

[発明の効果] 本発明は電力変換回路において、単巻変圧器を使用した
ので、電力変換回路を小型化、軽量化するとともに、高
効率な3相3線式電源を得ることが可能となった。
[Effects of the Invention] Since the present invention uses an autotransformer in the power conversion circuit, it is possible to make the power conversion circuit smaller and lighter, and to obtain a highly efficient three-phase three-wire power source. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電力変換回路の構成図
、第2図は単巻変圧器の負荷状態を示す構成図、第3図
は従来装置の構成図である。 図中1は3相全波整流電源回路、2はブリッジ型パワー
スイッチング回路、3は平滑回路、4はインバータ制御
回路、Tbは単巻変圧器、Vllは平滑回路の出力端子
間の線間電圧、Vlpは単巻変圧器の出力側端子と中性
点との間の電圧、V2pは出力端子間の線間電圧、Z 
3u、 Z 3vSZ 3νは3相平衡負荷、Zluは
相電圧負荷である。 なお図中同一符号は同一または相当部品を示すものであ
る。 代理人 弁理士  佐々木 宗治 手続補正書(自発) 昭和6鉾6月13日
FIG. 1 is a block diagram of a power conversion circuit showing an embodiment of the present invention, FIG. 2 is a block diagram showing the load state of an autotransformer, and FIG. 3 is a block diagram of a conventional device. In the figure, 1 is a three-phase full-wave rectified power supply circuit, 2 is a bridge type power switching circuit, 3 is a smoothing circuit, 4 is an inverter control circuit, Tb is an autotransformer, and Vll is the line voltage between the output terminals of the smoothing circuit. , Vlp is the voltage between the output terminal of the autotransformer and the neutral point, V2p is the line voltage between the output terminals, Z
3u, Z 3vSZ 3v is a three-phase balanced load, and Zlu is a phase voltage load. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Patent Attorney Muneharu Sasaki Procedural Amendment (Voluntary) June 13, 1932

Claims (1)

【特許請求の範囲】[Claims] 3相全波整流回路と、ブリッジ型パワースイッチング回
路と、平滑回路と、3相変圧器と、インバータ制御回路
等よりなり、3相交流電源を整流して直流電源とし、つ
いで該直流電源を上記3相交流電源と同一電圧値を有す
るとともに異なる定周波数を有する3相4線式交流電源
に変換する電力変換回路において、上記3相変圧器を3
個の単巻変圧器より構成し、上記パワースイッチング回
路及び平滑回路から得られる3相3線式交流電圧の出力
を上記3個の単巻変圧器の低圧入力側端子に接続すると
ともに上記3個の単巻変圧器の各共通端子を接続して中
性点を形成することにより、所定の電圧値を有する3相
4線式電源を出力し得ることを特徴とする電力変換回路
Consisting of a 3-phase full-wave rectifier circuit, a bridge type power switching circuit, a smoothing circuit, a 3-phase transformer, an inverter control circuit, etc., the 3-phase AC power source is rectified to become a DC power source, and then the DC power source is converted into a DC power source. In a power conversion circuit that converts the three-phase AC power supply into a three-phase four-wire AC power supply having the same voltage value and a different constant frequency, the three-phase transformer is
The three-phase three-wire AC voltage output obtained from the power switching circuit and smoothing circuit is connected to the low-voltage input side terminals of the three autotransformers, and the three autotransformers are connected to A power conversion circuit characterized in that a three-phase four-wire power source having a predetermined voltage value can be output by connecting the common terminals of the autotransformers to form a neutral point.
JP62304584A 1987-12-03 1987-12-03 Power converting circuit Pending JPH01148069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304584A JPH01148069A (en) 1987-12-03 1987-12-03 Power converting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304584A JPH01148069A (en) 1987-12-03 1987-12-03 Power converting circuit

Publications (1)

Publication Number Publication Date
JPH01148069A true JPH01148069A (en) 1989-06-09

Family

ID=17934756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304584A Pending JPH01148069A (en) 1987-12-03 1987-12-03 Power converting circuit

Country Status (1)

Country Link
JP (1) JPH01148069A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119602A1 (en) * 2008-03-24 2009-10-01 ダイキン工業株式会社 Power supply device, outdoor unit, and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119602A1 (en) * 2008-03-24 2009-10-01 ダイキン工業株式会社 Power supply device, outdoor unit, and air conditioner

Similar Documents

Publication Publication Date Title
US6154378A (en) Polyphase inverter with neutral-leg inductor
US4651265A (en) Active power conditioner system
CN111030152B (en) Energy storage converter system and control method thereof
JP3223842B2 (en) Multi-phase output power conversion circuit
US5625545A (en) Medium voltage PWM drive and method
US6038152A (en) Active rectifier utilizing a fixed switching pattern
US5668707A (en) Multi-phase power converter with harmonic neutralization
US9871462B2 (en) Regenerative variable frequency drive with auxiliary power supply
Komatsugi et al. Harmonic current compensator composed of static power converter
US20140043870A1 (en) Three phase boost converter to achieve unity power factor and low input current harmonics for use with ac to dc rectifiers
JP3337041B2 (en) Control method for single-phase three-wire inverter device
JP3591548B2 (en) Multiple rectifier circuit
JP3478700B2 (en) Three-phase power factor improving converter
JP3217212B2 (en) Inverter
CN104104244B (en) Multi-stage AC/DC power conversion method and apparatus
CN106787142B (en) Fault-tolerant electromagnetic stirring power supply system and control method thereof
JPH11191962A (en) Insulating power converter
JP3087955B2 (en) Three-phase converter device
JPH01148069A (en) Power converting circuit
JPH11187576A (en) Distributed power supply
Kikuchi et al. Complementary half controlled three phase PWM boost rectifier for multi-DC-link applications
Kim et al. DC link voltage control of reduced switch VSI-PWM rectifier/inverter system
Biel et al. Control strategy for parallel-connected three-phase inverters
IL297854A (en) Electrical power converter
JP3316858B2 (en) Constant voltage / constant frequency power supply