JPH0114805B2 - - Google Patents

Info

Publication number
JPH0114805B2
JPH0114805B2 JP20686582A JP20686582A JPH0114805B2 JP H0114805 B2 JPH0114805 B2 JP H0114805B2 JP 20686582 A JP20686582 A JP 20686582A JP 20686582 A JP20686582 A JP 20686582A JP H0114805 B2 JPH0114805 B2 JP H0114805B2
Authority
JP
Japan
Prior art keywords
reaction
liquid
gas
reaction tank
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20686582A
Other languages
Japanese (ja)
Other versions
JPS5998729A (en
Inventor
Toshibumi Ida
Toshihiko Hirose
Tetsuo Maeda
Toshiro Shimotokube
Nozomi Morioka
Hironori Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP20686582A priority Critical patent/JPS5998729A/en
Publication of JPS5998729A publication Critical patent/JPS5998729A/en
Publication of JPH0114805B2 publication Critical patent/JPH0114805B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 この発明は反応生成物を強制的に除くことによ
り、反応の高効率化を達成すると共に液の自然循
環を行わせる反応方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reaction method and apparatus that achieves high reaction efficiency and allows natural circulation of liquid by forcibly removing reaction products.

反応液からの反応生成物の分離除去方法として
は、発酵において、発酵槽から一部の発酵液を抜
き出し、これを減圧下に保持したフラツシユ蒸発
槽と精留塔に導き生成物蒸気を蒸発除去すること
により反応効率の改善を図つている方法がある
(ATPAL法、Chem.Age、Nov.21、p11(1980))。
しかしこの方法は、発酵槽からフラツシユ蒸発槽
への送液手段として循環ポンプの使用が必要であ
るため、動力を余分に要することとなる。また、
反応液を仕切板あるいは管で上向流域と下向流域
に分割し、上向流域の下部に酸素を吹き込むこと
で液の循環流を生起させ、液体からの気体の効率
的な離脱を行わせる好気培養方法が提案されてい
る(特公昭57−41232号)。しかしこの方法は、外
部からガス(酸素)を導入することで、導入のた
めのガスと動力を要するというのが難点である。
As a method for separating and removing reaction products from a reaction solution, in fermentation, a part of the fermentation solution is extracted from the fermenter, and the product vapor is removed by evaporation by introducing it into a flash evaporation tank and a rectification column maintained under reduced pressure. There is a method that aims to improve reaction efficiency by doing so (ATPAL method, Chem.Age, Nov. 21, p. 11 (1980)).
However, this method requires the use of a circulation pump as a means for transporting the liquid from the fermenter to the flash evaporator, which requires additional power. Also,
The reaction liquid is divided into an upward flow area and a downward flow area using a partition plate or a pipe, and oxygen is blown into the lower part of the upper flow area to generate a circulating flow of the liquid and to efficiently remove gas from the liquid. An aerobic culture method has been proposed (Special Publication No. 57-41232). However, this method has the disadvantage that gas (oxygen) is introduced from the outside, which requires gas and power for introduction.

本発明者らはこうした従来の反応生成物の分
離、除去方法の欠点を克服するため種々検討を重
ねた結果、所定の条件下で反応生成物をガスとし
て反応液から強制的に除くことにより液比重(見
掛け比重)差、エアーリフト効果を起させる方法
を利用すれば、循環のためのポンプ等を用いなく
ても液の自然循環を起させることができ、また外
部から、なんら駆動用ガスを導入する必要がない
のでエネルギー的にも高効率で反応生成物を分離
除去できることを見い出した。この発明はこの知
見に基づきなされたものである。
The inventors of the present invention have conducted various studies to overcome the drawbacks of conventional methods for separating and removing reaction products, and have found that by forcibly removing the reaction products from the reaction liquid as a gas under predetermined conditions, the By using a method that creates a difference in specific gravity (apparent specific gravity) and an air lift effect, it is possible to cause natural circulation of the liquid without using a pump for circulation, and it is also possible to cause the liquid to circulate naturally without using any external driving gas. It has been found that the reaction products can be separated and removed with high energy efficiency since there is no need to introduce them. This invention was made based on this knowledge.

すなわちこの発明は、反応液を、反応域より低
圧でかつ反応液比重によりバランスする分だけ高
位に位置する気液分離域に導き、この気液分離域
で反応生成物をガス化して除去させつつ、液比重
差により反応液を反応域に循環させ、これにより
継続的な液自然循環流を発生させこの液自然循環
下に反応を行わせることを特徴とする反応方法及
びこれに用いる反応装置を提供するものである。
That is, in this invention, the reaction liquid is guided to a gas-liquid separation zone which is located at a lower pressure than the reaction zone and at a higher position by an amount balanced by the specific gravity of the reaction liquid, and in this gas-liquid separation zone, reaction products are gasified and removed. , a reaction method characterized in that a reaction liquid is circulated in a reaction zone due to a difference in liquid specific gravity, thereby generating a continuous natural circulation flow of liquid, and a reaction is carried out under this natural circulation of liquid, and a reaction apparatus used therein. This is what we provide.

次にこの発明を図示の1実施例に従つて説明す
る。
Next, the present invention will be explained according to one embodiment shown in the drawings.

図面はこの発明方法による反応装置の概略図で
あり、図中1は反応槽、2は反応液から反応生成
物を気化分離するための気液分離器であり、3,
4は反応槽1と気液分離器2とを接続する連結管
であり、3は反応槽1からの反応液5を気液分離
器2に送り出す往ライン用、4はその逆の復ライ
ン用である。
The drawing is a schematic diagram of a reaction apparatus according to the method of the present invention, in which 1 is a reaction tank, 2 is a gas-liquid separator for vaporizing and separating the reaction product from the reaction liquid, 3,
4 is a connecting pipe that connects the reaction tank 1 and the gas-liquid separator 2, 3 is for the outgoing line that sends the reaction liquid 5 from the reaction tank 1 to the gas-liquid separator 2, and 4 is the incoming line that is the opposite. It is.

気液分離器2は反応槽1の反応圧より低圧と
し、前者が後者より液比重でバランスする分だけ
すなわち液面でh−mだけ高位に設置されてい
る。
The gas-liquid separator 2 has a lower pressure than the reaction pressure of the reaction tank 1, and the former is installed higher than the latter by an amount balanced by liquid specific gravity, that is, hm on the liquid level.

6は気液分離器2を真空系に接続する管、7は
反応槽1の排気管、8は反応槽1の原料供給口、
9は反応槽1の吐出口である。
6 is a pipe connecting the gas-liquid separator 2 to the vacuum system, 7 is an exhaust pipe of the reaction tank 1, 8 is a raw material supply port of the reaction tank 1,
9 is a discharge port of the reaction tank 1.

この反応装置を用いて反応を開始すると、反応
槽1の反応液5には目的の反応生成物と共に廃ガ
スが溶存し、これらは、真空系につないで所定の
真空度をたてた気液分離器2に送られて反応液か
ら除かれる。反応液は往ライン用の連結管3にお
いて、気液分離器2に近い程溶解廃ガスのガス気
泡を発生しエアーリフト効果が生ずる。一方、気
液分離器2において反応液から反応生成物及び廃
ガスが除かれるので復ライン用の連結管4には反
応液のガス気泡がなくなり、液の見掛け比重は連
結管3の場合より大きくなる。したがつて反応槽
1から連結管3、気液分離器2、連結管4を経て
反応槽1に戻る液循環が開始される。このような
液循環がひとたび起ると連結管3は気泡ラインと
なり一方戻りのライン(復ライン用連結管4)は
溶解ガスを放出した残りの液のみとなつて循環推
進力が助長され、一定速度でバランスして所望の
液自然循環が達成される。
When a reaction is started using this reactor, waste gas is dissolved in the reaction liquid 5 of the reaction tank 1 along with the desired reaction product, and these are gas-liquid that is connected to a vacuum system to create a predetermined degree of vacuum. It is sent to separator 2 and removed from the reaction solution. The reaction liquid is in the connecting pipe 3 for the outgoing line, and the closer it is to the gas-liquid separator 2, the more gas bubbles of dissolved waste gas are generated, producing an air lift effect. On the other hand, since reaction products and waste gas are removed from the reaction liquid in the gas-liquid separator 2, there are no gas bubbles in the reaction liquid in the connecting pipe 4 for the return line, and the apparent specific gravity of the liquid is higher than in the case of the connecting pipe 3. Become. Therefore, liquid circulation from the reaction tank 1 to the reaction tank 1 via the connecting pipe 3, the gas-liquid separator 2, and the connecting pipe 4 is started. Once such liquid circulation occurs, the connecting pipe 3 becomes a bubble line, while the return line (returning line connecting pipe 4) becomes only the remaining liquid from which dissolved gas has been released, which promotes the circulation propulsion and maintains a constant level. The desired natural circulation of liquid is achieved by balancing the speeds.

この発明方法において反応槽1の圧力、温度条
件は適用される反応に応じた条件に設定する。反
応槽1が大気圧より正圧のときは排気管7より廃
ガスを排気できる。
In the method of this invention, the pressure and temperature conditions of the reaction vessel 1 are set to suit the reaction to be applied. When the pressure in the reaction tank 1 is more positive than atmospheric pressure, waste gas can be exhausted from the exhaust pipe 7.

気液分離器2の反応槽1に対する液位差h(m)
は次式で規定される。
Liquid level difference h (m) between gas-liquid separator 2 and reaction tank 1
is defined by the following equation.

h=P1−P2/ρg ここで P1:反応槽1の圧力 P2:気液分離器2の圧力 ρ=反応液の密度 (反応槽1の反応液の密度ρ1気液分離器2中
の反応液の密度(ρ2)) 気液分離器2の圧力P2、温度T2は反応液の沸
点に設定する。したがつて気液分離器2の温度
T2と反応槽1の温度T1はT1>T2であるので、発
熱反応の場合気液分離器2は反応液を冷却する効
果をもち、場合によつてはT1をコントロールす
るよう設定できる。
h=P 1 −P 2 /ρg where P 1 : Pressure in reaction tank 1 P 2 : Pressure in gas-liquid separator 2 ρ = Density of reaction liquid (density of reaction liquid in reaction tank 1 ρ 1 gas-liquid separator Density (ρ 2 ) of the reaction liquid in 2) The pressure P 2 and temperature T 2 of the gas-liquid separator 2 are set to the boiling point of the reaction liquid. Therefore, the temperature of the gas-liquid separator 2
Since T 2 and the temperature T 1 of the reaction tank 1 are T 1 > T 2 , in the case of an exothermic reaction, the gas-liquid separator 2 has the effect of cooling the reaction liquid, and in some cases may control T 1 . Can be set.

なお反応液は連続的に反応を起こしており液が
ガス発生源となつているので反応発生ガスも連結
管3において液循環をさらに促進させる作用をす
る。
Incidentally, since the reaction liquid undergoes a continuous reaction and serves as a gas generation source, the reaction generated gas also acts to further promote liquid circulation in the connecting pipe 3.

この発明によれば、いつたん開始した液循環は
循環ポンプなしの液自然循環として継続させるこ
とができ、一方反応液中の溶解ガスである廃ガス
及び目的の反応生成物質は気液分離器により連続
的に分離除去される。したがつて液循環ポンプが
不用であり系の所要ポンプ動力を少なくでき、省
エネの効果が大である。
According to this invention, the liquid circulation once started can be continued as natural liquid circulation without a circulation pump, while the waste gas, which is the dissolved gas in the reaction liquid, and the target reaction product are removed by the gas-liquid separator. Continuously separated and removed. Therefore, a liquid circulation pump is not required, and the pump power required for the system can be reduced, resulting in a large energy saving effect.

また、気液分離器で、反応生成物(目的物質及
び廃ガス)を連続的に除いているので、反応の平
衡が反応の促進される方向に進み、高効率の反応
が達成される。これにより装置の縮少化と省エネ
ルギーも達成できる。
Furthermore, since the reaction products (target substance and waste gas) are continuously removed by the gas-liquid separator, the reaction equilibrium advances in a direction that promotes the reaction, achieving highly efficient reaction. This also makes it possible to downsize the device and save energy.

さらに、気液分離器の温度が反応槽の温度より
低いので反応槽に循環する反応液によつて反応槽
の温度管理負担を軽減でき、気液分離器の圧力、
温度条件の設定次第で、液循環のみで反応槽の温
度管理を達成することも可能である。
Furthermore, since the temperature of the gas-liquid separator is lower than the temperature of the reaction tank, the burden of temperature management of the reaction tank can be reduced by the reaction liquid circulating in the reaction tank, and the pressure of the gas-liquid separator can be reduced.
Depending on the setting of temperature conditions, it is also possible to achieve temperature control of the reaction tank only by liquid circulation.

さらにまた、系自体の構成がシンプルであるの
で操作が容易であるという利点を有する。
Furthermore, since the system itself has a simple configuration, it has the advantage of being easy to operate.

この発明の方法及び装置は、発酵工業、化学工
業及び石油化学工業における反応に適用すること
ができる。発酵に適用する場合は好気培養、嫌気
培養の別なく適用できるが特に嫌気培養による発
酵に適しており、そのような発酵の例として、ア
ルコール発酵、メタン発酵などがあげられる。ま
た一般の化学反応の場合は、炭酸ガス、窒素ガ
ス、水素など反応生産物として非凝縮性ガスを生
成する発熱反応系に適用するのが好ましい。この
ような反応の具体例としては触媒使用の脱水反
応、脱水素反応、パラフイン系炭化水素の異性
化、また、エステル化反応等に利用可能である。
The method and apparatus of this invention can be applied to reactions in the fermentation industry, chemical industry and petrochemical industry. When applied to fermentation, it can be applied to both aerobic culture and anaerobic culture, but it is particularly suitable for fermentation by anaerobic culture, and examples of such fermentation include alcohol fermentation and methane fermentation. Further, in the case of general chemical reactions, it is preferable to apply the present invention to exothermic reaction systems that produce non-condensable gases as reaction products such as carbon dioxide gas, nitrogen gas, and hydrogen. Specific examples of such reactions include dehydration reactions using catalysts, dehydrogenation reactions, isomerization of paraffinic hydrocarbons, and esterification reactions.

次に本発明を実施例に基づきさらに詳細に説明
する。
Next, the present invention will be explained in more detail based on examples.

実施例 図示の反応装置を用いてアルコール発酵を行つ
た。まず、廃糖密を希釈した糖度23%のもろみ液
を反応槽1に仕込み、回分式で発酵を行わせた。
操作条件は以下のように設定した。
Example Alcohol fermentation was carried out using the illustrated reaction apparatus. First, a mash with a sugar content of 23% obtained by diluting waste molasses was charged into reaction tank 1, and fermentation was carried out in a batch manner.
The operating conditions were set as follows.

反応槽(50容):温度(T1)30〜33℃、圧力
(P1)常圧(1atm) 気液分離器(5容):温度(T2)30〜33℃、
圧力(P2)30〜40Torr 酵母はs.cerevisiae属の菌株を使用した。この
際、反応槽と気液分離器の液位差(h)は、反応
液の密度(ρ1)が1.03×103Kg/m3であるので前
記式h=P1−P2/ρgに従つて計算されh=9.51mに 設定した。
Reaction tank (50 volumes): Temperature (T 1 ) 30-33℃, Pressure (P 1 ) Normal pressure (1atm) Gas-liquid separator (5 volumes): Temperature (T 2 ) 30-33℃,
Pressure (P 2 ) 30-40 Torr A strain of the genus S.cerevisiae was used as the yeast. At this time, the liquid level difference (h) between the reaction tank and the gas-liquid separator is calculated using the above formula h=P 1 -P 2 /ρg since the density of the reaction liquid (ρ 1 ) is 1.03×10 3 Kg/m 3 It was calculated according to the following and set h = 9.51m.

この発酵において、反応が進むにつれてエタノ
ールとともに炭酸ガスが発生し、気泡を生じてく
る。発酵開始後14時間目にもろみ液に対して気液
分離器2を30〜40Torrに減圧したところ連結管
3は炭酸ガスの気泡で満たされ、配管抵抗に違い
を設けてあるので、連結管3中の気泡は液ととも
に上昇を始め、連結管4の液は下降を起し、以後
一定して、反応槽1から連結管3、気液分離器
2、連結管4を経て反応槽1に返る循環流が観察
された。循環流の速度は実常状態で約0.5〜1
/minに達した。この液循環速度はこの発酵の
目的生成物であり、かつ発酵阻害物質であるエタ
ノールを前記操作条件下で気液分離器から除くの
に十分な速度であつた。気液分離器2からは濃度
25%以上のエタノールが得られた。
In this fermentation, as the reaction progresses, carbon dioxide gas is generated along with ethanol, creating bubbles. 14 hours after the start of fermentation, the pressure of the mash in the gas-liquid separator 2 was reduced to 30 to 40 Torr, and the connecting pipe 3 was filled with carbon dioxide gas bubbles. The bubbles inside begin to rise together with the liquid, and the liquid in the connecting pipe 4 begins to fall, and thereafter returns to the reaction tank 1 from the reaction tank 1 via the connecting pipe 3, the gas-liquid separator 2, and the connecting pipe 4. Circulating flow was observed. The speed of circulation flow is approximately 0.5 to 1 in actual conditions.
/min has been reached. The liquid circulation rate was sufficient to remove ethanol, the desired product of the fermentation and a fermentation inhibitor, from the gas-liquid separator under the operating conditions. From the gas-liquid separator 2, the concentration
More than 25% ethanol was obtained.

このようにして自然循環、気液分離及び発酵の
促進が同時に達成でき循環用のポンプなどを必要
としなかつた。
In this way, natural circulation, gas-liquid separation, and promotion of fermentation could be achieved at the same time, eliminating the need for a circulation pump or the like.

ちなみに発酵開始から14時間後の往ライン用連
結管3中の液と復ライン用連結管4中の液との比
重差は0.9g/c.c.であつた。
Incidentally, 14 hours after the start of fermentation, the difference in specific gravity between the liquid in the forward line connecting pipe 3 and the liquid in the backward line connecting pipe 4 was 0.9 g/cc.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の反応装置の1実施例を示す。 符号の説明 1…反応槽、2…気液分離器、
3,4…連結管、5…反応液、h…反応槽−気液
分離器間の液位差。
The drawing shows one embodiment of the reactor according to the invention. Explanation of symbols 1... Reaction tank, 2... Gas-liquid separator,
3, 4... Connecting pipe, 5... Reaction liquid, h... Liquid level difference between reaction tank and gas-liquid separator.

Claims (1)

【特許請求の範囲】 1 反応液を、反応域より低圧でかつ反応液比重
によりバランスする分だけ高位に設けた気液分離
域に導き、この気液分離域で反応生成物をガス化
して除去させつつ、液比重差により反応液を反応
域に循環させ、これにより継続的な液自然循環流
を発生させ、この液自然循環下に反応を行わせる
ことを特徴とする液循環反応方法。 2 反応槽と気液分離器を分割して設置して両者
間を往、復2本の連結管で接続するとともに、気
液分離器を反応槽より低圧とし、かつ反応液比重
でバランスする分だけ反応槽より高位に設置して
なることを特徴とする反応装置。
[Scope of Claims] 1. The reaction liquid is led to a gas-liquid separation zone which is provided at a lower pressure than the reaction zone and at a level balanced by the specific gravity of the reaction liquid, and in this gas-liquid separation zone, reaction products are gasified and removed. A liquid circulation reaction method characterized by circulating the reaction liquid in a reaction zone based on the difference in specific gravity of the liquid, thereby generating a continuous natural liquid circulation flow, and carrying out the reaction under this natural liquid circulation. 2 The reaction tank and the gas-liquid separator are installed separately and connected with two connecting pipes, one for each, and one for the gas-liquid separator to be at a lower pressure than the reaction tank and balanced by the specific gravity of the reaction liquid. A reaction device characterized by being installed at a higher level than a reaction tank.
JP20686582A 1982-11-27 1982-11-27 Liquid recirculation reaction method and apparatus therefor Granted JPS5998729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20686582A JPS5998729A (en) 1982-11-27 1982-11-27 Liquid recirculation reaction method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20686582A JPS5998729A (en) 1982-11-27 1982-11-27 Liquid recirculation reaction method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS5998729A JPS5998729A (en) 1984-06-07
JPH0114805B2 true JPH0114805B2 (en) 1989-03-14

Family

ID=16530315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20686582A Granted JPS5998729A (en) 1982-11-27 1982-11-27 Liquid recirculation reaction method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS5998729A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594462B2 (en) * 2018-01-16 2019-10-23 月島機械株式会社 Incubator

Also Published As

Publication number Publication date
JPS5998729A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
Cysewski et al. Rapid ethanol fermentations using vacuum and cell recycle
US4500323A (en) Process for the gasification of raw carboniferous materials
US4822737A (en) Process for producing ethanol by fermentation
JPS597315B2 (en) Ethanol production method
US4336335A (en) Fermentation process
US5362635A (en) Process for the production of an amino acid using a fermentation apparatus
US4992370A (en) Process for the production of alcohol
NO142754B (en) METHOD AND APPARATUS FOR AEROBIC CULTIVATION OF A MICRO-ORGANISM
WO2022083396A1 (en) Method for producing vinyl acetate
US3148143A (en) Hydrate crystallizer
CN112299989B (en) Vinyl acetate production process and device
HU201971B (en) Process for producing ethanol by fermenting molasses
US4286066A (en) Continuous fermentation and distillation apparatus
JPH0114805B2 (en)
US4519984A (en) Apparatus for carrying out sparged reaction
GB1599618A (en) Process and installation for treating residual water
US4687668A (en) Continuous microbiological production of acetic acid and vinegar
CA1131571A (en) Process for continuous preparation of alcohol through fermentation
US4599459A (en) Method for the ultrasonic treatment of a dilute alcoholic solution
CN105733938B (en) A kind of the bioelectricity synthesizer and bioelectricity synthetic method of continuously-running
US5001066A (en) Method for carrying out sparged reaction
US5837522A (en) Method for introducing oxygen into a propagation zone of fermentation process
JPH0920727A (en) Distillation and separation of dimethyl carbonate
CN210495269U (en) Toluene liquid-phase air oxidation process decomposition desalting liquid light-weight removal device
CA1127984A (en) Method for the recovery of a volatile compound by fermentation of a carbohydrate material