JPH01147293A - Heat exchange part for fine tube heat transfer device - Google Patents

Heat exchange part for fine tube heat transfer device

Info

Publication number
JPH01147293A
JPH01147293A JP30442387A JP30442387A JPH01147293A JP H01147293 A JPH01147293 A JP H01147293A JP 30442387 A JP30442387 A JP 30442387A JP 30442387 A JP30442387 A JP 30442387A JP H01147293 A JPH01147293 A JP H01147293A
Authority
JP
Japan
Prior art keywords
tube
metal
heat
metal tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30442387A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP30442387A priority Critical patent/JPH01147293A/en
Publication of JPH01147293A publication Critical patent/JPH01147293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve performance of a closed loop type fine tube heat transfer device and to enable increase of an application filed, by a method wherein a fine tube container is adhered to the inner wall of a metallic pipe with an annular fin or a fin is wound around or inserted in a pile body in a manner to be adhered to the pipe body between the fins of an annular fin group. CONSTITUTION:In a first means, at least one or more sets of outbound passage and inbound passage fine tube containers 1-1 and 1-2 are inserted in a manner to be adhered axially of a metallic pipe to the inner wall surface of a metallic pipe 2 with fine with the aid of a metallic pipe 3. In a second means, the fine tube containers 1-1 and 1-2 are wound around the outer periphery of the pipe at a gap between the fins of the metallic pipe 2 with fins. When the container is U-turned by half-round winding at the circulation direction conversion part of a heat conveying fluid, a winding angle is not limited to 180 deg.. In a third means, the fine tube containers 1-1 and 1-2 are both inserted in a gap between the fins, and this means is used when it is desired that in the circulating flow of the heat conveying fluid an increase in a pressure loss due to winding is prevented from occurring.

Description

【発明の詳細な説明】 イ0発明の目的 [産業上の利用分野] 本発明は閉ループ型の密閉細管コンテナ内を循環する熱
搬送流体により、受放熱部間において熱量を輸送する熱
伝達装置の熱交換部(受熱部又は放熱部)の構造に関す
る。又本発明はフィンチューブ及びベローズチューブに
代表される環状フィン付金属管の新規な適用形態に関す
るものであり、細管コンテナと各種形状の環状フィン付
金属管の組合わせにより、新規な各種の熱交換部を提供
する。
DETAILED DESCRIPTION OF THE INVENTION A.Objective of the Invention [Field of Industrial Application] The present invention relates to a heat transfer device that transports heat between heat receiving and dissipating parts using a heat transfer fluid circulating in a closed-loop sealed thin tube container. It relates to the structure of a heat exchange section (heat receiving section or heat radiating section). The present invention also relates to a new form of application of annular finned metal tubes such as finned tubes and bellows tubes, and the combination of thin tube containers and annular finned metal tubes of various shapes allows for various new types of heat exchange. section.

[従来の技術] 閉ループ型の密閉細管コンテナ内を循環する熱搬送流体
により受放熱部間において熱量を輸送する熱伝達装置の
例として、受放熱部間の温度差により熱搬送流体が自ら
循環する例としては発明者が出願中の特願昭62−15
5747号及び特願昭62−266265号がある。外
部エネルギーを消費して熱搬送流体を循環せしめる熱伝
達装置としては原子炉冷却管路や分離型ヒートパイプ(
閉ループ型ヒートパイプの一種)等がある。本発明はそ
れ等の何れとも限定することな(、外径数鶴の細管から
なる閉ループ型細管コンテナにより構成される熱伝達装
置の受放熱部の総てに適用される。この様な細管コンテ
ナは直径が細いので可撓性に冨み又閉ループ型であるか
ら端末部が無いので独特の受放熱部が必要となる。
[Prior Art] As an example of a heat transfer device that transports heat between heat receiving and radiating parts using a heat transporting fluid that circulates in a closed-loop sealed thin tube container, the heat transporting fluid circulates by itself due to the temperature difference between the heat receiving and radiating parts. For example, the patent application filed by the inventor in 1986-15
No. 5747 and Japanese Patent Application No. 62-266265. Heat transfer devices that consume external energy and circulate heat transfer fluid include reactor cooling pipes and separate heat pipes (
(a type of closed-loop heat pipe). The present invention is not limited to any of them, but is applied to all heat receiving and dissipating parts of a heat transfer device constituted by a closed-loop type thin tube container made of thin tubes with an outer diameter of several tensile. Since the diameter is small, it is highly flexible, and since it is a closed loop type, there is no terminal part, so a unique heat receiving and dissipating part is required.

細管コンテナは熱媒流体の対流中における熱伝達率が極
めて大きいので、熱伝達装置の受放熱部としては細管群
の段列を形成してその熱伝達率を更に増大せしめて自然
対流、又は強制対流による受放熱部を構成することが多
い。又金属間熱伝導による受放熱部としては被熱交換体
と細管コンテナとの間に熱伝導性の良好な金属ブロック
を介して実施されることが多く、細管コンテナと金属ブ
ロックとの間の熱的結合は2枚の金属ブロック間に多数
の並列細管コンテナを加圧挟持して実施される。第12
図にはその例として平型電力半導体の冷却装置を示す。
Since a thin tube container has an extremely high heat transfer coefficient during convection of a heat medium fluid, it is used as a heat receiving and dissipating part of a heat transfer device by forming a row of thin tubes to further increase the heat transfer coefficient and using natural convection or forced convection. It often forms a heat receiving and dissipating section using convection. In addition, the heat receiving and dissipating part using metal-to-metal heat conduction is often implemented by interposing a metal block with good thermal conductivity between the heat exchange object and the thin tube container. The target connection is carried out by sandwiching a large number of parallel thin tube containers under pressure between two metal blocks. 12th
The figure shows a flat power semiconductor cooling device as an example.

蛇行ループ型細管コンテナ21における並列細管群は所
定の段列配置に集合されて強制対流風25の中に配置さ
れて放熱部21−Cが構成されてある。又受熱部21−
Hは並列細管群が受熱用金属ブロック22−1.22−
2の間に加圧挟持して構成されてあり、平型電力半導体
24の損失熱量は金属ブロックの金属間熱伝導により受
熱部21−Hに伝達される。挟持される細管コンテナの
間隔が細管直径に比較して大きい場合は各細管コンテナ
は図の如く金属ブロック22−L22−2の何れか又は
双方に設けられた条溝群23の中に挟持される。
A group of parallel thin tubes in the meandering loop type thin tube container 21 are assembled in a predetermined row arrangement and placed in the forced convection air 25 to form a heat radiation section 21-C. Also, the heat receiving part 21-
H is a heat receiving metal block 22-1.22- in which a group of parallel thin tubes are used.
The amount of heat lost in the flat power semiconductor 24 is transferred to the heat receiving part 21-H by intermetallic heat conduction of the metal block. When the interval between the thin tube containers to be held is large compared to the thin tube diameter, each thin tube container is held in the groove group 23 provided in one or both of the metal blocks 22-L22-2 as shown in the figure. .

細管コンテナ群が相互に密着して挟持される場合は熱損
失が小さいので条溝群23は省略することが出来る。
When the thin tube containers are held closely together, heat loss is small, so the groove group 23 can be omitted.

[発明が解決しようとする問題点] 従来技術による閉ループ型細管熱伝達装置の熱交換部は
上述の如き手段により通常の熱交換にはほぼ支障なく対
処出来る。然し大容量の熱交換の為には細管コンテナ群
の段列配列のみでは満足させることが不可能で更にフィ
ン群の装着が要望されることが多い。その様な場合、細
管コンテナは可撓性に富みフィン装着時の加圧力に耐え
ることが出来ない。又閉ループ型であるから第12図例
示の如く、熱搬送流体の往路及び復路の2本の細管コン
テナが常にU字曲管部を含んで組をなしており、フィン
群の装着はこの組毎に実施する必要がある。従って従来
のフィン群の構造では装着が不可能である。更に大きな
問題点としては細管コンテナは直径が小さく従ってフィ
ン効率の悪化を防ぐ為にはフィン外径を小さ(、その代
わり装着枚数を増加せしめる必要がある。これは経済性
から見て実用的でない。
[Problems to be Solved by the Invention] The heat exchange section of the closed-loop capillary heat transfer device according to the prior art can cope with ordinary heat exchange almost without any problems by the above-described means. However, for large-capacity heat exchange, it is impossible to satisfy the requirements with only the tiered arrangement of thin tube container groups, and the installation of fin groups is often required. In such a case, the thin tube container is highly flexible and cannot withstand the pressure applied when the fins are attached. In addition, since it is a closed loop type, as shown in Fig. 12, two thin tube containers for the outward and return routes of the heat transfer fluid always form a set including the U-shaped bent pipe part, and the fin group is attached to each set. It is necessary to carry out the Therefore, it is impossible to install the conventional fin group structure. An even bigger problem is that thin tube containers have a small diameter, so in order to prevent fin efficiency from deteriorating, it is necessary to reduce the outer diameter of the fins (instead, it is necessary to increase the number of fins installed. This is not practical from an economic point of view). .

又金属間の熱伝導による受放熱部の構造として第12図
の如き構造は単一の大容量の熱交換対象体には適してい
るが、対象とする受放熱部が小容量多数の複合体である
場合には金属ブロックを多数製作する必要が生じ不経済
である。又大型金属ブロックに多数の小容量半導体を搭
載して実施することも行なわれるが金属ブロックの重量
が大きくなり問題点となる。
In addition, as for the structure of the heat receiving and dissipating part using heat conduction between metals, the structure shown in Fig. 12 is suitable for a single large-capacity heat exchange object, but it is suitable for a composite body in which the target heat receiving and dissipating part has many small capacities. In this case, it is necessary to manufacture a large number of metal blocks, which is uneconomical. It is also possible to implement this method by mounting a large number of small-capacity semiconductors on a large metal block, but this increases the weight of the metal block, which poses a problem.

ロ6発明の構成 [問題点解決の為の手段] 本発明において上述問題点中の経済性改善の手段として
は大量安価に市販されているフィン付構造体であるフィ
ンチューブ及びベローズチューブに着目すると共に、そ
れ等について従来全く考慮されなかった新規な適用形態
により細管コンテナとの一体化を計かった。又フィン効
率の改善手段として複数細管コンテナによりフィン構造
体を共有する新規な構造を案出した。
B6 Structure of the Invention [Means for Solving the Problems] In the present invention, as a means for improving economical efficiency among the above-mentioned problems, we focus on fin tubes and bellows tubes, which are finned structures that are commercially available in large quantities and at low prices. At the same time, we attempted to integrate them with the thin tube container using a new form of application that had not been considered at all in the past. In addition, as a means to improve fin efficiency, we devised a new structure in which a fin structure is shared by multiple thin tube containers.

第1図、第2図及び第3図に本発明に係る熱伝達装置の
熱交換部の基本構造を例示する。各図共(イ)図は平面
図(ロ)図はその側面図である。
FIG. 1, FIG. 2, and FIG. 3 illustrate the basic structure of the heat exchange section of the heat transfer device according to the present invention. In each figure, (a) is a plan view, and (b) is a side view.

各図共1−1はU字状曲管部b−1で熱搬送流体が循環
方向を転換して形成する往路及び復路の1組2木の細管
コンテナである。1−2は同様な往路及び復路の他の1
&112本の細管コンテナである。
Reference numeral 1-1 in each figure represents a set of two thin tube containers each having an outward path and a return path formed by changing the circulation direction of a heat transfer fluid at a U-shaped bent tube portion b-1. 1-2 is another 1 of similar outbound and return trips
&112 thin tube containers.

又各図共2は環状フィン付金属管であり、該金属管とし
ては金属管に環状フィンが多数打込まれたフィン付チュ
ーブ、転造成形によりスパイラルフィンが一体形成され
たスパイラルフィンチューブや薄肉金属管に溝付は加工
を施したベローズチューブ又はコルゲートチューブ等が
ある。本発明に係る熱交換部の構造は上述の如き細管コ
ンテナとフィン付金属管を所定の手段により結合一体化
せしめた構造であり、その所定の結合手段としては3手
段があり、第1図、第2図及び第3図は夫々の結合手段
を示す。第1図はその第1手段の基本構造であり、第1
図の横断面図(イ)及び縦断面図(ロ)においてはフィ
ン付金属管2の内壁面に該金属管の軸方向に少なくも1
組以上の往路及び復路の細管コンテナ1−1.12が密
着して挿入されてある。図において3は細管コンテナ1
−1゜1−2を金属管内壁に加圧密着せしめる為の金属
管(又はスプリング)である。挿入される細管コンテナ
の組数はフィン付金属管の内径によって定まり、組数が
多い程フィン効率は改善される。
In each figure, 2 is a metal tube with an annular fin, and examples of the metal tube include a finned tube in which a large number of annular fins are driven into a metal tube, a spiral fin tube in which spiral fins are integrally formed by rolling, and a thin-walled metal tube. Grooved metal tubes include processed bellows tubes and corrugated tubes. The structure of the heat exchange section according to the present invention is such that the thin tube container and the finned metal tube as described above are integrated by a predetermined means, and there are three predetermined coupling means. Figures 2 and 3 show the respective coupling means. Figure 1 shows the basic structure of the first means.
In the cross-sectional view (a) and longitudinal cross-sectional view (b) of the figure, at least one
More than one pair of outgoing and incoming thin tube containers 1-1.12 are inserted in close contact with each other. In the figure, 3 is the thin tube container 1
-1°1-2 is a metal tube (or spring) for pressurizing and tightly contacting the inner wall of the metal tube. The number of sets of thin tube containers to be inserted is determined by the inner diameter of the finned metal tube, and the greater the number of sets, the better the fin efficiency will be.

第2図は第2手段であって細管コンテナ1−1゜1−2
はフィン付金属管2のフィン間隙において、管外周に巻
回されてある。図においては熱搬送流体の循環方向転換
部において半周の巻付けによりUターンさせる場合を示
しであるが巻付角度は180度に限定されない。又フィ
ンがスパイラルフィンである場合には何ターンでも巻付
けることが可能であり、如何なる部分においても巻付け
が可能となる。図において細管コンテナは2組、フイン
枚数は6枚であるがそれ等の組数及び枚数は特に限定は
しないが1本のフィン付金属管2には適切なフィン効率
が得られる間隔で更に多数の組が配設されても良い。又
細管コンテナの外径とフィン間隔は一致するか、細管が
強固に挟持される嵌合状態が望ましい。これ等の接触熱
抵抗を更に小さくする為、又弛み止めの為には細管コン
テナ1−1.1−2とフィン付金属管2の間ははんだ接
着が併用される。第3図における(イ)図及び(ロ)図
は第3手段を示し細管コンテナ1−1゜1−2は何れも
フィン間隙内に挿入されてあるのみである。この手段は
巻回により熱搬送流体の循環流に圧力損失が増加するこ
とを避けたい場合に使用される。この場合細管コンテナ
とフィンとの接触長さが短いので、両者の挿入状態は圧
入状態であることが望ましく、細管コンテナの断面形状
が楕円又は平角形状であれば更に接触熱抵抗を減少せし
めることが出来る。又更に接触熱抵抗を減少せしめる場
合、及び弛み止めが必要な場合ははんだ接着が併用され
る。
Figure 2 shows the second means, which is a thin tube container 1-1゜1-2.
is wound around the outer periphery of the finned metal tube 2 between the fins. In the figure, a case is shown in which a U-turn is made by winding a half circumference at the circulation direction changing part of the heat transfer fluid, but the winding angle is not limited to 180 degrees. Further, when the fin is a spiral fin, it is possible to wrap it in any number of turns, and it is possible to wrap it in any part. In the figure, the thin tube container has two sets and the number of fins is six, but the number of sets and number of fins is not particularly limited, but one finned metal tube 2 has more fins at intervals that can obtain appropriate fin efficiency. A set of may be arranged. Further, it is desirable that the outer diameter of the capillary container and the fin spacing match, or that the capillary be tightly clamped in a fitted state. In order to further reduce the contact thermal resistance and to prevent loosening, solder bonding is used between the thin tube container 1-1, 1-2 and the finned metal tube 2. Figures (a) and (b) in FIG. 3 show the third means, and the thin tube containers 1-1 and 1-2 are only inserted into the fin gaps. This means is used when it is desired to avoid an increase in pressure loss in the circulating flow of the heat transfer fluid due to the winding. In this case, since the contact length between the thin tube container and the fins is short, it is desirable that the two be inserted in a press-fit state.If the cross-sectional shape of the thin tube container is elliptical or rectangular, the contact thermal resistance can be further reduced. I can do it. Furthermore, when the contact thermal resistance is to be reduced and when it is necessary to prevent loosening, solder bonding is used in combination.

[作 用] 上記の如きフィン付金属管と細管コンテナとが結合一体
化された細管熱伝達装置は次の如き作用がある。
[Function] The capillary heat transfer device in which the finned metal tube and the capillary container as described above are combined and integrated has the following functions.

(al  フィン群の装着が極めて容易で迅速に実施す
ることが出来る。
(al) Attaching the fin group is extremely easy and can be done quickly.

(bl  フィン付金属管の外表面、内壁面の総てを受
放熱面として自在に選択出来るから広い熱交換面積が得
られる。
(bl) Since the outer surface and inner wall surface of the finned metal tube can be freely selected as heat receiving and radiating surfaces, a wide heat exchange area can be obtained.

FC)  フィン付金属管と結合せしめる細管コンテナ
の本数の加減により適切なフィン効率が得られ、効果的
な熱伝達装置が構成出来る。
FC) Appropriate fin efficiency can be obtained by adjusting the number of thin tube containers combined with the finned metal tube, and an effective heat transfer device can be constructed.

(dl  多数回の蛇行ループ型細管コンテナを形成し
、大容量の熱伝達装置を構成する場合、多数本の細管コ
ンテナが錯綜し、乱雑になり勝ちな受放熱部が整理整頓
される。
(dl) When constructing a large-capacity heat transfer device by forming a large number of meandering loop-type thin tube containers, the heat receiving and discharging section, which tends to become cluttered due to the tangle of many thin tube containers, is organized.

(e)  フィン付金属管は各種構造のものが大量安価
に製造されており、市場で容易に人手出来るから、安価
な熱交換部が構成出来る。
(e) Metal tubes with fins are manufactured in large quantities at low cost in various structures, and can be easily made by hand in the market, making it possible to construct an inexpensive heat exchange section.

上述の如き各作用により従来技術による細管コンテナの
大容量熱交換部形成上の問題点は総て解決される。
Due to the above-mentioned functions, all the problems encountered in forming a large capacity heat exchange section of a thin tube container according to the prior art are solved.

[実施例] 第1実施例 第4凹所面図に例示の第1実施例はフィン付金属管と細
管コンテナとの結合手段として前記基本構造における第
1手段が適用された例である。該実施例においては3組
の細管コンテナ1−1゜1−2.13を加圧密着せしめ
る金属管3としては細管コンテナを正大保持することの
可能な条溝を有する厚肉管が用いられである。該金属管
3は細管コンテナ11,12.1−3をフィン付金属管
の内壁に加圧密着せしめると共に自身も内壁面に圧入さ
れて密着されてある。図の例では内壁側にも条溝が設け
られであるからフィン付金属管2、細管コンテナ1−1
.IT2,1−3、加圧用金属管3は総て相互に熱的に
結合一体化されてある。条溝は加圧用金属管3又はフィ
ン付金属管2の内壁のみに設けられる場合もある。その
様な場合に生じる間隙には熱伝導性充填材が充填されて
接触熱抵抗増加を防ぐ。加圧用金属管3は必ずしも管で
ある必要はなく金属棒であっても良い。この様な実施例
においては基本構造の場合より、細管コンテナと管内壁
の間の接触熱抵抗がはるかに小さく、熱交換部の効率を
向上せしめる。
[Example] The first example illustrated in the fourth recess plan view of the first example is an example in which the first means in the basic structure is applied as a means for connecting the finned metal tube and the thin tube container. In this embodiment, a thick-walled pipe having grooves capable of holding the thin tube containers upright is used as the metal tube 3 for tightly pressurizing and pressurizing the three sets of thin tube containers 1-1, 1-2, and 13. be. The metal tube 3 has the thin tube containers 11, 12.1-3 brought into close contact with the inner wall of the finned metal tube under pressure, and is also press-fitted into the inner wall surface. In the example shown in the figure, grooves are also provided on the inner wall side, so the finned metal tube 2 and the thin tube container 1-1
.. The ITs 2, 1-3 and the pressurizing metal tube 3 are all thermally coupled and integrated. The grooves may be provided only on the inner wall of the pressurizing metal tube 3 or the finned metal tube 2. The gaps created in such cases are filled with a thermally conductive filler to prevent an increase in contact thermal resistance. The pressurizing metal tube 3 does not necessarily have to be a tube and may be a metal rod. In such an embodiment, the contact thermal resistance between the capillary container and the tube inner wall is much lower than in the basic structure, improving the efficiency of the heat exchange section.

第2実施例 第5凹所面に例示の第2実施例も第1実施例と同様に第
1の結合手段を適用する実施例である。
Second Embodiment The second embodiment shown as an example is also an embodiment in which the first coupling means is applied to the fifth recess surface in the same way as the first embodiment.

該実施例においては加圧用金属管(又は丸棒)の条溝を
省略して構造を簡略化せしめである。加圧用金属管3と
フィン付金属管2の内壁と細管コンテナ1−1.1−2
.1−3の3要素間に出来る間隙には細管コンテナと近
似的な外径の金属線(又は金属細管)群が加圧挿入され
てフィン付金属管2の内壁と加圧用金属管と接触せしめ
られである。なお残置される空隙には熱伝導性充填材5
が充填される。第2実施例はフィン付金属管と細管コン
テナ間の接触熱抵抗は第1実施例には若干劣るが基本構
造例よりは改善される。該実施例は第1実施例よりは簡
易に実施することが出来る。
In this embodiment, the grooves of the pressurizing metal tube (or round bar) are omitted to simplify the structure. Inner walls of pressurizing metal tube 3 and finned metal tube 2 and thin tube container 1-1.1-2
.. A group of metal wires (or metal thin tubes) having an outer diameter approximate to that of the thin tube container is inserted under pressure into the gap created between the three elements 1-3, and brought into contact with the inner wall of the finned metal tube 2 and the pressurizing metal tube. It is rare. Note that the remaining voids are filled with thermally conductive filler 5.
is filled. In the second embodiment, the contact thermal resistance between the finned metal tube and the thin tube container is slightly inferior to the first embodiment, but it is improved compared to the basic structure example. This embodiment can be implemented more easily than the first embodiment.

第3実施例 第1実施例及び第2実施例の熱交換部を熱媒流体の強制
対流中に配置して熱交換を実施する場合、環状フィン付
金属管の各フィン間隙において該金属管の外周壁面から
該金属管内に圧入されてある内部金属管の内壁面に至る
迄、細管コンテナを避けた任意の位置に少なくも1個の
貫通孔を設けて実施することにより熱交換効率を増加さ
せることが出来る。この様な第3実施例における貫通孔
の作用を第6図の部分拡大断面図に示す。図において環
状フィン付金属管2の各フィン間隙において加圧用金属
管3の内壁面に達する貫通孔6が設けられてあり、該貫
通孔6は細管コンテナ1−1を避けて設けられである。
Third Embodiment When heat exchange is carried out by arranging the heat exchange parts of the first and second embodiments in the forced convection of the heat transfer fluid, the metal tube is heated at each fin gap of the annular finned metal tube. Heat exchange efficiency is increased by providing at least one through hole at an arbitrary position, avoiding the thin tube container, from the outer peripheral wall surface to the inner wall surface of the inner metal tube press-fitted into the metal tube. I can do it. The effect of the through hole in the third embodiment is shown in the partially enlarged sectional view of FIG. In the figure, a through hole 6 reaching the inner wall surface of the pressurizing metal tube 3 is provided in each fin gap of the annular finned metal tube 2, and the through hole 6 is provided so as to avoid the thin tube container 1-1.

矢印で示す如くフィン間隙を通過する強制対流により吸
引されて熱媒流体は加圧用金属管内部にも貫流する様に
なり、熱交換部は外部フィン群だけでなく、管内外のあ
らゆる表面積が伝熱面として作用する。又貫通孔6から
吸出される熱媒流体の流れは管外の対流のみでは流れの
悪いフィン根本附近の流れを良好にすると共にフィン間
隙内における乱流の発生を助けて熱交換効率を改善する
As shown by the arrow, the heat transfer fluid is sucked by the forced convection passing through the fin gaps and flows inside the pressurizing metal tube. Acts as a thermal surface. In addition, the flow of the heat medium fluid sucked out from the through holes 6 improves the flow near the base of the fin, where the flow is poor only by convection outside the tube, and also helps generate turbulent flow within the fin gap, thereby improving heat exchange efficiency. .

第4実施例 環状フィン付金属管と細管コンテナの結合手段として基
本構造の第2手段である巻付けを実施する場合第2図に
例示の如く通常のフィン構造においては巻付角度は27
0度位が限界となる。従ってそれ以上の巻付角度を与え
て熱交換能力の増大を計かる場合は環状フィンをスパイ
ラルフィンとすることにより巻付角度を自在に選択する
ことが可能になる。第7図はその様な第4実施例を示す
側面図である。図においては細管コンテナ1−1は36
0度巻付けの後直進する様巻回されてあり、細管コンテ
ナ1−2は540度巻付けの後復路となって元の方向に
戻される様巻回されてある。巻付角度の増加は熱伝達能
力を増大させる反面熱搬送流体のコンテナ内における圧
力損失を増加せしめ、受放熱部間の温度差を増大せしめ
るので巻付角度は受放熱部間で許容される温度差を勘案
して決定する必要がある。スパイラルフィンチューブ2
−2を使用して巻回する場合往路復路1組の細管コンテ
ナを同一の環状フィン付金属管と結合せしめる場合は巻
付は部を上下にずらせて実施するか、細管コンテナ1組
毎に2本の環状フィン付金属管を使用して実施する。
Fourth Embodiment When the second means of the basic structure is implemented as a means of connecting the annular finned metal tube and the thin tube container, in a normal fin structure, the winding angle is 27.
The limit is around 0 degrees. Therefore, when increasing the heat exchange capacity by providing a wrapping angle larger than that, it becomes possible to freely select the wrapping angle by using spiral fins as the annular fins. FIG. 7 is a side view showing such a fourth embodiment. In the figure, the capillary container 1-1 is 36
The thin tube container 1-2 is wound so that it moves straight after 0 degree winding, and the thin tube container 1-2 is wound so that it goes back to its original direction after 540 degree winding. An increase in the wrapping angle increases the heat transfer ability, but at the same time increases the pressure loss within the container of the heat transfer fluid, increasing the temperature difference between the heat receiving and dissipating parts. It is necessary to take the difference into consideration when making a decision. spiral fin tube 2
-2 When winding using 2. When connecting one set of thin tube containers to the same annular finned metal tube, the winding should be carried out by shifting the parts up and down, or two tubes should be wrapped for each set of thin tube containers. It is carried out using a circular finned metal tube.

第5実施例 第8図は第5実施例を示す平面略図である。該実施例に
おける細管コンテナは多数回ターンの蛇行ループ型に形
成されてあり、多数の受熱部1−Hの群と多数の放熱部
i−cの群を設けて構成されてある。図においては図面
簡略化の為細管コンテナは1本の線で示しである。加熱
手段Hは発熱板であって細管コンテナの受熱部1−Hの
群を並列に挟持して加熱する。放熱手段Cは図において
は冷媒流体の強制対流である。加熱手段Hから引出され
た細管コンテナ群は放熱部1−Cの両端部において環状
フィン付金属管2−1のフィン間隙に挿入又は巻回され
て、熱搬送流体の往路及び復路コンテナ群により、2列
多段の細管群に整列配置されて本発明に係る熱伝達装置
の放熱部を構成している。この様な整列手段としては他
の如何なる手段でも実施出来るが、本実施例の如く環状
フィン付金属管と細管コンテナ群を伝熱的に結合せしめ
て実施する場合は放熱面積の拡大を併せて実施すること
が出来る。更に放熱面積を拡大せしめたい場合は環状フ
ィン付金属管を増加せしめればよい。第8図において冷
媒流体を加熱用熱媒流体とし、細管コンテナ群の段列部
を受熱部として図における加熱手段部を低温部として実
施することも出来る。
Fifth Embodiment FIG. 8 is a schematic plan view showing the fifth embodiment. The thin tube container in this embodiment is formed into a meandering loop shape with many turns, and is constructed by providing a group of many heat receiving parts 1-H and a number of groups of heat radiating parts i-c. In the figure, the thin tube container is shown by a single line to simplify the drawing. The heating means H is a heat generating plate that heats the group of heat receiving parts 1-H of the thin tube container by sandwiching them in parallel. The heat dissipation means C in the figure is forced convection of refrigerant fluid. The thin tube containers pulled out from the heating means H are inserted or wound around the fin gaps of the annular finned metal tube 2-1 at both ends of the heat dissipation section 1-C, and the outbound and return container groups of the heat transfer fluid The thin tubes are arranged in two rows and in multiple stages to form a heat radiating section of the heat transfer device according to the present invention. Although any other means can be used as such alignment means, when the annular finned metal tube and the thin tube container group are thermally connected as in this example, the heat dissipation area is also expanded. You can. If it is desired to further expand the heat dissipation area, the number of annular finned metal tubes may be increased. In FIG. 8, it is also possible to use the refrigerant fluid as a heating heat medium fluid, use the rows of thin tube containers as the heat receiving section, and use the heating means section in the figure as the low temperature section.

第6実施例 第9図の一部断面図に例示の第6実施例においては環状
フィン付金属管2の管内には矢印で示す熱媒流体が貫流
しており、環状フィン付金属管2と細管コンテナ1−C
(又は1−H)の群との結合手段としてはフィン間隙内
においてフィン又は金属管表面に細管コンテナ1−C(
又は1−H)が密接して巻回又は挿入されてある構造を
結合手段としている細管伝熱装置の熱交換部である。該
熱交換部は熱媒流体が冷却用低温流体である場合は冷却
装置となり、加熱用高温流体である場合は加熱装置とな
る。この様な熱交換部は熱媒流体が液体であり、その流
速が早い場合は特に効率が良好である。図において(イ
)図は環状フィン付金属管2としてはフィンチューブ2
−2が用いられた例を示してあり、(ロ)図はベローズ
チューブ2−3が用いられた例を示しである。フィンチ
ューブの場合はフィンピッチが小さく形成されてあるか
ら多数の細管を結合して大容量の熱交換部を形成するの
に適している。ベローズの場合はピンチは大きいが金属
管体が薄肉であり、細管コンテナ1−C(又は1−H)
と熱媒流体を近接せしめることが出来るので熱応答の迅
速な熱交換部を形成することが出来る。
Sixth Embodiment In the sixth embodiment illustrated in the partial sectional view of FIG. 9, a heat transfer fluid shown by an arrow flows through the annular finned metal tube 2, Thin tube container 1-C
(or 1-H) can be attached to the fin or metal tube surface within the fin gap.
Or 1-H) is a heat exchange part of a capillary heat transfer device in which a structure in which the heat exchanger is closely wound or inserted is used as a coupling means. The heat exchange section serves as a cooling device when the heat medium fluid is a low temperature fluid for cooling, and serves as a heating device when the heat medium fluid is a high temperature fluid for heating. In such a heat exchange section, the efficiency is particularly good when the heat transfer fluid is a liquid and the flow rate thereof is high. In the figure, (A) shows a finned tube 2 as an annular finned metal tube 2.
2 shows an example in which a bellows tube 2-2 is used, and (b) shows an example in which a bellows tube 2-3 is used. In the case of fin tubes, the fin pitch is formed to be small, so it is suitable for forming a large-capacity heat exchange section by combining a large number of thin tubes. In the case of bellows, the pinch is large, but the metal tube body is thin, and the thin tube container 1-C (or 1-H)
Since it is possible to bring the heat transfer fluid and the heat transfer fluid close to each other, it is possible to form a heat exchange section with a rapid thermal response.

第7実施例 第7実施例は第10図の平面図に示した如く多数の短管
からなるリング状のフィン付金属管2−’Rの群と複数
組の往路復路細管コンテナとの結合により構成された熱
媒流体の強制対流熱伝達による熱交換部である。リング
状金属管2−Hのフィン数は多くとも10枚以下であり
、これと結合される細管コンテナ1−C(又は1−H)
は往復コンテナの多くとも3組以下である。この枚数及
び組数はリング状金属管の長さ30顛〜40鶴位より長
くならないことを意味しており、本熱交換部においては
強制対流の伝熱面として環状フィン群表面及び金属管内
外壁面の全表面を使用するものであり、金属管端縁によ
る乱流の発生及び管内の熱媒流体の貫流の為にはリング
状金属管が短管であることが望ましい。図において10
−1.10−2は細管コンテナ1−C(又は1−H)の
群の各コンテナの方向転換部を支持している支柱である
Seventh Embodiment As shown in the plan view of FIG. 10, the seventh embodiment combines a group of ring-shaped finned metal tubes 2-'R consisting of a large number of short tubes with a plurality of sets of forward and return narrow tube containers. This is a heat exchange section using forced convection heat transfer of a heating medium fluid. The number of fins of the ring-shaped metal tube 2-H is at most 10 or less, and the thin tube container 1-C (or 1-H) to be coupled thereto
There are at most three sets or less of round-trip containers. This number and number of sets means that the length of the ring-shaped metal tube is not longer than about 30 to 40 pieces, and in the main heat exchange section, the surface of the ring-shaped fin group and the inside and outside of the metal tube are used as the heat transfer surface for forced convection. The entire wall surface is used, and the ring-shaped metal tube is preferably a short tube in order to generate turbulence due to the edge of the metal tube and to allow the heat transfer fluid to flow through the tube. 10 in the figure
-1.10-2 is a support supporting the direction change portion of each container in the group of thin tube containers 1-C (or 1-H).

該支柱の代わりにフィン付金属管の長尺管を使用する場
合もある。この様な熱交換部は他の構造のものに比較し
て大きな伝熱面積を与えることが出来る。
A long finned metal tube may be used instead of the strut. Such a heat exchange section can provide a large heat transfer area compared to those with other structures.

第8実施例 第7実施例においてリング状金属管の各フィン間隙にお
いて該金属管の管壁を貫通し且つ細管コンテナを避けた
任意の位置に少なくも1個の貫通孔が設けられである場
合はリング状金属管内における熱媒流体の貫流を容易に
し、フィン間隙内の熱媒流体の流れを容易にし、又それ
等の間における乱流の発生を助長し、熱交換部の熱交換
効率を改善する。該第8実施例は特に図示しないが、貫
通孔の作用は第6凹所面図における貫通孔6の作用と全
く同様であり、熱媒流体は矢印の如く流れて伝熱面積を
拡大せしめ、又乱流の発生を助長する。
Eighth Embodiment In the seventh embodiment, at least one through hole is provided in each fin gap of the ring-shaped metal tube at an arbitrary position that penetrates the tube wall of the metal tube and avoids the thin tube container. facilitates the flow of the heat transfer fluid in the ring-shaped metal tube, facilitates the flow of the heat transfer fluid in the fin gaps, and promotes the generation of turbulence between them, thereby increasing the heat exchange efficiency of the heat exchange section. Improve. Although the eighth embodiment is not particularly illustrated, the effect of the through hole is exactly the same as the effect of the through hole 6 in the plan view of the sixth recess, and the heat transfer fluid flows as shown by the arrow to expand the heat transfer area. It also encourages the generation of turbulence.

第9実施例 第11図の一部断面の側面図に例示の第9実施例は金属
間熱伝導により熱量の授受が行なわれる構造の本発明に
係る熱交換部である。1−1及び1−2は夫々に往路復
路の細管コンテナの組であって、共に環状フィン付リン
グ状金属管2−Rの群と熱的に結合されてある。各リン
グ状金属管2−Rの管内には断面図部分の如く熱伝導性
の良好な金属からなる金属栓体7が圧入されてある。
Ninth Embodiment The ninth embodiment illustrated in the partial cross-sectional side view of FIG. 11 is a heat exchange section according to the present invention having a structure in which heat is transferred by intermetallic heat conduction. Reference numerals 1-1 and 1-2 are sets of thin tube containers for the forward and return trips, respectively, and both are thermally coupled to a group of annular finned ring-shaped metal tubes 2-R. As shown in the cross-sectional view, a metal stopper 7 made of a metal with good thermal conductivity is press-fitted into the inside of each ring-shaped metal tube 2-R.

リング状金属管の内壁と金属栓体との圧接状態は熱抵抗
値が零に近い位に密接されてあることが望ましい。金属
栓体7の1端面ば受放熱平面7−1として形成されてあ
り、被熱交換体と密着せしめて熱量の授受を行なわしめ
るに便な形状の平滑面に形成されてある。上記の如き熱
交換部は金属栓体7を熱交換媒体として如何なる被熱交
換体とも金属間熱伝導による熱交換を実施することが出
来る。特にリング状金属管2−Rの群が挿入出来る範囲
内において狭隘な間隙内に配設して熱量を授受する場合
に便利である。第11図においては機器内におけるプリ
ント回路基板9の群における基板間の狭隘な間隙におい
て、基板に搭載されてある発熱体(図においては半導体
素子パッケージ8)の群から熱量を吸収し、機器内の温
度上昇を防止する場合の適用例を示しである。金属栓体
7の受放熱平面7−1は半導体素子パッケージ8の放熱
平面と熱伝導性接着材による接着か、低温ろう接法によ
る接着により、熱的に接続されてある。第11図に図示
されていない細管コンテナの組1−1゜1−2の他の側
は放熱型の熱交換部に形成されてあって、半導体素子パ
ッケージの熱量は細管コンナナ1−1.1−2内を熱搬
送流体により輸送され、放熱型熱交換部から機器外に放
出される。
It is desirable that the inner wall of the ring-shaped metal tube and the metal stopper be in close contact with each other so that the thermal resistance value is close to zero. One end surface of the metal stopper 7 is formed as a heat receiving/dissipating plane 7-1, and is formed into a smooth surface with a shape convenient for bringing it into close contact with a heat exchanged body to transfer heat. The heat exchange section as described above can exchange heat with any object to be heat exchanged by metal-to-metal heat conduction using the metal stopper 7 as a heat exchange medium. This is particularly convenient when the ring-shaped metal tubes 2-R are disposed in a narrow gap within the range into which the group can be inserted to transfer heat. In FIG. 11, heat is absorbed from the group of heating elements (semiconductor element packages 8 in the figure) mounted on the boards in the narrow gaps between the boards in the group of printed circuit boards 9 in the device, and the heat is absorbed inside the device. This figure shows an example of application in the case of preventing a temperature rise. The heat receiving and dissipating plane 7-1 of the metal stopper 7 is thermally connected to the heat dissipating plane of the semiconductor element package 8 by adhesion using a thermally conductive adhesive or by adhesion using a low temperature brazing method. The other side of the capillary container set 1-1, 1-2, which is not shown in FIG. -2, and is transported by a heat transfer fluid and discharged from the heat radiation type heat exchange section to the outside of the device.

第10実施例 第9実施例において機器内の構造上の金属栓体7の受放
熱平面7−1と被熱交換体との接着が困難な場合がある
。この様な場合は金属栓体7とリング状金属管1−Hの
内壁との間を着脱自在の滑合状態に形成し、金属栓体7
を予しめ被熱交換体に接着しておき、熱交換部のリング
状金属管2−Rを最後に挿着する構造に構成されてあっ
ても良い。
Tenth Embodiment In the ninth embodiment, it may be difficult to adhere the heat receiving and dissipating plane 7-1 of the metal plug 7 inside the device to the heat exchange object due to the structure thereof. In such a case, the metal stopper 7 and the inner wall of the ring-shaped metal tube 1-H are formed in a removably slidable state, and the metal stopper 7 is
The structure may be such that the ring-shaped metal tube 2-R of the heat exchange section is inserted and attached last after being adhered to the heat exchange object in advance.

この様に構成する場合には金属栓体7の受放熱平面7−
1は必ずしも平面である必要はなく、ねじ構造及びその
地被熱交換体と熱的に接続の可能な任意の構造にするこ
とが出来る。この様な第10実施例は挿着に便ではある
が第9実施例に比較してリング状金属管2−Rと金属栓
体7との間の接触熱抵抗値が増加する。
When configured in this way, the heat receiving and dissipating plane 7- of the metal plug 7
1 does not necessarily have to be a flat surface, and can have any structure capable of being thermally connected to a screw structure and its ground heat exchanger. Although such a tenth embodiment is convenient for insertion and attachment, the contact thermal resistance value between the ring-shaped metal tube 2-R and the metal plug body 7 is increased compared to the ninth embodiment.

ハ6発明の効果 本発明に係る細管熱伝達装置の熱交換部の構造は従来困
難且つ不経済と考えられて来た閉ループ型細管コンテナ
に対するフィン構造の形成を容易且つ安価に実施するこ
とを可能ならしめる。それにより閉ループ型細管ヒート
パイプに代表される閉ループ型細管熱伝達装置の性能を
改善せしめ、その適用分野を拡大せしめる。また本発明
に係る熱交換部の構造は各種フィンチューブ及びベロー
ズチューブに代表される環状フィン付金属管に新規な適
用範囲及び適用構造を提供すると共に新規なフィン構造
体を提供する。
C6 Effects of the Invention The structure of the heat exchange section of the capillary heat transfer device according to the present invention makes it possible to easily and inexpensively form a fin structure for a closed-loop capillary container, which has heretofore been considered difficult and uneconomical. Make it familiar. This improves the performance of closed-loop capillary heat transfer devices, such as closed-loop capillary heat pipes, and expands their field of application. Further, the structure of the heat exchange section according to the present invention provides a new range of application and structure for annular finned metal tubes such as various fin tubes and bellows tubes, and provides a new fin structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る細管熱伝達装置の熱交換部を構成
する為の細管コンテナと環状フィン付金属管の第1の結
合手段の基本構造を示す平面及び側面断面図。第2図は
第2の結合手段の基本構造を示す平面図及び側面図。第
3図は第3の結合手段の基本構造を示す平面図及び側面
図。第4図は第1実施例を示す横断面図。第5図は第2
実施例を示す横断面図。第6図は第3実施例を示す部分
拡大断面図。第7図は第4実施例を示す側面図。 第8図は第5実施例の平面略図。第9図は第6実施例を
示す断面図。第10図は第7実施例の平面図。第11図
は第9実施例の一部断面の側面図でプリント回路基板冷
却に対する応用例図。第12図はループ型細管ヒートパ
イプによる電力半導体の従来技術による冷却装置である
。 1・・・細管コンテナ、2・・・環状フィン付金属管、
3・・・加圧用金属管(又はスプリング)b・・・U字
状曲管部、4・・・金属線(又は金属細管)、5・・・
充填材、6・・・貫通孔、2−1・・・フィンチューブ
、2−2・・・スパイラルフィンチューブ、2−3・・
・ベローズチューブ、2−R・・・リング状金属管、7
・・・金属栓体、8・・・半導体素子パッケージ、9・
・・プリント回路基板、H・・・加熱手段、C・・・放
熱手段、IH・・・細管コンテナ受熱部、1−C・・・
細管コンテナ放熱部、21・・・蛇行ループ型、22・
・・受熱用金属ブロック、23・・・条溝群、24・・
・平型電力半導体、25・・・強制対流風。 第1図 (ロ) (イ)           (ロ) 第2図 第4図   第5図 第6@ 第7図 C池塾j緻 第10図
FIG. 1 is a plan view and a side sectional view showing the basic structure of a first coupling means of a thin tube container and an annular finned metal tube to constitute a heat exchange section of a thin tube heat transfer device according to the present invention. FIG. 2 is a plan view and a side view showing the basic structure of the second coupling means. FIG. 3 is a plan view and a side view showing the basic structure of the third coupling means. FIG. 4 is a cross-sectional view showing the first embodiment. Figure 5 is the second
FIG. 3 is a cross-sectional view showing an example. FIG. 6 is a partially enlarged sectional view showing the third embodiment. FIG. 7 is a side view showing the fourth embodiment. FIG. 8 is a schematic plan view of the fifth embodiment. FIG. 9 is a sectional view showing the sixth embodiment. FIG. 10 is a plan view of the seventh embodiment. FIG. 11 is a partially sectional side view of the ninth embodiment, showing an example of its application to cooling a printed circuit board. FIG. 12 shows a conventional cooling device for power semiconductors using a loop-type thin tube heat pipe. 1...Thin tube container, 2...Metal tube with annular fin,
3... Pressurizing metal tube (or spring) b... U-shaped curved tube part, 4... Metal wire (or metal thin tube), 5...
Filler, 6... Through hole, 2-1... Fin tube, 2-2... Spiral fin tube, 2-3...
・Bellows tube, 2-R...Ring-shaped metal tube, 7
... Metal stopper, 8... Semiconductor element package, 9.
...Printed circuit board, H...heating means, C...heat radiation means, IH...tubular container heat receiving part, 1-C...
Thin tube container heat dissipation part, 21...Meandering loop type, 22.
...Heat receiving metal block, 23...Groove group, 24...
・Flat power semiconductor, 25... Forced convection wind. Figure 1 (B) (B) (B) Figure 2 Figure 4 Figure 5 Figure 6 @ Figure 7 C Pond School Figure 10

Claims (11)

【特許請求の範囲】[Claims] (1)加熱手段又は冷却手段と被温度制御体との間を伝
熱的に連結し、両者間に熱量の授受をなさしめる閉ルー
プ型細管熱伝達装置の受熱部又は放熱部であって、熱伝
達装置の細管コンテナが環状フィン付金属管と所定の結
合手段により伝熱的に結合一体化されて、該金属管のフ
ィン群が実質的に細管コンテナの受放熱フィン群として
作用する様構成されてあり、上記所定の結合手段は細管
コンテナが環状フィン付金属管の内壁に密着せしめられ
てあるか、環状フィン群のフィン間隙においてフィンか
管体に密着して巻回又は挿入されてあるかの何れかであ
ることを特徴とする細管熱伝達装置の熱交換部。
(1) A heat receiving section or a heat dissipating section of a closed-loop capillary heat transfer device that thermally connects a heating means or cooling means and a temperature-controlled body to exchange heat between the two. The thin tube container of the transmission device is thermally connected and integrated with the annular finned metal tube by a predetermined coupling means, so that the fin group of the metal tube substantially acts as a heat receiving and dissipating fin group of the thin tube container. The predetermined coupling means is whether the thin tube container is brought into close contact with the inner wall of the annular finned metal tube, or whether the thin tube container is tightly wound or inserted around the fin or the tube body in the fin gap of a group of annular fins. A heat exchange section of a capillary heat transfer device characterized by being any one of the above.
(2)環状フィン付金属管の内壁面には熱搬送流体の往
路となる細管コンテナと、これと曲管部を共有して熱搬
送流体の復路となる細管コンテナの少なくも1組以上が
金属管内を貫通して並列に配設されてあり、同時に金属
管内には内壁に密接して他の金属管(又は金属丸棒)が
圧入されてあり、細管コンテナは金属管の内壁か、圧入
された金属管(又は金属丸棒)の外周の何れか一方に、
若しくは双方に形成されてある条溝中に加圧的に挟持さ
れてあり、それ等構成要素の総ては相互に密着されて伝
熱的に一体である様に構成されてあり、斯の如き構成を
所定の結合手段として構成されてあることを特徴とする
特許請求の範囲第1項に記載の細管熱伝達装置の熱交換
部。
(2) On the inner wall surface of the annular finned metal tube, there is at least one set of metal tubes, including a thin tube container that serves as the outgoing path for the heat transfer fluid, and a thin tube container that shares a curved tube section with this thin tube container that serves as the return path for the heat transfer fluid. They are arranged in parallel through the tube, and at the same time, another metal tube (or metal round bar) is press-fitted into the metal tube closely to the inner wall, and the thin tube container is inserted into the inner wall of the metal tube or is press-fitted into the metal tube. On either side of the outer periphery of the metal tube (or metal round bar),
Or, it is sandwiched under pressure in grooves formed on both sides, and all of these constituent elements are configured so as to be in close contact with each other and to be integrated in terms of heat transfer. The heat exchange section of the capillary heat transfer device according to claim 1, characterized in that the structure is configured as a predetermined coupling means.
(3)環状フィン付金属管の内壁面には熱搬送流体の往
路となる細管コンテナと、これと曲管部を共有して熱搬
送流体の復路となる細管コンテナの少なくも1組以上が
金属管内を貫通して並列に配設されてあり、同時に金属
管内には各細管コンテナに接して、それ等を金属管内壁
に加圧的に密着せしめながら挟持する他の金属管(又は
金属丸棒)が圧入されてあり、金属管と圧入金属管(又
は金属丸棒)と各細管コンテナの間に形成される間隙に
は細管コンテナと近似的な外径の多数の金属線(又は金
属細管)が充填されて細管コンテナと同様に金属管内壁
と圧入金属管(又は金属丸棒)外周とにより加圧的に挟
持されてあり、更に残された間隙は熱伝導性の良好な充
填材によって充填されて、それ等の構成部材の相互間は
伝熱的に結合一体化されて構成されてあり、斯くの如き
構成を所定の結合手段としていることを特徴とする特許
請求の範囲第1項に記載の細管熱伝達装置の熱交換部。
(3) On the inner wall surface of the annular finned metal tube, there is at least one set of metal tubes, including a thin tube container that serves as the outgoing path for the heat transfer fluid, and a thin tube container that shares a curved tube section with this thin tube container that serves as the return path for the heat transfer fluid. There are other metal tubes (or metal round rods) that penetrate through the tube and are arranged in parallel, and at the same time inside the metal tube are other metal tubes (or metal round rods) that are in contact with each thin tube container and hold them in close contact with the inner wall of the metal tube under pressure. ) is press-fitted, and in the gap formed between the metal tube and the press-fit metal tube (or metal round bar) and each capillary container, there are a number of metal wires (or metal capillaries) with an outer diameter approximate to that of the capillary container. is filled and held under pressure between the inner wall of the metal tube and the outer periphery of the press-fit metal tube (or metal round bar), similar to a thin tube container, and the remaining gap is filled with a filler material with good thermal conductivity. Claim 1 is characterized in that these constituent members are thermally conductively coupled and integrated, and such a structure is used as a predetermined coupling means. A heat exchange section of the capillary heat transfer device described.
(4)環状フィン付金属管の各フィン間隙において該金
属管の外周壁面から該金属管内に圧入された内部金属管
の内壁面に至る迄、細管コンテナを避けた任意の位置に
少なくも1個の貫通孔が設けられてあることを特徴とす
る特許請求の範囲第2項及び第3項に記載の細管熱伝達
装置の熱交換部。
(4) At least one at any position in each fin gap of the annular finned metal tube, from the outer peripheral wall of the metal tube to the inner wall of the internal metal tube press-fitted into the metal tube, avoiding the thin tube container. A heat exchange section of a capillary heat transfer device according to claims 2 and 3, characterized in that a through hole is provided therein.
(5)熱伝達装置の細管コンテナが環状フィン付金属管
の環状フィン群のフィン間隙においてフィンか管体に密
着して巻回されてあることを所定の結合手段とする熱交
換部において環状フィン付金属管はスパイラルフィンチ
ューブであるか、スパイラルベローズチューブであるか
の何れかであり、細管コンテナの巻回は少なくも360
度以上の巻付け角度を有する巻回であることを特徴とす
る特許請求の範囲第1項に記載の細管熱伝達装置の熱交
換部。
(5) An annular fin in a heat exchange part in which the predetermined coupling means is that the thin tube container of the heat transfer device is tightly wound around the fin or tube body in the fin gap of the annular fin group of the annular finned metal tube. The metal tube is either a spiral fin tube or a spiral bellows tube, and the capillary container has at least 360 turns.
2. The heat exchange section of the capillary heat transfer device according to claim 1, wherein the heat exchange section is wound with a winding angle of at least .degree.
(6)熱伝達装置の細管コンテナが環状フィン付金属管
の環状フィン群のフィン間隙においてフィンか管体に密
着して巻回又は挿入されてあることを所定の結合手段と
する熱交換部において、環状フィン付金属管は受熱部又
は放熱部において、多数の細管コンテナを所定の整列状
態に配列せしめる場合、被熱交換体の表面上に展開又は
整列せしめ加圧的接触による熱交換をなさしめる場合等
を例とする細管コンテナを整列せしめる場合の案内手段
を兼ねて上記所定の結合手段が実施されてあることを特
徴とする特許請求の範囲第1項に記載の細管熱伝達装置
の熱交換部。
(6) In a heat exchanger where the predetermined coupling means is that the thin tube container of the heat transfer device is tightly wound or inserted around the fins or the tube body in the fin gaps of the annular fin group of the annular finned metal tube. When a large number of thin tube containers are arranged in a predetermined alignment in the heat receiving section or the heat dissipating section, the annular finned metal tube is spread out or arranged on the surface of the object to be heat exchanged to perform heat exchange by pressurized contact. The heat exchanger of the capillary heat transfer device according to claim 1, wherein the predetermined coupling means is implemented also as a guide means when arranging the capillary containers, for example. Department.
(7)細管コンテナが環状フィン付金属管の環状フィン
群のフィン間隙内においてフィン又は金属管表面に密接
して、巻回又は挿入されてある構造を所定の結合手段と
すると共に環状フィン付金属管は冷却用又は加熱用の熱
媒流体が管内を貫流するフィンチューブ又はベローズチ
ューブであることを特徴とする特許請求の範囲第1項に
記載の細管熱伝達装置の熱交換部。
(7) A structure in which the thin tube container is wound or inserted in close contact with the fin or metal tube surface within the fin gap of the annular fin group of the annular finned metal tube, and the annular finned metal 2. The heat exchange section of a capillary heat transfer device according to claim 1, wherein the tube is a fin tube or a bellows tube through which a cooling or heating heat medium fluid flows.
(8)細管コンテナが環状フィン付金属管の環状フィン
群のフィン間隙内においてフィン又は金属管表面に密接
して、巻回又は挿入されてある構造を所定の結合手段と
し、環状フィン付金属管は多くとも10枚以下のフィン
群が形成されてある短管のリング状金属管であり、熱交
換部の構成としては、共通の曲管部において熱搬送流体
の流れ方向が転換せしめられる相互並列の往路細管コン
テナと復路細管コンテナの2本を1組の受熱部(又は放
熱部)とし、該受熱部(又は放熱部)の多くとも3組以
下と上記リング状金属管の複数個とが前記の所定の結合
手段により相互に結合一体化されて構成されてあり、熱
交換部における熱量の授受は熱媒流体の強制対流熱伝達
による熱交換により行なわれるものであることを特徴と
する特許請求の範囲第1項に記載の細管熱伝達装置の熱
交換部。
(8) A structure in which the thin tube container is wound or inserted closely to the fins or the metal tube surface within the fin gap of the group of annular fins of the annular finned metal tube is used as a predetermined coupling means, and the annular finned metal tube is a short ring-shaped metal tube in which a group of at most 10 fins is formed, and the heat exchange section is constructed of mutually parallel fins in which the flow direction of the heat transfer fluid is changed at a common curved tube section. The outgoing thin tube container and the returning thin tube container constitute one set of heat receiving parts (or heat radiating parts), and at most three or less sets of the heat receiving parts (or heat radiating parts) and the plurality of ring-shaped metal tubes are A patent claim characterized in that the heat exchange section is configured such that they are interconnected and integrated by a predetermined coupling means, and the transfer of heat amount in the heat exchange section is performed by heat exchange by forced convection heat transfer of a heating medium fluid. The heat exchange part of the capillary heat transfer device according to item 1.
(9)リング状金属管の各フィン間隙において該金属管
の管壁を貫通し且つ細管コンテナを避けた任意の位置に
少なくも1個の貫通孔が設けられてあることを特徴とす
る特許請求の範囲第8項に記載の細管熱伝達装置の熱交
換部。
(9) A patent claim characterized in that in each fin gap of a ring-shaped metal tube, at least one through hole is provided at an arbitrary position that penetrates the tube wall of the metal tube and avoids the thin tube container. The heat exchange part of the capillary heat transfer device according to item 8.
(10)細管コンテナが環状フィン付金属管の環状フィ
ン群のフィン間隙内においてフィン又は金属管表面に密
接し、巻回又は挿入されてある構造を所定の結合手段と
し、環状フィン付金属管は多くとも数枚以下のフィン群
が形成されてある短管のリング状金属管であり、該金属
管内には熱伝導性の良好な金属栓体が金属管内壁面との
接触熱抵抗が零に近い密着状態に圧入嵌合せしめられて
あり、該金属栓体の一部はリング状金属管の一端に露出
され被熱交換体と所定の手段により熱的に接続されてあ
り、熱交換部の構成としては、共通の曲管部において熱
搬送流体の流れ方向が転換せしめられる相互並列の往路
細管コンテナと復路細管コンテナの2本を1組の受熱部
(又は放熱部)とし、該受熱部(又は放熱部)の多くと
も3組以下と上記リング状金属管の所定の個数とが前記
の所定の結合手段により相互に結合一体化されて構成さ
れてあり、熱交換部における熱量の授受はリング状金属
管に圧入されてある金属栓体を媒体とする金属間熱伝導
による熱交換により行なわれるものであることを特徴と
する特許請求の範囲第1項に記載の細管熱伝達装置の熱
交換部。
(10) A structure in which the thin tube container is closely wound or inserted into the fin or metal tube surface within the fin gap of the annular fin group of the annular finned metal tube is used as a predetermined coupling means, and the annular finned metal tube is It is a short ring-shaped metal tube in which a group of at most several fins is formed, and a metal stopper with good thermal conductivity is inside the metal tube, and the contact thermal resistance with the inner wall surface of the metal tube is close to zero. A part of the metal stopper is exposed at one end of the ring-shaped metal tube and is thermally connected to the heat exchange object by a predetermined means, and the structure of the heat exchange section is In this case, two mutually parallel outgoing thin tube containers and return thin tube containers, in which the flow direction of the heat transfer fluid is changed at a common curved tube section, are considered as one heat receiving section (or heat radiating section), and the heat receiving section (or At most three sets or less of the heat radiating section) and a predetermined number of the ring-shaped metal tubes are integrally connected to each other by the predetermined coupling means, and the heat exchange section transfers and receives heat through the ring-shaped metal tubes. The heat exchange section of the capillary heat transfer device according to claim 1, wherein the heat exchange is carried out by intermetallic heat conduction using a metal plug press-fitted into a metal tube as a medium. .
(11)リング状金属細管と金属栓体との相互の嵌合状
態は挿抜が容易な嵌合であることを特徴とする特許請求
の範囲第10項に記載の細管熱伝達装置の熱交換部。
(11) The heat exchange part of the capillary heat transfer device according to claim 10, wherein the ring-shaped metal capillary tube and the metal stopper are fitted into each other so that insertion and removal are easy. .
JP30442387A 1987-12-03 1987-12-03 Heat exchange part for fine tube heat transfer device Pending JPH01147293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30442387A JPH01147293A (en) 1987-12-03 1987-12-03 Heat exchange part for fine tube heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30442387A JPH01147293A (en) 1987-12-03 1987-12-03 Heat exchange part for fine tube heat transfer device

Publications (1)

Publication Number Publication Date
JPH01147293A true JPH01147293A (en) 1989-06-08

Family

ID=17932819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30442387A Pending JPH01147293A (en) 1987-12-03 1987-12-03 Heat exchange part for fine tube heat transfer device

Country Status (1)

Country Link
JP (1) JPH01147293A (en)

Similar Documents

Publication Publication Date Title
US9293680B2 (en) Cartridge-based thermoelectric systems
US6026890A (en) Heat transfer device having metal band formed with longitudinal holes
TWI311191B (en) Heat sink
US7370693B2 (en) Radiating module and the manufacturing method thereof
US20130255739A1 (en) Passively cooled thermoelectric generator cartridge
JPS63318493A (en) Capillary heat pipe of loop type
KR20040012593A (en) Heat pipe unit and heat pipe type heat exchanger
US10080315B2 (en) Cooling device and method for cooling at least two power electronic devices
US20090266518A1 (en) Heat plate type cooler module
JP2004104041A (en) Thermoelectric converting device and method for manufacturing the same
JP2873765B2 (en) A sword-shaped heat sink having a group of pins
JP6921528B2 (en) Heat transfer device
JP5620032B1 (en) Cooling system
JPH01147293A (en) Heat exchange part for fine tube heat transfer device
JP3364758B2 (en) Heat sink for flat heating element
JP4363501B2 (en) Modular composite heat sink
JP3959428B2 (en) Stereo heat pipe radiator
US20020074114A1 (en) Finned heat exchange tube and process for forming same
JPH10185466A (en) Heat pipe type heat sink
JP2006194548A (en) Heat pipe joint and heat pipe with heat pipe joint
JPS60232496A (en) Heat exchanger
CN211240579U (en) Combined radiator
KR20110130550A (en) Thermoelectric generator using exhaust heat and manufacturing method thereof
JPH07159073A (en) Heat exchanger
JPH01203893A (en) Heat transfer device of loop pipe type