JPH01147116A - Combustion method for direct-injection type diesel engine and combustion chamber thereof - Google Patents

Combustion method for direct-injection type diesel engine and combustion chamber thereof

Info

Publication number
JPH01147116A
JPH01147116A JP62303327A JP30332787A JPH01147116A JP H01147116 A JPH01147116 A JP H01147116A JP 62303327 A JP62303327 A JP 62303327A JP 30332787 A JP30332787 A JP 30332787A JP H01147116 A JPH01147116 A JP H01147116A
Authority
JP
Japan
Prior art keywords
fuel
cavity
piston
convex
reflecting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62303327A
Other languages
Japanese (ja)
Inventor
Ichiro Sakata
一郎 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62303327A priority Critical patent/JPH01147116A/en
Publication of JPH01147116A publication Critical patent/JPH01147116A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To make an air utilization factor improvable by shifting an injection fuel onward movement toward an inner wall surface in a cavity at the time of fuel injection in regular succession from a cavity central part to its peripheral part. CONSTITUTION:In a piston 2, a cavity 6 is formed in a flat piston top face 2a, and a ring lip 7 being projected inward is formed in an upper end of the peripheral wall surface 6a. Injection fuel F is sprayed toward a convex fuel reflecting surface 7a of the lip 7 from a fuel injection valve 5. Here, a form of the convex fuel reflecting surface 7a is set so as to cause the forward direction of reflecting fuel G to be continuously moved toward the peripheral part from the central part of the cavity 6 till the piston 2 is reached to a top dead point since the fuel injection has started. With this constitution, since the reflecting fuel G is burned by utilizing excessive air, an air utilization factor is thus improvable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直噴式ディーゼル機関の燃焼方法および燃焼室
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion method and a combustion chamber for a direct injection diesel engine.

〔従来の技術〕[Conventional technology]

ピストン頂面に形成したキャビティ内周面の上端部に内
方に向けて突出する環状のリップを形成し、この環状リ
ップの内周面を下方に向けて拡開する円錐状に形成し、
燃料噴射弁から燃料を環状リップの円錐状内周面に向け
て噴射させ、円錐状内周面において反射した噴射燃料の
一部をキャビティ中心部に集め、円錐状内周面に付着し
た液状燃料をキャビティ周辺部に送り込むようにしたデ
ィーゼル機関が公知である(実開昭59−56324号
公報参照)。このディーゼル機関では噴射燃料がキャビ
ティ中心部およびキャビティ周辺部に分散せ、しめられ
るので空気利用率を高めることができる。
An annular lip protruding inward is formed at the upper end of the inner circumferential surface of the cavity formed on the top surface of the piston, and the inner circumferential surface of the annular lip is formed into a conical shape that expands downward;
Fuel is injected from the fuel injection valve toward the conical inner circumferential surface of the annular lip, and a portion of the injected fuel reflected from the conical inner circumferential surface is collected in the center of the cavity, resulting in liquid fuel adhering to the conical inner circumferential surface. A diesel engine is known in which the fuel is fed into the periphery of the cavity (see Japanese Utility Model Application Publication No. 59-56324). In this diesel engine, the injected fuel is dispersed in the center of the cavity and the periphery of the cavity, so the air utilization rate can be increased.

しかしながらこのディーゼル機関ではキャビティ内のど
こで燃焼が開始されるかわからず、−気に燃焼が開始さ
れると急激な圧力上昇が生じて激しい燃焼騒音が発生す
るという問題を生ずる。また、急激な圧力上昇によって
燃焼温度が高くなるとNOxの発生量が増大するという
問題もある。
However, in this diesel engine, it is not known where combustion will start within the cavity, and when combustion starts, a sudden pressure rise occurs and a problem arises in that severe combustion noise is generated. Another problem is that when the combustion temperature increases due to a sudden pressure increase, the amount of NOx generated increases.

また、空気利用率が高くなるといってもキャビティ中心
部とキャビティ周辺部間には噴射燃料が供給されないた
めにキャビティ中心部とキャビティ周辺部間の空気が十
分に利用されず、斯くして多量の未燃HC,Coが発生
するという問題がある。
Furthermore, even though the air utilization rate increases, the injected fuel is not supplied between the center of the cavity and the periphery of the cavity, so the air between the center of the cavity and the periphery of the cavity is not fully utilized, resulting in a large amount of air being used. There is a problem in that unburned HC and Co are generated.

このような問題を解決するためにピストン頂面に形成さ
れたキャビティ内周壁面上に断面円弧状の凹状燃料反射
面を形成して燃料噴射弁から凹状燃料反射面に向けて燃
料を噴射させ、凹状燃料反射面の形成位置および断面形
状を凹状燃料反射面において反射した噴射燃料がピスト
ンの上昇に伴ってキャビティ周辺部からキャビティ中心
部まで順次移動するように定めた直噴式ディーゼル機関
が本出願人により既に提案されている(特願昭62−1
41450号参照)。このディーゼル機関ではキャビテ
ィ周辺部で開始された燃焼がキャビティ中心部に向けて
緩やかに進行するので燃焼騒音の発生やNoにの発注が
抑制され、しかも空気利用率が高くなるために未燃HC
,Coの発生も抑制することができる。
In order to solve this problem, a concave fuel reflecting surface with an arcuate cross section is formed on the inner peripheral wall surface of the cavity formed on the top surface of the piston, and fuel is injected from the fuel injection valve toward the concave fuel reflecting surface. The present applicant has provided a direct injection diesel engine in which the formation position and cross-sectional shape of the concave fuel reflecting surface are determined so that the injected fuel reflected by the concave fuel reflecting surface sequentially moves from the periphery of the cavity to the center of the cavity as the piston rises. has already been proposed by (Patent Application 1986-1
41450). In this diesel engine, combustion starts at the periphery of the cavity and progresses slowly toward the center of the cavity, which suppresses combustion noise and reduces the number of combustion noises.Furthermore, because the air utilization rate is high, unburned HC
, Co can also be suppressed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら特に機関始動時にはキャビティ周壁面の温
度は低く、従ってキャビティ周辺部から燃焼を開始させ
ると火炎が冷却されて火炎が十分に成長しないために良
好な燃焼が得られないばかりでなく、未燃燃料がそのま
ま排出されて白煙や刺激臭が発生するという問題がある
However, especially when the engine is started, the temperature of the surrounding wall of the cavity is low. Therefore, if combustion starts from the periphery of the cavity, the flame will be cooled and the flame will not grow sufficiently, resulting in not only poor combustion, but also unburned fuel There is a problem in that the gas is discharged as is, producing white smoke and pungent odors.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために本発明によれば燃料噴射時
においてピストン頂面に形成されたキャビティ内壁面に
向かう噴射燃料進行方向をキャビティ中心部からキャビ
ティ周辺部まで順次移動せしめ、着火火炎をキャビティ
中心部からキャビティ周辺部に向けて伝播せしめるよう
にしている。
In order to solve the above problems, according to the present invention, during fuel injection, the direction in which the injected fuel travels toward the inner wall surface of the cavity formed on the top surface of the piston is sequentially moved from the center of the cavity to the periphery of the cavity, thereby directing the ignition flame to the cavity. It is made to propagate from the center toward the periphery of the cavity.

更に上記問題点を解決するために本発明によればピスト
ン頂面に形成されたキャビティ内周壁面上に断面円弧状
の凸状燃料反射面を形成して燃料噴射弁から凸状燃料反
射面に向けて燃料を噴射させ、凸状燃料反射面の形成位
置および断面形状を凸状燃料反射面において反射した噴
射燃料がピストンの上昇に伴ってキャビティ中心部から
キャビティ周辺部まで順次移動するように定めている。
Furthermore, in order to solve the above-mentioned problems, according to the present invention, a convex fuel reflecting surface having an arcuate cross section is formed on the inner circumferential wall surface of the cavity formed on the top surface of the piston, and the convex fuel reflecting surface is directed from the fuel injection valve to the convex fuel reflecting surface. The formation position and cross-sectional shape of the convex fuel reflecting surface are determined so that the injected fuel reflected by the convex fuel reflecting surface sequentially moves from the center of the cavity to the periphery of the cavity as the piston rises. ing.

〔実施例] 第1図に直噴式ディーゼル機関の側面断面図を示す。第
1図を参照すると、■はシリンダブロック、2はシリン
ダブロックl内で往復動可能なピストン、3はシリンダ
ブロック1に固締されたシリンダヘッド、4はシリンダ
ブロック1の平坦な内壁面とピストン2間に形成された
燃焼室、5は燃焼室4の頂部中央に配置された燃料噴射
弁を夫々示す。図面には示さないがシリンダブロック1
内には吸気ポートおよび排気ポートが形成され、これら
吸気ポートおよび排気ポートの燃焼室4内への開口部に
は夫々吸気弁および排気弁が配置される。燃焼室4内に
流入する吸入空気に旋回流を与えるために吸気ポートと
してヘリカル型吸気ポートが使用されており、或いは吸
気弁としてシュラウド付吸気弁が使用されている。無給
、吸気ボートを燃焼室4内に燃焼室4の周辺方向に向け
て連結する等の他の手段により、燃焼室4内に流入する
吸入空気に旋回流を与えることができる。第1図に示さ
れる実施例ではこれら吸排気弁や吸排気ポートとの干渉
を避けるために燃料噴射弁5が斜めに配置されている。
[Example] Fig. 1 shows a side sectional view of a direct injection diesel engine. Referring to FIG. 1, ■ is a cylinder block, 2 is a piston that can reciprocate within cylinder block l, 3 is a cylinder head fixed to cylinder block 1, and 4 is a flat inner wall surface of cylinder block 1 and a piston. A combustion chamber 2 is formed between the combustion chambers 2 and 5, and a fuel injection valve 5 is located at the center of the top of the combustion chamber 4. Although not shown in the drawing, cylinder block 1
An intake port and an exhaust port are formed therein, and an intake valve and an exhaust valve are arranged at the openings of these intake ports and exhaust ports into the combustion chamber 4, respectively. In order to give swirling flow to the intake air flowing into the combustion chamber 4, a helical intake port is used as the intake port, or a shrouded intake valve is used as the intake valve. A swirling flow can be given to the intake air flowing into the combustion chamber 4 by other means such as connecting an intake boat in the combustion chamber 4 toward the periphery of the combustion chamber 4 . In the embodiment shown in FIG. 1, the fuel injection valve 5 is arranged diagonally to avoid interference with these intake and exhaust valves and intake and exhaust ports.

第1図および第2図に示されるようにピストン2は平坦
な頂面2aを有し、この平坦なピストン頂面2aにキャ
ビティ6が形成される。キャビティ6の周壁面6aの上
端部には内方に向けて突出する環状のリップ7が形成さ
れ、この環状リップ7の内周面7aはピストン頂面2a
から湾曲しつつ環状のリップ7の下壁面7bまで滑らか
に延びる。従って環状リップ内周面は断面円弧状の凸状
湾曲面をなす。一方、環状リップ下壁面7bはピストン
頂面2aとほぼ平行をなしており、この環状リップ下壁
面7bはキャビティ下側周壁面6bとほぼ直角をなして
交わる。キャビティ6の底部6cは中央部が隆起したほ
ぼ円錐状に形成されているが無給平坦面から形成しても
よい。
As shown in FIGS. 1 and 2, the piston 2 has a flat top surface 2a, and a cavity 6 is formed in the flat piston top surface 2a. An annular lip 7 that protrudes inward is formed at the upper end of the peripheral wall surface 6a of the cavity 6, and the inner peripheral surface 7a of this annular lip 7 is connected to the piston top surface 2a.
It extends smoothly from the bottom wall surface 7b of the annular lip 7 while being curved. Therefore, the inner peripheral surface of the annular lip forms a convex curved surface having an arcuate cross section. On the other hand, the annular lip lower wall surface 7b is substantially parallel to the piston top surface 2a, and the annular lip lower wall surface 7b intersects the cavity lower peripheral wall surface 6b at an approximately right angle. The bottom portion 6c of the cavity 6 is formed into a substantially conical shape with a raised central portion, but it may also be formed from an unfilled flat surface.

燃料噴射弁5は1個若しくは複数個のノズル孔を具備し
、第1図において矢印Fで示されるように1個若しくは
複数個のノズル孔から環状リップ内周面7aに向けて燃
料が噴射される。この噴射燃料の一部は内周面7aにお
いて反射し、従って以下この内周面7aを凸状燃料反射
面と称する。
The fuel injection valve 5 has one or more nozzle holes, and fuel is injected from the one or more nozzle holes toward the annular lip inner circumferential surface 7a as shown by arrow F in FIG. Ru. A portion of this injected fuel is reflected at the inner circumferential surface 7a, and therefore, this inner circumferential surface 7a is hereinafter referred to as a convex fuel reflecting surface.

本発明においてはこの凸状燃料反射面7aの機能が重要
であり、従ってまず始めに第3図を参照して凸状燃料反
射面7aの機能について説明する。
In the present invention, the function of the convex fuel reflecting surface 7a is important, so first, the function of the convex fuel reflecting surface 7a will be explained with reference to FIG.

第3図(a)から(e)は燃料噴射開始から燃料噴射路
りまでを経時的に示している。第3図(a)はピストン
2が上死点の少し手前にあって燃料噴射が開始されたと
きを示している。第3図(b)はピストン2が上死点に
向けて少し上昇したときを示しており、第3図(C)は
ピストン2が上死点に達したときを示している。第3図
(d)はピストン2が上死点を越えて少し下降したとこ
ろを示しており、第3図(e)はピストン2が更に下降
した噴射完了時を示している。第3図(a)に示される
ように燃料噴射開始時には噴射燃料Fが凸状燃料反射面
7aの上方部に衝突し、第3図(C)に示されるように
ピストン2が上死点に達したときには噴射燃料Fが凸状
燃料反射面7aの下方部に衝突する。即ち、言い換える
と凸状燃料反射面7aの位置および燃料噴射弁5からの
燃料噴射方向は燃料噴射開始時に噴射燃料Fが凸状燃料
反射面7aの上方部に衝突し、ピストン2が上死点に達
したときには噴射燃料Fが凸状燃料反射面7aの下方部
に衝突するように定められる。
FIGS. 3(a) to 3(e) show the time course from the start of fuel injection to the fuel injection path. FIG. 3(a) shows a state when the piston 2 is located a little before the top dead center and fuel injection is started. FIG. 3(b) shows the piston 2 rising slightly toward the top dead center, and FIG. 3(C) shows the piston 2 reaching the top dead center. FIG. 3(d) shows the piston 2 slightly lowered beyond the top dead center, and FIG. 3(e) shows the piston 2 further lowered at the completion of injection. As shown in FIG. 3(a), at the start of fuel injection, the injected fuel F collides with the upper part of the convex fuel reflecting surface 7a, and as shown in FIG. 3(C), the piston 2 reaches the top dead center. When it reaches the point, the injected fuel F collides with the lower part of the convex fuel reflecting surface 7a. That is, in other words, the position of the convex fuel reflecting surface 7a and the direction of fuel injection from the fuel injection valve 5 are such that the injected fuel F collides with the upper part of the convex fuel reflecting surface 7a at the start of fuel injection, and the piston 2 is at the top dead center. It is determined that the injected fuel F collides with the lower part of the convex fuel reflecting surface 7a when it reaches this point.

一方、凸状燃料反射面7aは前述したように断面円弧状
をなしている。従って第3図(a)から(C)に示され
るようにピストン2が上昇するにつれて燃料衝突点にお
ける凸状燃料反射面7aと噴射燃料Fとのなす角は次第
に減少し、従って凸状燃料反射面7aに向かう噴射燃料
Fの軸線と凸状燃料反射面7aにおいて反射した反射燃
料Gの軸線とのなす角はピストン2が上昇するにつれて
次第に大きくなる。第3図(a)に示されるように燃料
噴射開始時には反射燃料Gがキャビティ6の中心部に向
かい、第3図(b)に示されるようにピストン2が少し
上昇すると反射燃料Gの進行方向がキャビティ6の中心
部から周辺部に向けて移動し、第3図(C)に示される
ようにピストン2が上死点に達すると反射燃料Gはキャ
ビティ6の周辺部に向かう。即ち、燃料噴射が開始され
てからピストン2が上死点に達するまでに反射燃料Gの
進行方向がキャビティ6の中心部から周辺部に向けて連
続的に移動する。言い換えると凸状燃料反射面7aの形
状は燃料噴射が開始されてからピストン2が上死点に達
するまでに反射燃料Gの進行方向がキャビティ6の中心
部から周辺部に向けて連続的に移動するように定められ
ている。第3図の(C)から(e)に示されるようにピ
ストン2が上死点に達してから燃料噴射が完了するまで
は反射燃料Gはキャビティ6の周辺部から中心部に向け
て連続的に移動する。
On the other hand, the convex fuel reflecting surface 7a has an arcuate cross section as described above. Therefore, as shown in FIGS. 3(a) to 3(C), as the piston 2 rises, the angle between the convex fuel reflection surface 7a and the injected fuel F at the fuel collision point gradually decreases, and therefore the convex fuel reflection The angle formed between the axis of the injected fuel F toward the surface 7a and the axis of the reflected fuel G reflected at the convex fuel reflecting surface 7a gradually increases as the piston 2 moves upward. As shown in FIG. 3(a), at the start of fuel injection, the reflected fuel G heads toward the center of the cavity 6, and as shown in FIG. 3(b), when the piston 2 rises a little, the reflected fuel G moves in the direction of travel. moves from the center of the cavity 6 toward the periphery, and when the piston 2 reaches the top dead center as shown in FIG. 3(C), the reflected fuel G moves toward the periphery of the cavity 6. That is, from the start of fuel injection until the piston 2 reaches the top dead center, the traveling direction of the reflected fuel G continuously moves from the center of the cavity 6 toward the periphery. In other words, the shape of the convex fuel reflecting surface 7a is such that the traveling direction of the reflected fuel G continuously moves from the center of the cavity 6 toward the periphery from the start of fuel injection until the piston 2 reaches the top dead center. It is prescribed to do so. As shown in FIG. 3 (C) to (e), from the time the piston 2 reaches the top dead center until the fuel injection is completed, the reflected fuel G continuously flows from the periphery to the center of the cavity 6. Move to.

第3図(a)に示されるように燃料噴射が開始されると
噴射燃料Fが凸状燃料反射面7aの上方部に衝突する。
As shown in FIG. 3(a), when fuel injection is started, the injected fuel F collides with the upper part of the convex fuel reflecting surface 7a.

このとき粒径の比較的大きな燃料粒子は凸状燃料反射面
7a上に付着し、その他の燃料粒子は凸状燃料反射面7
aにおいて反射して矢印Gに示されるようにキャビテイ
6中心部の上方空間に向かう。また、第3図(a)に示
すようにピストン2が上死点に近づくとピストン頂面2
aの周辺部とシリンダヘッド3間に形成されるスキッシ
ュエリア8から燃焼室4の中心部に向けてスキッシュ流
が流出する。このスキッシュ流は矢印Sで示されるよう
に凸状燃料反射面7aに沿って下方に向けて流れる。従
ってこのスキッシュ流Sにより燃料がキャビティ6内か
ら流出するのが阻止されるばかりでなく、凸状燃料反射
面7aに付着した燃料の気化が、促進される。また、凸
状燃料反射面7aに付着した燃料の一部は環状リップ下
壁面7b上に流れるがこの環状リップ下壁面7bはピス
トン頂面2aとほぼ平行であって水平をなしているので
燃料はキャビティ下側周壁面6bに達することなく、環
状リップ下壁面7b上に滞留する。
At this time, fuel particles with a relatively large particle size adhere to the convex fuel reflecting surface 7a, and other fuel particles adhere to the convex fuel reflecting surface 7a.
It is reflected at point a and heads toward the space above the center of the cavity 6 as shown by arrow G. Moreover, as shown in FIG. 3(a), when the piston 2 approaches the top dead center, the piston top surface 2
A squish flow flows out toward the center of the combustion chamber 4 from the squish area 8 formed between the peripheral part of the cylinder head 3 and the cylinder head 3 . This squish flow flows downward along the convex fuel reflecting surface 7a as shown by arrow S. Therefore, this squish flow S not only prevents the fuel from flowing out from inside the cavity 6, but also promotes vaporization of the fuel adhering to the convex fuel reflecting surface 7a. Also, a part of the fuel adhering to the convex fuel reflecting surface 7a flows onto the annular lip lower wall surface 7b, but since this annular lip lower wall surface 7b is horizontal and almost parallel to the piston top surface 2a, the fuel It stays on the annular lip lower wall surface 7b without reaching the cavity lower peripheral wall surface 6b.

次いで第3図但)に示されるようにピストン2が上昇す
ると反射燃料Gの進行方向がキャビティ6の周辺部に向
けて移動する。一方、燃料粒子の温度が十分に高まると
キャビティ6の中心部の上方空間の混合気が着火燃焼せ
しめられる。この着火火炎は周囲のキャビティ周壁面6
aから離れているのでキャビティ周壁面6aによって冷
却されることがなく、従って着火火炎は良好に成長する
Next, as shown in FIG. 3), when the piston 2 rises, the traveling direction of the reflected fuel G moves toward the periphery of the cavity 6. On the other hand, when the temperature of the fuel particles increases sufficiently, the air-fuel mixture in the space above the center of the cavity 6 is ignited and burned. This ignition flame is transmitted to the surrounding cavity peripheral wall surface 6.
Since it is far away from a, it is not cooled by the cavity peripheral wall surface 6a, and therefore the ignition flame grows well.

この燃焼火炎はキャビティ6の周辺部に向けて伝播し、
従って第3図(b)かられかるように反射燃料Qを追い
かけるように火炎が伝播することになる。
This combustion flame propagates toward the periphery of the cavity 6,
Therefore, as shown in FIG. 3(b), the flame propagates so as to chase the reflected fuel Q.

言い換えると反射燃料Gによって混合気が形成されると
この混合気にタイミングよく直ちに火炎が伝播し、混合
気が燃焼せしめられることになる。
In other words, when an air-fuel mixture is formed by the reflected fuel G, a flame is immediately propagated to the air-fuel mixture in a timely manner, and the air-fuel mixture is combusted.

従って第3図(C)に示されるように反射燃料Gがキャ
ビティ6の周辺部に向かうとこの反射燃料Gによってキ
ャビティ6の周辺部に形成された混合気が周辺部に向か
う火炎によって着火燃焼せしめられる。一方、キャビテ
ィ6の中心部から周辺部に向けて着火火炎が伝播しだす
と環状リップ7の凸状燃料反射面7aおよび環状リップ
下壁面7bに付着した燃料が壁面蒸発を開始し、従って
環状リップ7に付着した燃料は少しずつ緩やかに燃焼せ
しめられる。一方、キャビティ6の下側周壁面6b上に
は液状燃料が存在しないのでこれらの液状燃料がキャビ
ティ周壁面により冷却されて未燃のまま排出されるのが
阻止される。このように着火火炎により噴射燃料が順次
燃焼せしめられ、しかも環状リップ7に付着した燃料は
順次壁面蒸発して緩やかに燃焼せしめられるので未燃H
C,COの排出量を低減できると共にNOxの発生を抑
制することができる。
Therefore, as shown in FIG. 3(C), when the reflected fuel G moves towards the periphery of the cavity 6, the air-fuel mixture formed in the periphery of the cavity 6 is ignited and combusted by the flame moving towards the periphery. It will be done. On the other hand, when the ignition flame starts to propagate from the center of the cavity 6 toward the periphery, the fuel adhering to the convex fuel reflecting surface 7a of the annular lip 7 and the annular lip lower wall surface 7b starts to evaporate on the wall surface, and therefore the annular lip 7 The fuel adhering to the fuel is slowly combusted little by little. On the other hand, since no liquid fuel exists on the lower peripheral wall surface 6b of the cavity 6, these liquid fuels are cooled by the cavity peripheral wall surface and are prevented from being discharged unburned. In this way, the injected fuel is sequentially burned by the ignition flame, and the fuel adhering to the annular lip 7 is sequentially evaporated on the wall surface and burnt slowly, so that unburned H
It is possible to reduce the amount of C and CO emissions and to suppress the generation of NOx.

次いで第3図(d)から(e)に示されるようにピスト
ン2が下降を開始して反射燃料Gの進行方向がキャビテ
ィ6の周辺部から中心部に移動すると反射燃料Gは余剰
の空気を利用して燃焼せしめられる。
Next, as shown in FIGS. 3(d) to (e), when the piston 2 starts descending and the traveling direction of the reflected fuel G moves from the periphery to the center of the cavity 6, the reflected fuel G removes the excess air. It can be used and burned.

(発明の効果) 噴射燃料の進行方向がキャビティの中心部から周辺部に
順次移動していくので空気利用率を高めることができる
。また、キャビティの中心部から周辺部に向けて順次進
行方向が移動していく噴射燃料に火炎がタイミングよく
伝播するので急激な圧力上昇を伴わない、制御された燃
焼を確保することができる。また、燃焼がキャビティ中
心で開始されるので着火火炎がキャビティ周壁面によっ
て冷却されることがなく、従って機関始動時であっても
着火火炎が確実に成長するので良好な燃焼を確保するこ
とができる。
(Effects of the Invention) Since the traveling direction of the injected fuel sequentially moves from the center of the cavity to the periphery, the air utilization rate can be increased. Furthermore, since the flame propagates in a timely manner to the injected fuel, which moves sequentially from the center of the cavity toward the periphery, controlled combustion without sudden pressure increases can be ensured. In addition, since combustion starts at the center of the cavity, the ignition flame is not cooled by the cavity peripheral wall, and therefore the ignition flame grows reliably even when the engine is started, ensuring good combustion. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるディーゼル機関の側面断面図、第
2図は第1図の拡大側面断面図、第3図は燃焼方法を説
明するための図である。 2・・・・・・ピストン、    3・・・・・・シリ
ンダヘッド、5・・・・・・燃料噴射弁、   6・・
・・・・キャビティ、7・・・・・・環状リップ、  
 7a・・・凸状燃料反射面。 81図 5・・・燃料噴射弁    7a・、、凸状燃料反射面
ζ 第2図 第3図 第3図
FIG. 1 is a side sectional view of a diesel engine according to the present invention, FIG. 2 is an enlarged side sectional view of FIG. 1, and FIG. 3 is a diagram for explaining a combustion method. 2...Piston, 3...Cylinder head, 5...Fuel injection valve, 6...
...Cavity, 7...Annular lip,
7a...Convex fuel reflecting surface. 81 Fig. 5...Fuel injection valve 7a... Convex fuel reflecting surface ζ Fig. 2 Fig. 3 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] 1.燃料噴射時においてピストン頂面に形成されたキャ
ビティ内壁面に向かう噴射燃料進行方向をキャビティ中
心部からキャビティ周辺部まで順次移動せしめ、着火火
炎をキャビティ中心部からキャビティ周辺部に向けて伝
播せしめるようにした直噴式ディーゼル機関の燃焼方法
1. At the time of fuel injection, the injected fuel traveling direction toward the inner wall surface of the cavity formed on the top surface of the piston is sequentially moved from the center of the cavity to the periphery of the cavity, so that the ignition flame is propagated from the center of the cavity toward the periphery of the cavity. Direct injection diesel engine combustion method.
2.ピストン頂面に形成されたキャビティ内周壁面上に
断面円弧状の凸状燃料反射面を形成して燃料噴射弁から
凸状燃料反射面に向けて燃料を噴射させ、凸状燃料反射
面の形成位置および断面形状を凸状燃料反射面において
反射した噴射燃料がピストンの上昇に伴ってキャビティ
中心部からキャビティ周辺部まで順次移動するように定
めた直噴式ディーゼル機関の燃焼室。
2. A convex fuel reflecting surface with an arcuate cross section is formed on the inner peripheral wall surface of the cavity formed on the top surface of the piston, and fuel is injected from the fuel injection valve toward the convex fuel reflecting surface, thereby forming the convex fuel reflecting surface. A combustion chamber of a direct injection diesel engine whose position and cross-sectional shape are determined so that the injected fuel reflected by a convex fuel reflecting surface sequentially moves from the center of the cavity to the periphery of the cavity as the piston rises.
JP62303327A 1987-12-02 1987-12-02 Combustion method for direct-injection type diesel engine and combustion chamber thereof Pending JPH01147116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303327A JPH01147116A (en) 1987-12-02 1987-12-02 Combustion method for direct-injection type diesel engine and combustion chamber thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303327A JPH01147116A (en) 1987-12-02 1987-12-02 Combustion method for direct-injection type diesel engine and combustion chamber thereof

Publications (1)

Publication Number Publication Date
JPH01147116A true JPH01147116A (en) 1989-06-08

Family

ID=17919639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303327A Pending JPH01147116A (en) 1987-12-02 1987-12-02 Combustion method for direct-injection type diesel engine and combustion chamber thereof

Country Status (1)

Country Link
JP (1) JPH01147116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7213564B2 (en) 2002-10-02 2007-05-08 Westport Power Inc. Direct injection combustion chamber geometry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7213564B2 (en) 2002-10-02 2007-05-08 Westport Power Inc. Direct injection combustion chamber geometry

Similar Documents

Publication Publication Date Title
US5813385A (en) Combustion chamber structure having piston cavity
JPS5949407B2 (en) Combustion chamber of internal combustion engine
US4041923A (en) Internal combustion engine of lean air-fuel mixture combustion type
US4000731A (en) Internal combuston engines
JPH01147116A (en) Combustion method for direct-injection type diesel engine and combustion chamber thereof
EP0828066B1 (en) Combustion chamber of diesel engine
JP2940232B2 (en) In-cylinder internal combustion engine
JPH033920A (en) Direct injection type diesel engine
JPH05231155A (en) Inside-cylinder injection type internal combustion engine
JPH0645626Y2 (en) Combustion chamber structure of diesel engine
JP2594054B2 (en) Direct injection diesel engine
JPS59231120A (en) Three-valve head type internal-combustion engine
JPH08121171A (en) Combustion chamber for direct injection type diesel engine
JP2650294B2 (en) Combustion chamber of direct injection diesel engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JP2522799Y2 (en) Combustion chamber of direct injection diesel engine
JP2500168Y2 (en) Combustion chamber of direct injection diesel engine
JPH01193019A (en) Combustion chamber of direct injection type diesel engine
JP2524136Y2 (en) Combustion chamber of a direct injection diesel engine
JPH05240052A (en) Cylinder injection type internal combustion engine
JPH05231154A (en) Fuel cylinder injection type internal combustion engine
JPH0143467Y2 (en)
JPS5958118A (en) Combustion chamber for antechamber type engine
JPS6224760Y2 (en)
JPH051544A (en) Cylinder injection type internal combustion engine