JPH01145622A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH01145622A
JPH01145622A JP62305053A JP30505387A JPH01145622A JP H01145622 A JPH01145622 A JP H01145622A JP 62305053 A JP62305053 A JP 62305053A JP 30505387 A JP30505387 A JP 30505387A JP H01145622 A JPH01145622 A JP H01145622A
Authority
JP
Japan
Prior art keywords
mirror
permanent magnet
light beam
current
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62305053A
Other languages
Japanese (ja)
Inventor
Hiroyuki Naito
宏之 内藤
Minoru Kimura
実 木村
Hidemi Takahashi
秀実 高橋
Osamu Yamada
修 山田
Kunio Yoshida
邦夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62305053A priority Critical patent/JPH01145622A/en
Publication of JPH01145622A publication Critical patent/JPH01145622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)

Abstract

PURPOSE:To scan a light beam in two dimensions by one mirror by providing a permanent magnet on the flank of a mirror and supplying a current to a driving coil which is arranged opposite it. CONSTITUTION:A permanent magnet piece 14 is provided on the opposite flank of the mirror 11 from its fulcrum and the driving coil 15 is fixed to a support base 12 on the surface facing the permanent magnet 14 across a proper gap and connected to a driving signal 16. Then the current is supplied to the driving coil 15 to generate a magnetic attractive or repulsive force between the permanent magnet 14 and driving coil 15 and this force displaces the mirror 11 in a direction perpendicular to its reflecting mirror, so that the mirror 11 slants by an optional angle in two dimensions. The light beam incident on the mirror 11 is therefore deflected and the current is controlled to scan the light beam. Consequently, the small-sized, integrated two-dimensional scanner is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ミラーを高速に偏向して光ビームを走査する
光走査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical scanning device that scans a light beam by deflecting a mirror at high speed.

従来の技術 文書や写真・図面等の内容を読み取る方法として、対象
物の表面に光ビームを二次元照射し、対象物からの反射
光を電気信号に変換する方法がとられている。
A conventional method for reading the contents of technical documents, photographs, drawings, etc. is to irradiate the surface of an object with a two-dimensional light beam and convert the reflected light from the object into an electrical signal.

光を二次元走査する方法としては、光ビームを水平に走
査する手段と垂直に走査する手段を組合わせて使用する
方法が一般的である。−次元(水平または垂直)方向に
走査する手段としては、第5図(a)に示すガルバノメ
ータ走査器、同図(b)の回転多面鏡走査器、同図(C
)のホログラムディスク走査器がある。ガルバノメータ
走査器は第5図(a)に示すように電礎石のコイルに通
電することにより、電流の大きさに比例してミラー1の
取付回転軸が回転する。ミラー1に、1aの方向から光
ビーム2を入射し、軸3が矢印1bの如く回転するとミ
ラー1で反射された光ビーム4は、矢印ICの方向に偏
向される。このガルバノメータ走査器は、小型で構造が
簡単であるためよく使われる。しかし、連続走査を行う
場合運動がミラー1の往復回転運動であり、必ず加減速
時間を必要とすることから、走査速度に上限がある。ま
た、ミラー1の重さが負荷となり走査特性に影響する欠
点を有している。
As a method for two-dimensionally scanning light, a method that generally uses a combination of means for horizontally scanning a light beam and means for vertically scanning the light beam is used. - As means for scanning in the dimensional (horizontal or vertical) direction, the galvanometer scanner shown in FIG. 5(a), the rotating polygon mirror scanner shown in FIG.
) hologram disk scanner. In the galvanometer scanner, as shown in FIG. 5(a), by energizing the coil of the foundation stone, the rotating shaft on which the mirror 1 is mounted rotates in proportion to the magnitude of the current. A light beam 2 is incident on the mirror 1 from the direction 1a, and when the shaft 3 rotates as shown by the arrow 1b, the light beam 4 reflected by the mirror 1 is deflected in the direction of the arrow IC. This galvanometer scanner is often used because it is small and has a simple structure. However, when performing continuous scanning, the movement is a reciprocating rotational movement of the mirror 1, and since acceleration and deceleration time is always required, there is an upper limit to the scanning speed. Moreover, the weight of the mirror 1 becomes a load and has a disadvantage that it affects the scanning characteristics.

回転多面鏡走査器は同図(b)に示すように光ビーム2
の反射ミラーが複数個円周上に有する多面鏡5で構成さ
れ、回転軸6を中心に高速回転させて使用する。光ビー
ム2は、1d の方向から入射し、N個の面を持つ多面
鏡5をl/N回転をさせると光ビーム2は、矢印1eの
方向に走査される。
The rotating polygon mirror scanner emits light beam 2 as shown in the same figure (b).
It is composed of a polygon mirror 5 having a plurality of reflecting mirrors on the circumference, and is used by rotating at high speed around a rotation axis 6. The light beam 2 is incident from the direction 1d, and when the polygon mirror 5 having N faces is rotated l/N, the light beam 2 is scanned in the direction of the arrow 1e.

多面鏡5が1回転すると光ビーム2は、N回走査される
ことになる。この方式は、高速走査に適しているが、高
精度な多面鏡が必要なことからコストが高くなる欠点が
ある。
When the polygon mirror 5 rotates once, the light beam 2 is scanned N times. Although this method is suitable for high-speed scanning, it has the disadvantage of increasing cost because it requires a highly accurate polygonal mirror.

ホログラムディスク走査器は最近研究が進んでいるホロ
グラムディスク走査器である。同図(C)に示すように
ホログラムディスク7には、ホログラム偏向パターン7
a 、 7b 、 7c・・・がM個ホログラムディス
ク7の円周上に設けられ、1fの方向から光ビーム2を
入射し、ホログラムディスク7が矢印1gの方向に回転
するとホログラム偏向パターンの形に対応した光ビーム
2は矢印1hの方向に走査される。この方式は、構造が
簡単で高速走査が期待されるが、ホログラムディスク7
を出た光ビームの形状や走査速度の一様性が、ミラーを
用いた走査器より劣る。また、ホログラムディスクの光
利用率が十分に取れない欠点があり、用途が限定される
A hologram disk scanner is a hologram disk scanner that has been the subject of recent research. As shown in FIG. 7C, the hologram disk 7 has a hologram deflection pattern 7.
a, 7b, 7c... are provided on the circumference of the hologram disk 7, the light beam 2 is incident from the direction 1f, and when the hologram disk 7 rotates in the direction of the arrow 1g, it forms a hologram deflection pattern. The corresponding light beam 2 is scanned in the direction of arrow 1h. This method has a simple structure and is expected to achieve high-speed scanning, but the hologram disk 7
The shape of the light beam exiting the scanner and the uniformity of the scanning speed are inferior to scanners using mirrors. In addition, the hologram disk has the disadvantage that the light utilization rate is not sufficient, which limits its uses.

ところで、第5図(a) 、 (b) 、 (C)に示
すいずれの走査器も、それぞれ単独の走査器で二次元走
査は出来ない。そこで一般には、これらの走査器を例え
ば水平方向の高速−次元走査に用い、垂直方向の走査は
ガルバノメータ走査器を用いる組合わせ型走査器が用い
られている。
By the way, none of the scanners shown in FIGS. 5(a), 5(b), and 5(c) can perform two-dimensional scanning with each individual scanner. Therefore, in general, these scanners are used, for example, for fast-dimensional scanning in the horizontal direction, and a combination scanner is used that uses a galvanometer scanner for scanning in the vertical direction.

発明が解決しようとする問題点 光ビームを二次元走査する従来の手段は、水平方向と垂
直方向を別々に偏向する走査器を組合わせで二次元走査
装置を構成している。この場合、各−次元の走査器を二
個圧に直交して配置することになり、入射光路と出力光
路が規定され、装置利用上制約を受ける問題がある。ま
た、走査器自体も大きくなる欠点がある。
Problems to be Solved by the Invention Conventional means for two-dimensionally scanning a light beam configures a two-dimensional scanning device by combining scanners that deflect horizontally and vertically separately. In this case, the scanners of each dimension are disposed perpendicular to the two dimensions, and the incident optical path and output optical path are defined, which poses a problem that limits the use of the apparatus. Another disadvantage is that the scanner itself is large.

本発明は、従来技術の以上のような問題点を解決する二
次元の小型一体型走鬼器を提供しようとするものである
The present invention aims to provide a two-dimensional compact integrated running device that solves the above-mentioned problems of the prior art.

問題点を解決するための手段 上記目的を達成するために、本発明はミラーの側面に永
久磁石を設け、この永久磁石と対向する位置に駆動コイ
ルを設けて、この駆動コイルに電流を流すようにしたも
のである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a permanent magnet on the side surface of the mirror, a drive coil at a position facing the permanent magnet, and a current flowing through the drive coil. This is what I did.

作    用 上記構成において、駆動コイルに電流を流すことにより
永久磁石と駆動コイルとの間に磁気吸引又は反発力が発
生し、この力によりミラーがその反射面に垂直な方向に
変位して、ミラーが二次元の任意の角度に傾く。したが
ってミラー(二人対した光ビームを偏向させることがで
き、電流を制御することにより光ビームを走査させるこ
とができる。
Effect In the above configuration, by passing a current through the drive coil, a magnetic attraction or repulsion force is generated between the permanent magnet and the drive coil, and this force displaces the mirror in a direction perpendicular to its reflection surface, causing the mirror to move. tilts to an arbitrary angle in two dimensions. Therefore, the light beam can be deflected by the mirror (two people), and the light beam can be scanned by controlling the current.

実施例 以下図面を参照しながら本発明の実施例について説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施に於ける一次元偏向用の
走査器の基本構成図である。
FIG. 1 is a basic configuration diagram of a one-dimensional deflection scanner in a first embodiment of the present invention.

光ビーム反射用のミラー11は、図で示される上面が反
射面であり、支持台12に線状の支点13によって固定
されている。ミラー11の支点と反対の側面には、永久
磁石片14が設けられミラー11は、支点13を中心に
矢印で示される移動方向17に移動できる。永久磁石1
4と適当な間隙を有して対向する面に駆動コイル15が
支持台12に固定され(固定部分は図示せず)、駆動信
号16に接続されている。今、仮にミラー11に設けら
れた永久磁石14の極性をミラー11の上面方向にN極
、ミラー11の下面方向にS極とし、駆動信号16を印
加しない状態では、ミラー11 は移動せず中点(図示
せず)に静止している。
The light beam reflecting mirror 11 has an upper surface as a reflecting surface as shown in the figure, and is fixed to a support base 12 by a linear fulcrum 13. A permanent magnet piece 14 is provided on the opposite side of the mirror 11 from the fulcrum, and the mirror 11 can move about the fulcrum 13 in a moving direction 17 shown by an arrow. Permanent magnet 1
A drive coil 15 is fixed to the support base 12 (the fixed part is not shown) on the surface facing the support base 12 with a suitable gap between the drive coil 15 and the drive coil 15 and connected to a drive signal 16. Now, if the polarity of the permanent magnet 14 provided on the mirror 11 is set to the N pole toward the upper surface of the mirror 11 and the S pole toward the lower surface of the mirror 11, and the drive signal 16 is not applied, the mirror 11 will not move and will remain in the center. It is stationary at a point (not shown).

次に駆動コイル15の上面がN極、下面がS極となるよ
うに電流を印加すると永久磁石14と駆動コイル15の
間には反作用が働き、永久磁石14が移動方向17の上
方向に押し上げられる。その結果としてミラー11は、
支点13を支点として傾けられる。次に駆動コイル15
に印加する電流を逆向きにすると、駆動コイル15の上
面には、S極が、下面にはN極が発生し永久磁石14と
駆動コイル15は互に吸引されミラー11は移動方向1
7の下向きに変位し今度は逆向きに傾斜する。
Next, when a current is applied so that the top surface of the drive coil 15 becomes the north pole and the bottom surface becomes the south pole, a reaction occurs between the permanent magnet 14 and the drive coil 15, and the permanent magnet 14 is pushed upward in the moving direction 17. It will be done. As a result, the mirror 11 is
It can be tilted about the fulcrum 13. Next, drive coil 15
When the applied current is reversed, an S pole is generated on the upper surface of the drive coil 15 and an N pole is generated on the lower surface, the permanent magnet 14 and the drive coil 15 are attracted to each other, and the mirror 11 is moved in the moving direction 1.
7 and is now tilted in the opposite direction.

駆動信号16を第2図に示す如く電流の極性が反転する
ような三角波を連続的に印加したとすると、ミラー1工
の永久磁石14が設けられた側は、駆動信号16に比例
して移動方向17の方向に振動し、ミラー11の上面に
レーザ光等の光ビームを照射すると、ミラー11の変位
に比例して反射光が偏位し、光ビームの一次元走査が行
なわれる。
Assuming that the drive signal 16 is a triangular wave whose current polarity is reversed as shown in FIG. When the mirror 11 vibrates in the direction 17 and a light beam such as a laser beam is irradiated onto the upper surface of the mirror 11, the reflected light is deflected in proportion to the displacement of the mirror 11, and one-dimensional scanning of the light beam is performed.

次に本発明を用いた一次元走査器の実施例を第3図に示
す。光ビーム偏向用ミラー21の1つの側面に永久磁石
241が取付けられ、その反対の側面には永久磁石24
2が取付けられている。そして、二つの永久磁石241
 、242のそれぞれに適当な間隔を有して対向する駆
動コイル251 、252が設けられている。ミラー2
1には支持台22間に1、駆動コイル251 、252
が非通電時に落下するのを防止する目的と連続反復運動
を行う際の緩衝支持材28が設けられている。令弟3図
に示す永久磁石241及び242の上面が例えば共にN
極で下面がS極を示す磁石であIハ駆動コイル251に
通電する駆動信号261が、駆動コイル251の上面が
S極で下面がN極となるような電流を印加すると、駆動
コイル251と磁石241との間に吸引力が働き、磁石
241は下方へ変位する。この時磁石241に固定され
たミラー21も下方へ変位する。一方、反対面に設けら
れた駆動コイル252に駆動信号261と反対極性の駆
動信号262を印加すると、駆動コイル252の上面は
N極性とな(バ駆動コイル252ト永久磁石242は反
発する作用が働き、永久磁石242とこれに固定された
ミラー21 は上方へ変位する。永久磁石241 、2
42に作用する力が互に逆向きで同じ大きさであれば、
ミラー21の中心軸(図示せず)を中心にミラー21は
、一方向に傾斜する。次に駆動信号261 、262に
加える信号をそれぞれ、全印加している極性と逆極性に
すると、ミラー21の傾斜は、静止点とは逆の方向に傾
斜する。この動作を繰返し実行すると、ミラー21は、
静止点を中心に振動し、一定の角度で入射された光ビー
ムは連続的に一次元に走査されることになる。
Next, an embodiment of a one-dimensional scanner using the present invention is shown in FIG. A permanent magnet 241 is attached to one side of the light beam deflection mirror 21, and a permanent magnet 24 is attached to the opposite side.
2 is installed. And two permanent magnets 241
, 242 are provided with drive coils 251 and 252 facing each other with an appropriate interval. mirror 2
1 between the support base 22, drive coils 251 and 252
A buffer support material 28 is provided for the purpose of preventing the device from falling when the device is not energized, and for use in continuous repetitive motion. For example, the upper surfaces of permanent magnets 241 and 242 shown in Fig. 3 are both N.
When a drive signal 261 that applies current to the drive coil 251 of a magnet whose bottom surface is an S pole and a current is applied such that the top surface of the drive coil 251 is an S pole and the bottom surface is a N pole, the drive coil 251 and An attractive force acts between the magnet 241 and the magnet 241, and the magnet 241 is displaced downward. At this time, the mirror 21 fixed to the magnet 241 is also displaced downward. On the other hand, when a drive signal 262 of opposite polarity to the drive signal 261 is applied to the drive coil 252 provided on the opposite surface, the upper surface of the drive coil 252 becomes N polarity (the drive coil 252 and the permanent magnet 242 have a repulsive effect). As a result, the permanent magnet 242 and the mirror 21 fixed thereto are displaced upward.Permanent magnets 241 and 2
If the forces acting on 42 are in opposite directions and have the same magnitude, then
The mirror 21 is tilted in one direction about the central axis (not shown) of the mirror 21. Next, when the signals applied to the drive signals 261 and 262 are set to have opposite polarities to the polarity of the applied signals, the mirror 21 is tilted in a direction opposite to the rest point. By repeatedly performing this operation, the mirror 21 becomes
A light beam that vibrates around a stationary point and is incident at a fixed angle is continuously scanned in one dimension.

第4図は、第3図の実施例をミラーの直交する他の側面
にも応用し、二次元のミラー偏向を実現した二次元光ビ
ーム走査装置の実施例である。
FIG. 4 shows an embodiment of a two-dimensional light beam scanning device that realizes two-dimensional mirror deflection by applying the embodiment of FIG. 3 to other orthogonal sides of the mirror.

図中第3図と同一部分には同一符号を付す。The same parts in the figure as in FIG. 3 are given the same reference numerals.

341 、342は永久磁石、351 、352は駆動
コイル、361 、362は駆動信号で、これらにより
Y軸の一次元走査系を構成する。一方永久磁石241 
、242、駆動コイル251 、252、および駆動信
号261 、262でY軸の一次元走査器を構成する。
Permanent magnets 341 and 342, drive coils 351 and 352, and drive signals 361 and 362 constitute a one-dimensional scanning system along the Y axis. On the other hand, permanent magnet 241
, 242, drive coils 251, 252, and drive signals 261, 262 constitute a Y-axis one-dimensional scanner.

今、二次元の順次走査をする場合、例えばX軸周の駆動
信号361 、362の対として互いに逆極性となる電
流を使用し、これを駆動コイル351 、352に印加
することによりミラー21をX軸方向に一周期偏向させ
る。次I:Y軸用の駆動信号261,262として互い
に逆極性となる電流を使用し1、駆動コイル251 、
252に印加することによりY軸方向にM画素分の1だ
け偏向させる。これをM回繰り返して二次元走査を1回
完了する。ミラー21を振らせる量は電流値で決定でき
る。
Now, when performing two-dimensional sequential scanning, for example, currents with opposite polarities are used as a pair of driving signals 361 and 362 around the X axis, and by applying these to the driving coils 351 and 352, the mirror 21 is Deflect one cycle in the axial direction. Next I: Currents with opposite polarities are used as drive signals 261 and 262 for the Y-axis.1, drive coil 251,
252, the beam is deflected by one M pixels in the Y-axis direction. This is repeated M times to complete one two-dimensional scan. The amount by which the mirror 21 is caused to swing can be determined by the current value.

発明の効果 以上のように本発明は、ミラーの側面に永久磁石を設け
、これに対向配置した駆動コイルに電流を流すことによ
りミラーをその面に垂直な方向に変位させ、このミラー
面に光ビームを照射することにより光走査を行うように
したもので、1個のミラーにより光ビームを二次元に走
査することが可能となり、小型一体型の光走査器を得る
ことができ、利用上の制約もなく利用範囲を広くするこ
とができる。
Effects of the Invention As described above, the present invention provides a permanent magnet on the side surface of a mirror, and by passing a current through a drive coil placed opposite to the permanent magnet, the mirror is displaced in a direction perpendicular to the surface thereof, and light is emitted onto this mirror surface. Optical scanning is performed by irradiating a beam, and it is possible to scan the optical beam two-dimensionally using a single mirror, making it possible to obtain a compact integrated optical scanner, which is easy to use. The scope of use can be expanded without any restrictions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光走査装置の実施例における要部
斜視図、第2図は本発明による光走査装置における駆動
信号の波形図、第3図および第4図は各々本発明による
光走査装置の他の実施例における要部斜視図、第5図(
a) 、 (b) 、 (C)は各々従来の光走査装置
の動作原理を説明するための斜視図である。 11.21・・・ミラー、12 、22・・・支持台、
13 ・・・支点、14 、241 、242 、34
1 、342・・・永久磁石、15 、251 、25
2 、351 、352・・・駆動コイル、16゜26
1 、262 、361 、362・・・駆動信号、2
8・・・緩衝支持材。 代理人の氏名 弁理士 中 尾 敏 男 はか1名!!
31 図 [211
FIG. 1 is a perspective view of essential parts in an embodiment of the optical scanning device according to the present invention, FIG. 2 is a waveform diagram of a drive signal in the optical scanning device according to the present invention, and FIGS. 3 and 4 are respective views of the optical scanning device according to the present invention. A perspective view of main parts in another embodiment of the device, FIG.
FIGS. 1A, 2B, and 2C are perspective views for explaining the operating principle of a conventional optical scanning device. 11.21... Mirror, 12, 22... Support stand,
13...Fulcrum, 14, 241, 242, 34
1, 342... permanent magnet, 15, 251, 25
2, 351, 352... Drive coil, 16°26
1, 262, 361, 362... drive signal, 2
8...Buffer support material. Name of agent: Patent attorney Toshi Nakao (only 1 person!) !
31 Figure [211

Claims (3)

【特許請求の範囲】[Claims] (1)ミラーまたはミラー保持材の側面にミラーの反射
面に対して垂直な方向に磁極性を有する永久磁石を設け
、前記永久磁石と対向する位置に、駆動コイルを設け、
前記駆動コイルに電流を流し磁界を発生させて前記ミラ
ーを偏向することを特徴とする光走査装置。
(1) A permanent magnet having magnetic polarity in a direction perpendicular to the reflective surface of the mirror is provided on the side surface of the mirror or the mirror holding material, and a drive coil is provided at a position facing the permanent magnet,
An optical scanning device characterized in that the mirror is deflected by applying a current to the drive coil to generate a magnetic field.
(2)駆動コイルがミラーまたはミラー保持材の互に対
向する側面に独立に設けられ、対向する駆動コイルに互
に逆向きの磁界が発生するように電流が印加されること
を特徴とする特許請求の範囲第1項記載の光走査装置。
(2) A patent characterized in that drive coils are provided independently on opposing sides of the mirror or mirror holding material, and current is applied to the opposing drive coils so as to generate magnetic fields in opposite directions. An optical scanning device according to claim 1.
(3)対向するミラーまたはミラー保持材の側面に設け
られた駆動コイル対を二つ有し、前記駆動コイル対が互
に直交して設置されたことを特徴とする特許請求の範囲
第2項記載の光走査装置。
(3) Claim 2, characterized in that it has two pairs of drive coils provided on the side surfaces of opposing mirrors or mirror holders, and the pairs of drive coils are installed orthogonally to each other. The optical scanning device described.
JP62305053A 1987-12-01 1987-12-01 Optical scanning device Pending JPH01145622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62305053A JPH01145622A (en) 1987-12-01 1987-12-01 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62305053A JPH01145622A (en) 1987-12-01 1987-12-01 Optical scanning device

Publications (1)

Publication Number Publication Date
JPH01145622A true JPH01145622A (en) 1989-06-07

Family

ID=17940550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62305053A Pending JPH01145622A (en) 1987-12-01 1987-12-01 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH01145622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0483530A2 (en) * 1990-10-30 1992-05-06 ELTRO GmbH Gesellschaft für Strahlungstechnik Method and device for offset and response harmonization in an electrooptical linear or mosaic sensor
US5665954A (en) * 1988-10-21 1997-09-09 Symbol Technologies, Inc. Electro-optical scanner module having dual electro-magnetic coils
US6059188A (en) * 1993-10-25 2000-05-09 Symbol Technologies Packaged mirror including mirror travel stops

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5665954A (en) * 1988-10-21 1997-09-09 Symbol Technologies, Inc. Electro-optical scanner module having dual electro-magnetic coils
EP0483530A2 (en) * 1990-10-30 1992-05-06 ELTRO GmbH Gesellschaft für Strahlungstechnik Method and device for offset and response harmonization in an electrooptical linear or mosaic sensor
US6059188A (en) * 1993-10-25 2000-05-09 Symbol Technologies Packaged mirror including mirror travel stops
US6257491B1 (en) 1993-10-25 2001-07-10 Symbol Technologies, Inc. Packaged mirror including mirror travel stops

Similar Documents

Publication Publication Date Title
US5610752A (en) Optical reader with vibrating mirror
KR100636347B1 (en) Raster Scanning Display System
US6049407A (en) Piezoelectric scanner
JP3220061B2 (en) Laser scanning unit
EP0660255A2 (en) Oscillation bar code reader
US5764398A (en) Optical reader with vibrating mirror
JP6388262B2 (en) Scanner device
JPH0727989A (en) Light deflector
US7324252B2 (en) Electromagnetic scanning micro-mirror and optical scanning device using the same
JP3196805B2 (en) Display device and portable electronic device
JPH01145622A (en) Optical scanning device
JPH03107116A (en) Light beam scanner
US4560869A (en) Method and apparatus for scanning radiated energy using a single mirror with a plurality of pivotal positions
US20170285327A1 (en) Method for controlling position of a linear mems mirror with variable resolution and/or light intensity
GB1564407A (en) Scanning of optical beams
JP2007078819A (en) Optical scanner element
JPH07261109A (en) Vibrating mirror type scanner
EP0977066A1 (en) Radiation-beam manipulator having a pretensioned thrust bearing
JPS61118717A (en) Scanning mechanism of scanning mirror
EP0623888A1 (en) Beam steering device
JPH085455A (en) Scanner for infrared ray detecting device
JP2603883B2 (en) Light beam scanning device for barcode scanner
JP2782260B2 (en) Linear step motor and its excitation method
JP2004061929A (en) Galvano-motor
JP2001117044A (en) Galvano mirror